
Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-1

Programming Language
Specification and Translation

ICOM 4036
Spring 2008

Lecture 3

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-2

Language Specification and Translation
Topics

• Structure of a Compiler
• Lexical Specification and Scanning
• Syntactic Specification and Parsing
• Semantic Specification and Analysis

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-3

Syntax versus Semantics

• Syntax - the form or structure of the
expressions, statements, and program units

• Semantics - the meaning of the expressions,
statements, and program units

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-4

The Structure of a Compiler

1. Lexical Analysis
2. Parsing
3. Semantic Analysis
4. Optimization
5. Code Generation

 The first 3, at least, can be understood by
analogy to how humans comprehend

English.

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-5

A Prototypical Compiler

Scanner

Parser

Semantic
Analysis

Optimizer

Code
Generator

tokens

source

AST

IL

IL

exe

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-6

Introduction

• Reasons to separate compiler in phases:
– Simplicity - less complex approaches can be used

for lexical analysis; separating them simplifies the
parser

– Efficiency - separation allows optimization of the
lexical analyzer

– Portability - parts of the lexical analyzer may not
be portable, but the parser always is portable

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-7

Lexical Analysis

• First step: recognize words.
– Smallest unit above letters

This is a sentence.

• Note the
– Capital “T” (start of sentence symbol)
– Blank “ “ (word separator)
– Period “.” (end of sentence symbol)

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-8

Lexical Analysis

• Lexical analysis is not trivial. Consider:
ist his ase nte nce

• Plus, programming languages are typically
more cryptic than English:

*p->f ++ = -.12345e-5

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-9

Lexical Analysis

• Lexical analyzer divides program text into
“words” or “tokens”

if x == y then z = 1; else z = 2;

• Units:
if, x, ==, y, then, z, =, 1, ;, else, z, =, 2, ;

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-10

Lexical Analysis

• A lexical analyzer is a pattern matcher for
character strings

• A lexical analyzer is a “front-end” for the
parser

• Identifies substrings of the source program
that belong together - lexemes
– Lexemes match a character pattern, which is

associated with a lexical category called a token
– sum is a lexeme; its token may be IDENT

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-11

Pascal Scanner Finite State Diagram

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-12

Pascal Scanning Examples

• Find the sequence of Pascal tokens in the string:

X[1] := X[2] * 3.0e2;

• Which of the following Pascal strings have lexical
errors:

hello?
(* hello? *)

x:=1.0
x[1]] := 0

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-13

State Diagram Simplification

• In many cases, transitions can be combined to simplify the
state diagram
– When recognizing an identifier, all uppercase and lowercase letters are

equivalent
• Use a character class that includes all letters
• When recognizing an integer literal, all digits are equivalent - use a

digit class
• Reserved words and identifiers can be recognized together

(rather than having a part of the diagram for each reserved
word)
– Use a table lookup to determine whether a possible identifier is in fact a

reserved word

A naïve state diagram would have a transition from every
state on every character in the source language - such a
diagram would be very large!

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-14

Example Scanner Implementation

• Convenient utility subprograms:
– getChar - gets the next character of input, puts it

in nextChar, determines its class and puts the
class in charClass

– addChar - puts the character from nextChar
into the place the lexeme is being accumulated,
lexeme

– lookup - determines whether the string in lexeme
is a reserved word (returns a code)

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-15

State Diagram

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-16

Example Scanner Implementation

int lex() {
 getChar();
 switch (charClass) {
 case LETTER:
 addChar();
 getChar();
 while (charClass == LETTER || charClass == DIGIT)
 {
 addChar();
 getChar();
 }
 return lookup(lexeme);
 break;
case DIGIT:
 addChar();
 getChar();
 while (charClass == DIGIT) {
 addChar();
 getChar();
 }
 return INT_LIT;
 break;
 } /* End of switch */
} /* End of function lex */

Implementation (assume initialization):

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-17

Parsing

• Once words are understood, the next step is to
understand sentence structure

• Parsing = Diagramming Sentences
– The diagram is a tree

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-18

Diagramming a Sentence

This line is a longer sentence

verbarticle noun article adjective noun

subject object

sentence

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-19

Parsing Programs

• Parsing program expressions is the same
• Consider:

If x == y then z = 1; else z = 2;
• Diagrammed:

if-then-else

x y z 1 z 2==

assignrelation assign

predicate else-stmtthen-stmt

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-20

Describing Syntax

• A sentence is a string of characters over some
alphabet

• A language is a set of sentences
• A lexeme is the lowest level syntactic unit of

a language (e.g., *, sum, begin)
• A token is a category of lexemes (e.g.,

identifier)

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-21

Describing Syntax

• Formal approaches to describing syntax:
– Recognizers - used in compilers (we will look at in

Chapter 4)
– Generators – generate the sentences of a language

(what we'll study in this chapter)

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-22

Formal Methods of
Describing Syntax

• Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s
– Language generators, meant to describe the syntax of

natural languages
– Define a class of languages called context-free

languages

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-23

Formal Methods of
Describing Syntax

• Backus-Naur Form (1959)
– Invented by John Backus to describe Algol 58
– BNF is equivalent to context-free grammars
– A metalanguage is a language used to describe another

language.
– In BNF, abstractions are used to represent classes of

syntactic structures--they act like syntactic variables
(also called nonterminal symbols)

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-24

Backus-Naur Form (1959)

<while_stmt> → while (<logic_expr>) <stmt>

• This is a rule; it describes the structure of a
while statement

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-25

Formal Methods of
Describing Syntax

• A rule has a left-hand side (LHS) and a right-hand
side (RHS), and consists of terminal and
nonterminal symbols

• A grammar is a finite nonempty set of rules
• An abstraction (or nonterminal symbol) can have

more than one RHS
 <stmt> → <single_stmt>

 | begin <stmt_list> end

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-26

Formal Methods of
Describing Syntax

• Syntactic lists are described using recursion
 <ident_list> → ident
 | ident, <ident_list>
• A derivation is a repeated application of rules,

starting with the start symbol and ending with a
sentence (all terminal symbols)

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-27

Formal Methods of
Describing Syntax

• An example grammar:
 <program> → <stmts>

 <stmts> → <stmt> | <stmt> ; <stmts>

 <stmt> → <var> = <expr>

 <var> → a | b | c | d
 <expr> → <term> + <term> | <term> - <term>

 <term> → <var> | const

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-28

Formal Methods of
Describing Syntax

• An example derivation:
 <program> => <stmts> => <stmt>
 => <var> = <expr> => a = <expr>

 => a = <term> + <term>

 => a = <var> + <term>

 => a = b + <term>

 => a = b + const

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-29

Derivation

• Every string of symbols in the derivation is a
sentential form

• A sentence is a sentential form that has only
terminal symbols

• A leftmost derivation is one in which the
leftmost nonterminal in each sentential form is
the one that is expanded

• A derivation may be neither leftmost nor
rightmost

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-30

Parse Tree

• A hierarchical representation of a derivation

<program>

<stmts>

<stmt>

const

a

<var> = <expr>

<var>

b

<term> + <term>

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-31

Formal Methods of
Describing Syntax

• A grammar is ambiguous iff it generates a
sentential form that has two or more distinct parse
trees

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-32

An Ambiguous
Expression Grammar

<expr> → <expr> <op> <expr> | const

<op> → / | -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-33

An Unambiguous
Expression Grammar
• If we use the parse tree to indicate precedence

levels of the operators, we cannot have
ambiguity

<expr> → <expr> - <term> | <term>
<term> → <term> / const | const

<expr>

<expr> <term>

<term> <term>

const const

const/

-

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-34

Formal Methods of
Describing Syntax

Derivation:
<expr> => <expr> - <term> => <term> - <term>
 => const - <term>
 => const - <term> / const
 => const - const / const

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-35

Formal Methods of Describing
Syntax
• Operator associativity can also be indicated by a

grammar
<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-36

Formal Methods of
Describing Syntax

• Extended BNF (just abbreviations):
– Optional parts are placed in brackets ([])

 <proc_call> -> ident [(<expr_list>)]
– Put alternative parts of RHSs in parentheses and

separate them with vertical bars
 <term> -> <term> (+ | -) const

– Put repetitions (0 or more) in braces ({ })
 <ident> -> letter {letter | digit}

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-37

BNF and EBNF

• BNF:
 <expr> → <expr> + <term>
 | <expr> - <term>
 | <term>
 <term> → <term> * <factor>
 | <term> / <factor>
 | <factor>
• EBNF:
 <expr> → <term> {(+ | -) <term>}
 <term> → <factor> {(* | /) <factor>}

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-38

The Parsing Problem

• Goals of the parser, given an input program:
– Find all syntax errors; for each, produce an

appropriate diagnostic message, and recover
quickly

– Produce the parse tree, or at least a trace of the
parse tree, for the program

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-39

The Parsing Problem

• Two categories of parsers
– Top down - produce the parse tree, beginning at

the root
• Order is that of a leftmost derivation

– Bottom up - produce the parse tree, beginning at
the leaves

• Order is that of the reverse of a rightmost derivation

• Parsers look only one token ahead in the input

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-40

The Parsing Problem

• Top-down Parsers
– Given a sentential form, xAα , the parser must

choose the correct A-rule to get the next sentential
form in the leftmost derivation, using only the first
token produced by A

• The most common top-down parsing
algorithms:
– Recursive descent - a coded implementation
– LL parsers - table driven implementation

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-41

The Parsing Problem

• Bottom-up parsers
– Given a right sentential form, α, determine what

substring of α is the right-hand side of the rule in
the grammar that must be reduced to produce the
previous sentential form in the right derivation

– The most common bottom-up parsing algorithms
are in the LR family

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-42

The Parsing Problem

• The Complexity of Parsing
– Parsers that work for any unambiguous grammar

are complex and inefficient (O(n3), where n is the
length of the input)

– Compilers use parsers that only work for a subset
of all unambiguous grammars, but do it in linear
time (O(n), where n is the length of the input)

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-43

Recursive-Descent Parsing

• Recursive Descent Process
– There is a subprogram for each nonterminal in the

grammar, which can parse sentences that can be
generated by that nonterminal

– EBNF is ideally suited for being the basis for a
recursive-descent parser, because EBNF
minimizes the number of nonterminals

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-44

Recursive-Descent Parsing

• A grammar for simple expressions:

<expr> → <term> {(+ | -) <term>}
<term> → <factor> {(* | /) <factor>}
<factor> → id | (<expr>)

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-45

Recursive-Descent Parsing

• Assume we have a lexical analyzer named
lex, which puts the next token code in
nextToken

• The coding process when there is only one
RHS:
– For each terminal symbol in the RHS, compare it

with the next input token; if they match, continue,
else there is an error

– For each nonterminal symbol in the RHS, call its
associated parsing subprogram

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-46

Recursive-Descent Parsing
/* Function expr
 Parses strings in the language
 generated by the rule:
 <expr> → <term> {(+ | -) <term>}
 */

void expr() {

/* Parse the first term */

 term();
/* As long as the next token is + or -, call
 lex to get the next token, and parse the
 next term */

 while (nextToken == PLUS_CODE ||
 nextToken == MINUS_CODE){
 lex();
 term();
 }
} • This particular routine does not detect errors

• Convention: Every parsing routine leaves the next
token in nextToken

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-47

Recursive-Descent Parsing

• A nonterminal that has more than one RHS
requires an initial process to determine which
RHS it is to parse
– The correct RHS is chosen on the basis of the next

token of input (the lookahead)
– The next token is compared with the first token

that can be generated by each RHS until a match is
found

– If no match is found, it is a syntax error

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-48

Recursive-Descent Parsing
/* Function factor
 Parses strings in the language
 generated by the rule:
 <factor> -> id | (<expr>) */

 void factor() {

 /* Determine which RHS */

 if (nextToken) == ID_CODE)

 /* For the RHS id, just call lex */

 lex();
/* If the RHS is (<expr>) – call lex to pass
 over the left parenthesis, call expr, and
 check for the right parenthesis */

 else if (nextToken == LEFT_PAREN_CODE) {
 lex();
 expr();
 if (nextToken == RIGHT_PAREN_CODE)
 lex();
 else
 error();
 } /* End of else if (nextToken == ... */

 else error(); /* Neither RHS matches */
 }

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-49

Recursive-Descent Parsing

• Limitations of the LL grammar classes
– The Left Recursion Problem

• If a grammar has left recursion, either direct or
indirect, it cannot be the basis for a top-down parser

– A grammar can be modified to remove left recursion

– Lack of pairwise disjointness
• The inability to determine the correct RHS on the

basis of one token of lookahead
• Def: FIRST(α) = {a | α =>* aβ }

 (If α =>* ε, ε is in FIRST(α))

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-50

Recursive-Descent Parsing

• Pairwise Disjointness Test:
– For each nonterminal, A, in the grammar that has

more than one RHS, for each pair of rules, A → αi
and A → αj, it must be true that

 FIRST(αi) FIRST(αj) = φ
• Examples:
 A → a | bB | cAb
 A → a | aB

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-51

Recursive-Descent Parsing

Left factoring can resolve the problem
Replace:
 <variable> → identifier | identifier [<expression>]

With:
 <variable> → identifier <new>
 <new> → ε | [<expression>]

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-52

Bottom-up Parsing

• The parsing problem is finding the correct
RHS in a right-sentential form to reduce to get
the previous right-sentential form in the
derivation

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-53

Bottom-up Parsing

•The parsing problem is finding the correct RHS in a right-
sentential form to reduce to get the previous right-
sentential form in the derivation
•Intuition about handles:

– Def: β is the handle of the right sentential form
 γ = αβw if and only if S =>*rm αAw =>rm αβw

– Def: β is a phrase of the right sentential form
 γ if and only if S =>* γ = α1Aα2 =>+ α1βα2

– Def: β is a simple phrase of the right sentential form
γ if and only if S =>* γ = α1Aα2 => α1βα2

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-54

A Bottom-up Parse in Detail (1)

int++int int()

int + (int) + (int)

()

E → E + (E)
E → int

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-55

A Bottom-up Parse in Detail (2)

E

int++int int()

int + (int) + (int)
E + (int) + (int)

()

E → E + (E)
E → int

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-56

A Bottom-up Parse in Detail (3)

E

int++int int()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)

()

E

E → E + (E)
E → int

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-57

A Bottom-up Parse in Detail (4)

E

int++int int()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int) E

()

E

E → E + (E)
E → int

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-58

A Bottom-up Parse in Detail (5)

E

int++int int()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int)
E + (E)

E

()

EE

E → E + (E)
E → int

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-59

A Bottom-up Parse in Detail (6)

E

E

int++int int()

int + (int) + (int)
E + (int) + (int)
E + (E) + (int)
E + (int)
E + (E)
E

E

()

EEA rightmost
derivation in reverse

E → E + (E)
E → int

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-60

Bottom-up Parsing

• Advantages of LR parsers:
– They will work for nearly all grammars that

describe programming languages.
– They work on a larger class of grammars than

other bottom-up algorithms, but are as efficient as
any other bottom-up parser.

– They can detect syntax errors as soon as it is
possible.

– The LR class of grammars is a superset of the
class parsable by LL parsers.

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-61

Classes of grammars

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-62

Semantic Analysis

• Once sentence structure is understood, we can
try to understand “meaning”
– But meaning is too hard for compilers

• Compilers perform limited analysis to catch
inconsistencies

• Some do more analysis to improve the
performance of the program

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-63

Semantic Analysis in English

• Example:
Jack said Jerry left his assignment at home.

What does “his” refer to? Jack or Jerry?

• Even worse:
Jack said Jack left his assignment at home?

How many Jacks are there?
Which one left the assignment?

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-64

Semantic Analysis in
Programming
• Programming

languages define
strict rules to avoid
such ambiguities

• This C++ code
prints “4”; the inner
definition is used

{
int Jack = 3;
{

int Jack = 4;
cout << Jack;

}
}

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-65

More Semantic Analysis

• Compilers perform many semantic checks
besides variable bindings

• Example:
Jack left her homework at home.

• A “type mismatch” between her and Jack; we
know they are different people
– Presumably Jack is male

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-66

Static Semantic Analysis

• Types of Checks conducted by compiler:
1. All identifiers are declared
2. Types
3. Inheritance relationships
4. Classes defined only once
5. Methods in a class defined only once
6. Reserved identifiers are not misused
And others . . .

• Complex languages => Complex checks
• Algorithm: Traverse the AST produced by the parser

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-67

END OF ICOM 4036 LECTURE 3

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-68

Bottom-up Parsing

• LR parsers must be constructed with a tool
• Knuth’s insight: A bottom-up parser could use

the entire history of the parse, up to the
current point, to make parsing decisions
– There were only a finite and relatively small

number of different parse situations that could
have occurred, so the history could be stored in a
parser state, on the parse stack

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-69

Bottom-up Parsing

• An LR configuration stores the state of an LR
parser

(S0X1S1X2S2…XmSm, aiai+1…an$)

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-70

Bottom-up Parsing

• LR parsers are table driven, where the table has
two components, an ACTION table and a GOTO
table
– The ACTION table specifies the action of the parser,

given the parser state and the next token
• Rows are state names; columns are terminals

– The GOTO table specifies which state to put on top of
the parse stack after a reduction action is done

• Rows are state names; columns are nonterminals

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-71

Structure of An LR Parser

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-72

Bottom-up Parsing

• Initial configuration: (S0, a1…an$)
• Parser actions:

– If ACTION[Sm, ai] = Shift S, the next
configuration is:

(S0X1S1X2S2…XmSmaiS, ai+1…an$)
– If ACTION[Sm, ai] = Reduce A → β and S =

GOTO[Sm-r, A], where r = the length of β, the next
configuration is

(S0X1S1X2S2…Xm-rSm-rAS, aiai+1…an$)

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-73

Bottom-up Parsing

• Parser actions (continued):
– If ACTION[Sm, ai] = Accept, the parse is complete

and no errors were found.
– If ACTION[Sm, ai] = Error, the parser calls an

error-handling routine.

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-74

LR Parsing Table

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-75

Bottom-up Parsing

• A parser table can be generated from a given
grammar with a tool, e.g., yacc

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-76

Optimization

• No strong counterpart in English, but akin to
editing

• Automatically modify programs so that they
– Run faster
– Use less memory
– In general, conserve some resource

• The project has no optimization component

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-77

Optimization Example

X = Y * 0 is the same as X = 0

NO!

Valid for integers, but not for floating point
numbers

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-78

Code Generation

• Produces assembly code (usually)

• A translation into another language
– Analogous to human translation

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-79

Intermediate Languages

• Many compilers perform translations between
successive intermediate forms
– All but first and last are intermediate languages

internal to the compiler
– Typically there is 1 IL

• IL’s generally ordered in descending level of
abstraction
– Highest is source
– Lowest is assembly

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-80

Intermediate Languages (Cont.)

• IL’s are useful because lower levels expose
features hidden by higher levels
– registers
– memory layout
– etc.

• But lower levels obscure high-level meaning

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-81

Issues

• Compiling is almost this simple, but there are
many pitfalls.

• Example: How are erroneous programs
handled?

• Language design has big impact on compiler
– Determines what is easy and hard to compile
– Course theme: many trade-offs in language design

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-82

Compilers Today

• The overall structure of almost every compiler
adheres to our outline

• The proportions have changed since
FORTRAN
– Early: lexing, parsing most complex, expensive

– Today: optimization dominates all other phases,
lexing and parsing are cheap

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-83

Trends in Compilation

• Compilation for speed is less interesting. But:
– scientific programs
– advanced processors (Digital Signal Processors,

advanced speculative architectures)

• Ideas from compilation used for improving
code reliability:
– memory safety
– detecting concurrency errors (data races)
– ...

Some parts are Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 3-84

Lexical Analysis

• The lexical analyzer is usually a function that is called
by the parser when it needs the next token

• Three approaches to building a lexical analyzer:
– Write a formal description of the tokens and use a software

tool that constructs table-driven lexical analyzers given such
a description (e.g. lex)

– Design a state diagram that describes the tokens and write a
program that implements the state diagram

– Design a state diagram that describes the tokens and hand-
construct a table-driven implementation of the state diagram

• We only discuss approach 2

State diagram = Finite State Machine

