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Language Specification and Translation
Topics

• Structure of a Compiler
• Lexical Specification and Scanning
• Syntactic Specification and Parsing
• Semantic Specification and Analysis
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Syntax versus Semantics

• Syntax - the form or structure of the
expressions, statements, and program units

• Semantics - the meaning of the expressions,
statements, and program units
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The Structure of a Compiler

1. Lexical Analysis
2. Parsing
3. Semantic Analysis
4. Optimization
5. Code Generation

  The first 3, at least, can be understood by
analogy to how humans comprehend

English.
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A Prototypical Compiler

Scanner

Parser

Semantic
Analysis

Optimizer

Code
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tokens

source
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exe
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Introduction

• Reasons to separate compiler in phases:
– Simplicity - less complex approaches can be used

for lexical analysis; separating them simplifies the
parser

– Efficiency - separation allows optimization of the
lexical analyzer

– Portability - parts of the lexical analyzer may not
be portable, but the parser always is portable
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Lexical Analysis

• First step: recognize words.
– Smallest unit above letters

This is a sentence.

• Note the
– Capital “T” (start of sentence symbol)
– Blank “ “ (word separator)
– Period “.” (end of sentence symbol)
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Lexical Analysis

• Lexical analysis is not trivial.  Consider:
ist his ase nte nce

• Plus, programming languages are typically
more cryptic than English:

*p->f ++ = -.12345e-5
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Lexical Analysis

• Lexical analyzer divides program text into
“words” or “tokens”

if x == y then z = 1; else z = 2;

• Units:
if, x, ==, y, then, z, =, 1, ;, else, z, =, 2, ;
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Lexical Analysis

• A lexical analyzer is a pattern matcher for
character strings

• A lexical analyzer is a “front-end” for the
parser

• Identifies substrings of the source program
that belong together - lexemes
– Lexemes match a character pattern, which is

associated with a lexical category called a token
– sum is a lexeme; its token may be IDENT
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Pascal Scanner Finite State Diagram
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Pascal Scanning Examples

• Find the sequence of Pascal tokens in the string:

X[1] := X[2] * 3.0e2;

• Which of the following Pascal strings have lexical
errors:

hello?
(* hello? *)

x:=1.0
x[1]] := 0
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State Diagram Simplification

• In many cases, transitions can be combined to simplify the
state diagram
– When recognizing an identifier, all uppercase and lowercase letters are

equivalent
• Use a character class that includes all letters
• When recognizing an integer literal, all digits are equivalent - use a

digit class
• Reserved words and identifiers can be recognized together

(rather than having a part of the diagram for each reserved
word)
– Use a table lookup to determine whether a possible identifier is in fact a

reserved word

A naïve state diagram would have a transition from every
state on every character in the source language - such a
diagram would be very large!
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Example Scanner Implementation

• Convenient utility subprograms:
– getChar - gets the next character of input, puts it

in nextChar, determines its class and puts the
class in charClass

– addChar - puts the character from nextChar
into the place the lexeme is being accumulated,
lexeme

– lookup - determines whether the string in lexeme
is a reserved word (returns a code)
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State Diagram
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Example Scanner Implementation

int lex() {
  getChar();
  switch (charClass) {
    case LETTER:
      addChar();
      getChar();
      while (charClass == LETTER || charClass == DIGIT)
      {
        addChar();
        getChar();
      }
      return lookup(lexeme);
      break;
case DIGIT:
      addChar();
      getChar();
      while (charClass == DIGIT) {
        addChar();
        getChar();
      }
      return INT_LIT;
      break;
  }  /* End of switch */
}  /* End of function lex */

Implementation (assume initialization):
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Parsing

• Once words are understood, the next step is to
understand sentence structure

• Parsing = Diagramming Sentences
– The diagram is a tree
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Diagramming a Sentence

This line is a longer sentence

verbarticle noun article adjective noun

subject object

sentence
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Parsing Programs

• Parsing program expressions is the same
• Consider:

If x == y then z = 1; else z = 2;
• Diagrammed:

if-then-else

x y z 1 z 2==

assignrelation assign

predicate else-stmtthen-stmt
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Describing Syntax

• A sentence is a string of characters over some
alphabet

• A language is a set of sentences
• A lexeme is the lowest level syntactic unit of

a language (e.g., *, sum, begin)
• A token is a category of lexemes (e.g.,

identifier)
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Describing Syntax

• Formal approaches to describing syntax:
– Recognizers - used in compilers (we will look at in

Chapter 4)
– Generators – generate the sentences of a language

(what we'll study in this chapter)
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Formal Methods of
Describing Syntax

• Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s
– Language generators, meant to describe the syntax of

natural languages
– Define a class of languages called context-free

languages
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Formal Methods of
Describing Syntax

• Backus-Naur Form (1959)
– Invented by John Backus to describe Algol 58
– BNF is equivalent to context-free grammars
– A metalanguage is a language used to describe another

language.
– In BNF, abstractions are used to represent classes of

syntactic structures--they act like  syntactic  variables
(also called nonterminal symbols)
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Backus-Naur Form (1959)

<while_stmt> →  while ( <logic_expr> ) <stmt>

• This is a rule; it describes the structure of a
while statement
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Formal Methods of
Describing Syntax

• A rule has a left-hand side (LHS) and a right-hand
side (RHS), and consists of terminal and
nonterminal symbols

• A grammar is a finite nonempty set of rules
• An abstraction (or nonterminal symbol) can have

more than one RHS
     <stmt> → <single_stmt>

                    | begin <stmt_list> end
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Formal Methods of
Describing Syntax

• Syntactic lists are described using recursion
    <ident_list> → ident
                    | ident, <ident_list>
• A derivation is a repeated application of rules,

starting with the start symbol and ending with a
sentence (all terminal symbols)
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Formal Methods of
Describing Syntax

• An example grammar:
   <program> → <stmts>

   <stmts> → <stmt> | <stmt> ; <stmts>

   <stmt> → <var> = <expr>

   <var> → a | b | c | d
   <expr> → <term> + <term> | <term> - <term>

   <term> → <var> | const
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Formal Methods of
Describing Syntax

• An example derivation:
  <program> => <stmts> => <stmt>
                      => <var> = <expr> => a = <expr>

                      => a = <term> + <term>

                      => a = <var> + <term>

                      => a = b + <term>

                      => a = b + const
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Derivation

• Every string of symbols in the derivation is a
sentential form

• A sentence is a sentential form that has only
terminal symbols

• A leftmost derivation is one in which the
leftmost nonterminal in each sentential form is
the one that is expanded

• A derivation may be neither leftmost nor
rightmost
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Parse Tree

• A hierarchical representation of a derivation

<program>

<stmts>

<stmt>

const

a

<var> = <expr>

<var>

b

<term> + <term>
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Formal Methods of
Describing Syntax

• A grammar is ambiguous iff it generates a
sentential form that has two or more distinct parse
trees
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An Ambiguous
Expression Grammar

<expr> → <expr> <op> <expr>  |  const

<op> → /  |  -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>
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An Unambiguous
Expression Grammar
• If we use the parse tree to indicate precedence

levels of the operators, we cannot have
ambiguity

<expr> → <expr> - <term>  |  <term>
<term> → <term> / const  |  const

<expr>

<expr> <term>

<term> <term>

const const

const/

-
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Formal Methods of
Describing Syntax

Derivation:
<expr> => <expr> - <term> => <term> - <term>
       => const - <term>
       => const - <term> / const
       => const - const / const
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Formal Methods of Describing
Syntax
• Operator associativity can also be indicated by a

grammar
<expr> -> <expr> + <expr>  |  const  (ambiguous)
<expr> -> <expr> + const  |  const  (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+
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Formal Methods of
Describing Syntax

• Extended BNF (just abbreviations):
– Optional parts are placed in brackets ([ ])

     <proc_call> -> ident [ ( <expr_list>)]
– Put alternative parts of RHSs in parentheses and

separate them with vertical bars
     <term> -> <term> (+ | -) const

– Put repetitions (0 or more) in braces ({ })
     <ident> -> letter {letter | digit}
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BNF and EBNF

• BNF:
   <expr> → <expr> + <term>
           | <expr> - <term>
          | <term>
   <term> → <term> * <factor>
           | <term> / <factor>
           | <factor>
• EBNF:
   <expr> → <term> {(+ | -) <term>}
   <term> → <factor> {(* | /) <factor>}
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The Parsing Problem

• Goals of the parser, given an input program:
– Find all syntax errors; for each, produce an

appropriate diagnostic message, and recover
quickly

– Produce the parse tree, or at least a trace of the
parse tree, for the program
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The Parsing Problem

• Two categories of parsers
– Top down - produce the parse tree, beginning at

the root
• Order is that of a leftmost derivation

– Bottom up - produce the parse tree, beginning at
the leaves

• Order is that of the reverse of a rightmost derivation

• Parsers look only one token ahead in the input
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The Parsing Problem

• Top-down Parsers
– Given a sentential form, xAα , the parser must

choose the correct A-rule to get the next sentential
form in the leftmost derivation, using only the first
token produced by A

• The most common top-down parsing
algorithms:
– Recursive descent - a coded implementation
– LL parsers - table driven implementation
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The Parsing Problem

• Bottom-up parsers
– Given a right sentential form, α, determine what

substring of α is the right-hand side of the rule in
the grammar that must be reduced to produce the
previous sentential form in the right derivation

– The most common bottom-up parsing algorithms
are in the LR family
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The Parsing Problem

• The Complexity of Parsing
– Parsers that work for any unambiguous grammar

are complex and inefficient ( O(n3), where n is the
length of the input )

– Compilers use parsers that only work for a subset
of all unambiguous grammars, but do it in linear
time ( O(n), where n is the length of the input )
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Recursive-Descent Parsing

• Recursive Descent Process
– There is a subprogram for each nonterminal in the

grammar, which can parse sentences that can be
generated by that nonterminal

– EBNF is ideally suited for being the basis for a
recursive-descent parser, because EBNF
minimizes the number of nonterminals
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Recursive-Descent Parsing

• A grammar for simple expressions:

<expr> → <term> {(+ | -) <term>}
<term> → <factor> {(* | /) <factor>}
<factor> → id | ( <expr> )



Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-45

Recursive-Descent Parsing

• Assume we have a lexical analyzer named
lex, which puts the next token code in
nextToken

• The coding process when there is only one
RHS:
– For each terminal symbol in the RHS, compare it

with the next input token; if they match, continue,
else there is an error

– For each nonterminal symbol in the RHS, call its
associated parsing subprogram
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Recursive-Descent Parsing
/* Function expr
   Parses strings in the language
   generated by the rule:
   <expr> → <term> {(+ | -) <term>}
 */

void expr() {

/* Parse the first term */

  term();
/* As long as the next token is + or -, call
   lex to get the next token, and parse the
   next term */

  while (nextToken == PLUS_CODE ||
         nextToken == MINUS_CODE){
    lex();
    term();
  }
} • This particular routine does not detect errors

• Convention: Every parsing routine leaves the next
token in nextToken
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Recursive-Descent Parsing

• A nonterminal that has more than one RHS
requires an initial process to determine which
RHS it is to parse
– The correct RHS is chosen on the basis of the next

token of input (the lookahead)
– The next token is compared with the first token

that can be generated by each RHS until a match is
found

– If no match is found, it is a syntax error



Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-48

Recursive-Descent Parsing
/* Function factor
   Parses strings in the language
   generated by the rule:
   <factor> -> id  |  (<expr>)  */

 void factor() {

 /* Determine which RHS */

   if (nextToken) == ID_CODE)

 /* For the RHS id, just call lex */

     lex();
/* If the RHS is (<expr>) – call lex to pass
     over the left parenthesis, call expr, and
     check for the right parenthesis */

   else if (nextToken == LEFT_PAREN_CODE) {
     lex();
     expr();
     if (nextToken == RIGHT_PAREN_CODE)
       lex();
     else
       error();
   }  /* End of else if (nextToken == ...  */

   else error(); /* Neither RHS matches */
 }
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Recursive-Descent Parsing

• Limitations of the LL grammar classes
– The Left Recursion Problem

• If a grammar has left recursion, either direct or
indirect, it cannot be the basis for a top-down parser

– A grammar can be modified to remove left recursion

– Lack of pairwise disjointness
• The inability to determine the correct RHS on the

basis of one token of lookahead
• Def: FIRST(α) = {a | α =>* aβ }

             (If α =>* ε, ε is in FIRST(α))
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Recursive-Descent Parsing

• Pairwise Disjointness Test:
– For each nonterminal, A, in the grammar that has

more than one RHS, for each pair of rules, A → αi
and A → αj, it must be true that

         FIRST(αi)  FIRST(αj) = φ
• Examples:
       A → a  |  bB  |  cAb
       A → a  |  aB
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Recursive-Descent Parsing

Left factoring can resolve the problem
Replace:
 <variable> → identifier  |  identifier [<expression>]

With:
 <variable> → identifier <new>
 <new> → ε   |  [<expression>]
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Bottom-up Parsing

• The parsing problem is finding the correct
RHS in a right-sentential form to reduce to get
the previous right-sentential form in the
derivation
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Bottom-up Parsing

•The parsing problem is finding the correct RHS in a right-
sentential form to reduce to get the previous right-
sentential form in the derivation
•Intuition about handles:

– Def: β is the handle of the right sentential form
        γ = αβw if and only if S =>*rm αAw =>rm αβw

– Def: β is a phrase of the right sentential form
        γ  if and only if S =>* γ  = α1Aα2 =>+ α1βα2

– Def: β is a simple phrase of the right sentential form
γ  if and only if S =>* γ  = α1Aα2 => α1βα2
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A Bottom-up Parse in Detail (1)

int++int int( )

int + (int) + (int)

()

E → E + ( E ) 
E → int
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A Bottom-up Parse in Detail (2)

E

int++int int( )

int + (int) + (int)
E + (int) + (int)

()

E → E + ( E ) 
E → int
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A Bottom-up Parse in Detail (3)

E

int++int int( )

int + (int) + (int)
E + (int) + (int)
E  + (E) + (int)

()

E

E → E + ( E ) 
E → int
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A Bottom-up Parse in Detail (4)

E

int++int int( )

int + (int) + (int)
E + (int) + (int)
E  + (E) + (int)
E + (int) E

()

E

E → E + ( E ) 
E → int
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A Bottom-up Parse in Detail (5)

E

int++int int( )

int + (int) + (int)
E + (int) + (int)
E  + (E) + (int)
E + (int)
E + (E)

E

()

EE

E → E + ( E ) 
E → int
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A Bottom-up Parse in Detail (6)

E

E

int++int int( )

int + (int) + (int)
E + (int) + (int)
E  + (E) + (int)
E + (int)
E + (E)
E

E

()

EEA rightmost
derivation in reverse

E → E + ( E ) 
E → int



Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-60

Bottom-up Parsing

• Advantages of LR parsers:
– They will work for nearly all grammars that

describe programming languages.
– They work on a larger class of grammars than

other bottom-up algorithms, but are as efficient as
any other bottom-up parser.

– They can detect syntax errors as soon as it is
possible.

– The LR class of grammars is a superset of the
class parsable by LL parsers.
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Classes of grammars



Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-62

Semantic Analysis

• Once sentence structure is understood, we can
try to understand “meaning”
– But meaning is too hard for compilers

• Compilers perform limited analysis to catch
inconsistencies

• Some do more analysis to improve the
performance of the program
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Semantic Analysis in English

• Example:
Jack said Jerry left his assignment at home.

What does “his” refer to? Jack or Jerry?

• Even worse:
Jack said Jack left his assignment at home?

How many Jacks are there?
Which one left the assignment?
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Semantic Analysis in
Programming
• Programming

languages define
strict rules to avoid
such ambiguities

• This C++ code
prints “4”; the inner
definition is used

{
int Jack = 3;
{

int Jack = 4;
cout << Jack;

}
}



Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-65

More Semantic Analysis

• Compilers perform many semantic checks
besides variable bindings

• Example:
Jack left her homework at home.

• A “type mismatch” between her and Jack; we
know they are different people
– Presumably Jack is male
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Static Semantic Analysis

• Types of Checks conducted by compiler:
1. All identifiers are declared
2. Types
3. Inheritance relationships
4. Classes defined only once
5. Methods in a class defined only once
6. Reserved identifiers are not misused
And others . . .

• Complex languages => Complex checks
• Algorithm: Traverse the AST produced by the parser
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END OF ICOM 4036 LECTURE 3
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Bottom-up Parsing

• LR parsers must be constructed with a tool
• Knuth’s insight: A bottom-up parser could use

the entire history of the parse, up to the
current point, to make parsing decisions
– There were only a finite and relatively small

number of different parse situations that could
have occurred, so the history could be stored in a
parser state, on the parse stack
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Bottom-up Parsing

• An LR configuration stores the state of an LR
parser

(S0X1S1X2S2…XmSm, aiai+1…an$)
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Bottom-up Parsing

• LR parsers are table driven, where the table has
two components, an ACTION table and a GOTO
table
– The ACTION table specifies the action of the parser,

given the parser state and the next token
• Rows are state names; columns are terminals

– The GOTO table specifies which state to put on top of
the parse stack after a reduction action is done

• Rows are state names; columns are nonterminals
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Structure of An LR Parser
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Bottom-up Parsing

• Initial configuration: (S0, a1…an$)
• Parser actions:

– If ACTION[Sm, ai] = Shift S, the next
configuration is:

(S0X1S1X2S2…XmSmaiS, ai+1…an$)
– If ACTION[Sm, ai] = Reduce A → β and S =

GOTO[Sm-r, A], where r = the length of β, the next
configuration is

(S0X1S1X2S2…Xm-rSm-rAS, aiai+1…an$)
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Bottom-up Parsing

• Parser actions (continued):
– If ACTION[Sm, ai] = Accept, the parse is complete

and no errors were found.
– If ACTION[Sm, ai] = Error, the parser calls an

error-handling routine.
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LR Parsing Table
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Bottom-up Parsing

• A parser table can be generated from a given
grammar with a tool, e.g., yacc
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Optimization

• No strong counterpart in English, but akin to
editing

• Automatically modify programs so that they
– Run faster
– Use less memory
– In general, conserve some resource

• The project has no optimization component
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Optimization Example

X = Y * 0   is the same as  X = 0

NO!

Valid for integers, but not for floating point
numbers
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Code Generation

• Produces assembly code (usually)

• A translation into another language
– Analogous to human translation
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Intermediate Languages

• Many compilers perform translations between
successive intermediate forms
– All but first and last are intermediate languages

internal to the compiler
– Typically there is 1 IL

• IL’s generally ordered in descending level of
abstraction
– Highest is source
– Lowest is assembly
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Intermediate Languages (Cont.)

• IL’s are useful because lower levels expose
features hidden by higher levels
– registers
– memory layout
– etc.

• But lower levels obscure high-level meaning
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Issues

• Compiling is almost this simple, but there are
many pitfalls.

• Example: How are erroneous programs
handled?

• Language design has big impact on compiler
– Determines what is easy and hard to compile
– Course theme: many trade-offs in language design
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Compilers Today

• The overall structure of almost every compiler
adheres to our outline

• The proportions have changed since
FORTRAN
– Early: lexing, parsing most complex, expensive

– Today: optimization dominates all other phases,
lexing and parsing are cheap
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Trends in Compilation

• Compilation for speed is less interesting. But:
– scientific programs
– advanced processors (Digital Signal Processors,

advanced speculative architectures)

• Ideas from compilation used for improving
code reliability:
– memory safety
– detecting concurrency errors (data races)
– ...
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Lexical Analysis

• The lexical analyzer is usually a function that is called
by the parser when it needs the next token

• Three approaches to building a lexical analyzer:
– Write a formal description of the tokens and use a software

tool that constructs table-driven lexical analyzers given such
a description (e.g. lex)

– Design a state diagram that describes the tokens and write a
program that implements the state diagram

– Design a state diagram that describes the tokens and hand-
construct a table-driven implementation of the state diagram

• We only discuss approach 2

State diagram = Finite State Machine


