
Imperative Programming
The Case of FORTRAN

ICOM 4036
Lecture 4

The Imperative Paradigm

• Computer Model consists of bunch of
variables

• A program is a sequence of state
modifications or assignment statements
that converge to an answer

• PL provides multiple tools for structuring
and organizing these steps
– E.g. Loops, procedures

This is what you have been doing since INGE 3016!

A Generic Imperative Program

START

Initialize
Variables

Modify
Variables

Converged?

END

yes

no

Imperative Fibonacci Numbers (C)

int fibonacci(int f0, int f1, int n) {
// Returns the nth element of the Fibonacci sequence
int fn = f0;
for (int i=0; i<n; i++) {

fn = f0 + f1;
f0 = f1;
f1 = fn;

}
return fn;

}

Examples of (Important)
Imperative Languages

• FORTRAN (J. Backus IBM late 50’s)
• Pascal (N. Wirth 70’s)
• C (Kernigham & Ritchie AT&T late 70’s)
• C++ (Stroustrup AT&T 80’s)
• Java (Sun Microsystems late 90’s)
• C# (Microsoft 00’s)

FORTRAN Highlights

• For High Level Programming Language
ever implemented

• First compiler developed by IBM for the
IBM 704 computer

• Project Leader: John Backus
• Technology-driven design

– Batch processing, punched cards, small
memory, simple I/O, GUI’s not invented yet

Some Online References

• Professional Programmer’s Guide to
FORTRAN

• Getting Started with G77

Links available on course web site

Structure of a FORTRAN program
PROGRAM <name>

<program_body>

END

SUBROUTINE <name> (args)

<subroutine_body>

END

FUNCTION <name> (args)

<function_body>

END
…

Lexical/Syntactic Structure

• One statement per line
• First 6 columns reserved
• Identifiers no longer than 6 symbols
• Flow control uses numeric labels
• Unstructured programs possible

Hello World in Fortran
PROGRAM TINY

WRITE(UNIT=*, FMT=*) 'Hello, world'
END

First 6 columns
Reserved

One
Statement

Per line

Designed with the Punched Card in Mind

FORTRAN By Example 2
PROGRAM LOAN
WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'
READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
RATE = PCRATE / 100.0
REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY

END

Implicitly Defined Variables
Type determined by initial letter

I-M ~ INTEGER
A-H, O-Z FLOAT

FORTRAN By Example 2
PROGRAM LOAN
WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'
READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
RATE = PCRATE / 100.0
REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY

END

FORTRAN’s Version
of

Standard Output Device

FORTRAN By Example 2
PROGRAM LOAN
WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'
READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
RATE = PCRATE / 100.0
REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY

END

FORTRAN’s Version
of

Default Format

FORTRAN By Example 3
PROGRAM REDUCE
WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'
READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
RATE = PCRATE / 100.0
REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY
WRITE(UNIT=*, FMT=*)'End of Year Balance'
DO 15,IYEAR = 1,NYEARS,1

AMOUNT = AMOUNT + (AMOUNT * RATE) - REPAY
WRITE(UNIT=*, FMT=*)IYEAR, AMOUNT

15 CONTINUE
END

A loop consists of two
separate statements

-> Easy to construct
unstructured programs

FORTRAN Do Loops
PROGRAM REDUCE
WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'
READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
RATE = PCRATE / 100.0
REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY
WRITE(UNIT=*, FMT=*)'End of Year Balance'
DO 15,IYEAR = 1,NYEARS,1

AMOUNT = AMOUNT + (AMOUNT * RATE) - REPAY
WRITE(UNIT=*, FMT=*)IYEAR, AMOUNT

15 CONTINUE
END

A loop consists of two
separate statements

-> Easy to construct
unstructured
programs

Enter amount, % rate, years
2000, 9.5, 5
Annual repayments are 520.8728
End of Year Balance

1 1669.127
2 1306.822
3 910.0968
4 475.6832
5 2.9800416E-04

FORTRAN Do Loops
PROGRAM REDUCE
WRITE(UNIT=*, FMT=*)'Enter amount, % rate, years'
READ(UNIT=*, FMT=*) AMOUNT, PCRATE, NYEARS
RATE = PCRATE / 100.0
REPAY = RATE * AMOUNT / (1.0 - (1.0+RATE)**(-NYEARS))
WRITE(UNIT=*, FMT=*)'Annual repayments are ', REPAY
WRITE(UNIT=*, FMT=*)'End of Year Balance'
DO 15,IYEAR = 1,NYEARS,1

AMOUNT = AMOUNT + (AMOUNT * RATE) - REPAY
WRITE(UNIT=*, FMT=*)IYEAR, AMOUNT

15 CONTINUE
END

Enter amount, % rate, years
2000, 9.5, 5
Annual repayments are 520.8728
End of Year Balance

1 1669.127
2 1306.822
3 910.0968
4 475.6832
5 2.9800416E-04

• optional increment (can be negative)
• final value of index variable
• index variable and initial value
• end label

FORTRAN Functions I
PROGRAM TRIANG
WRITE(UNIT=*,FMT=*)'Enter lengths of three sides:'
READ(UNIT=*,FMT=*) SIDEA, SIDEB, SIDEC
WRITE(UNIT=*,FMT=*)'Area is ', AREA3(SIDEA,SIDEB,SIDEC)

END

FUNCTION AREA3(A, B, C)
* Computes the area of a triangle from lengths of sides

S = (A + B + C)/2.0
AREA3 = SQRT(S * (S-A) * (S-B) * (S-C))

END

• No recursion
• Parameters passed by reference only
• Arrays allowed as parameters
• No nested procedure definitions – Only two scopes
• Procedural arguments allowed
• No procedural return values

Think: why do you think FORTRAN designers made each of these choices?

FORTRAN IF-THEN-ELSE
REAL FUNCTION AREA3(A, B, C)

* Computes the area of a triangle from lengths of its sides.
* If arguments are invalid issues error message and returns
* zero.

REAL A, B, C
S = (A + B + C)/2.0
FACTOR = S * (S-A) * (S-B) * (S-C)
IF(FACTOR .LE. 0.0) THEN

STOP 'Impossible triangle'
ELSE

AREA3 = SQRT(FACTOR)
END IF

END

NO RECURSION ALLOWED IN FORTRAN77 !!!

FORTRAN ARRAYS
SUBROUTINE MEANSD(X, NPTS, AVG, SD)
INTEGER NPTS
REAL X(NPTS), AVG, SD
SUM = 0.0
SUMSQ = 0.0
DO 15, I = 1,NPTS

SUM = SUM + X(I)
SUMSQ = SUMSQ + X(I)**2

15 CONTINUE
AVG = SUM / NPTS
SD = SQRT(SUMSQ - NPTS * AVG)/(NPTS-1)

END

Subroutines are analogous
to void functions in C Parameters are passed by reference

subroutine checksum(buffer,length,sum32)

C Calculate a 32-bit 1's complement checksum of the input buffer, adding
C it to the value of sum32. This algorithm assumes that the buffer
C length is a multiple of 4 bytes.

C a double precision value (which has at least 48 bits of precision)
C is used to accumulate the checksum because standard Fortran does not
C support an unsigned integer datatype.

C buffer - integer buffer to be summed
C length - number of bytes in the buffer (must be multiple of 4)
C sum32 - double precision checksum value (The calculated checksum
C is added to the input value of sum32 to produce the
C output value of sum32)

integer buffer(*),length,i,hibits
double precision sum32,word32
parameter (word32=4.294967296D+09)

C (word32 is equal to 2**32)

C LENGTH must be less than 2**15, otherwise precision may be lost
C in the sum

if (length .gt. 32768)then
print *, 'Error: size of block to sum is too large'
return

end if

do i=1,length/4
if (buffer(i) .ge. 0)then

sum32=sum32+buffer(i)
else

C sign bit is set, so add the equivalent unsigned value
sum32=sum32+(word32+buffer(i))

end if
end do

C fold any overflow bits beyond 32 back into the word
10 hibits=sum32/word32

if (hibits .gt. 0)then
sum32=sum32-(hibits*word32)+hibits
go to 10

end if

end

• WhiteBoard Exercises

