
ISBN 0-321-19362-8

Chapters 1 & 2

Preliminaries

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-2

Chapter 1 Topics

• Motivation
• Programming Domains
• Language Evaluation Criteria
• Influences on Language Design
• Language Categories
• Language Design Trade-Offs
• Implementation Methods
• Programming Environments

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-3

Motivation
Why Study Programming Languages?

• Increased ability to express ideas
• Improved background for choosing appropriate

languages
• Greater ability to learn new languages
• Understand significance of implementation
• Ability to design new languages
• Overall advancement of computing

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-4

Programming Domains

• Scientific applications
– Large number of floating point computations

• Business applications
– Produce reports, use decimal numbers and characters

• Artificial intelligence
– Symbols rather than numbers manipulated. Code = Data.

• Systems programming
– Need efficiency because of continuous use. Low-level control.

• Scripting languages
– Put a list of commands in a file to be executed. Glue apps.

• Special-purpose languages
– Simplest/fastest solution for a particular task.

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-5

• Readability
• Writability
• Reliability
• Cost
• Others

Language Evaluation Criteria

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-6

Language Evaluation Criteria
Readability

• Overall simplicity
– Too many features is bad
– Multiplicity of features is bad

• Orthogonality
– Makes the language easy to learn and read
– Meaning is context independent
– A relatively small set of primitive constructs can be combined in a

relatively small number of ways
– Every possible combination is legal
– Lack of orthogonality leads to exceptions to rules

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-7

Language Evaluation Criteria
Writability

• Simplicity and orthogonality
• Support for abstraction
• Expressiveness

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-8

Language Evaluation Criteria
Reliability

• Type checking
• Exception handling
• Aliasing
• Readability and writability

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-9

Language Evaluation Criteria

• Cost
– Categories

• Training programmers to use language
• Writing programs
• Compiling programs
• Executing programs
• Language implementation system
• Reliability
• Maintaining programs

• Others: portability, generality, well-definedness

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-10

Influences on Language Design

• Computer architecture: Von Neumann
• We use imperative languages, at least in part,

because we use von Neumann machines
– Data and programs stored in same memory
– Memory is separate from CPU
– Instructions and data are piped from memory to

CPU
– Basis for imperative languages

• Variables model memory cells
• Assignment statements model piping
• Iteration is efficient

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-11

Von Neumann Architecture

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-12

Influences on Language Design

• Programming methodologies
– 1950s and early 1960s: Simple applications; worry

about machine efficiency
– Late 1960s: People efficiency became important;

readability, better control structures
• Structured programming
• Top-down design and step-wise refinement

– Late 1970s: Process-oriented to data-oriented
• data abstraction

– Middle 1980s: Object-oriented programming

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-13

Language Categories

• Imperative
– Central features are variables, assignment

statements, and iteration
– FORTRAN, C, Pascal

• Functional
– Main means of making computations is by

applying functions to given parameters
– LISP, Scheme

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-14

Language Categories

• Logic
– Rule-based
– Rules are specified in no special order
– Prolog

• Object-oriented
– Encapsulate data objects with processing
– Inheritance and dynamic type binding
– Grew out of imperative languages
– C++, Java

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-15

Some Language Design Trade-Offs

• Reliability vs. cost of execution
• Readability vs. writability
• Flexibility vs. safety

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-16

Layered View of Computer

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-17

Implementation Methods

• Compilation
– Translate high-level program to machine code
– Slow translation
– Fast execution

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-18

Compilation
Process

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-19

Implementation Methods

• Pure interpretation
– No translation
– Slow execution
– Becoming rare

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-20

Implementation Methods

• Hybrid implementation
systems
– Small translation cost
– Medium execution speed
– Portable

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-21

Programming Environments

• The collection of tools used in software
development

• UNIX
– An older operating system and tool collection

• Borland JBuilder
– An integrated development environment for Java

• Microsoft Visual Studio.NET
– A large, complex visual environment
– Used to program in C#, Visual BASIC.NET,

Jscript, J#, or C++

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-22

Genealogy of Common Languages

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-23

Zuse’s Plankalkül - 1945

• Never implemented
• Advanced data structures

– floating point, arrays, records
• Invariants

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-24

Plankalkül

• Notation:

A[7] = 5 * B[6]

| 5 * B => A
V | 6 7 (subscripts)
S | 1.n 1.n (data types)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-25

Pseudocodes - 1949

• What was wrong with using machine code?
– Poor readability
– Poor modifiability
– Expression coding was tedious
– Machine deficiencies--no indexing or floating

point

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-26

Pseudocodes

• Short code; 1949; BINAC; Mauchly
– Expressions were coded, left to right
– Some operations:

1n => (n+2)nd power
2n => (n+2)nd root
07 => addition

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-27

Pseudocodes

• Speedcoding; 1954; IBM 701, Backus
– Pseudo ops for arithmetic and math functions
– Conditional and unconditional branching
– Autoincrement registers for array access
– Slow!
– Only 700 words left for user program

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-28

Pseudocodes

• Laning and Zierler System - 1953
– Implemented on the MIT Whirlwind computer
– First "algebraic" compiler system
– Subscripted variables, function calls, expression

translation
– Never ported to any other machine

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-29

IBM 704 and FORTRAN

• FORTRAN I - 1957
(FORTRAN 0 - 1954 - not implemented)

– Designed for the new IBM 704, which had index registers
and floating point hardware

– Environment of development:
• Computers were small and unreliable
• Applications were scientific
• No programming methodology or tools
• Machine efficiency was most important

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-30

IBM 704 and FORTRAN

• Impact of environment on design of
FORTRAN I
– No need for dynamic storage
– Need good array handling and counting loops
– No string handling, decimal arithmetic, or

powerful input/output (commercial stuff)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-31

IBM 704 and FORTRAN

• First implemented version of FORTRAN
– Names could have up to six characters
– Post-test counting loop (DO)
– Formatted I/O
– User-defined subprograms
– Three-way selection statement (arithmetic IF)
– No data typing statements

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-32

IBM 704 and FORTRAN

• First implemented version of FORTRAN
– No separate compilation
– Compiler released in April 1957, after 18 worker-

years of effort
– Programs larger than 400 lines rarely compiled

correctly, mainly due to poor reliability of the 704
– Code was very fast
– Quickly became widely used

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-33

IBM 704 and FORTRAN

• FORTRAN II - 1958
– Independent compilation
– Fix the bugs

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-34

IBM 704 and FORTRAN

• FORTRAN IV - 1960-62
– Explicit type declarations
– Logical selection statement
– Subprogram names could be parameters
– ANSI standard in 1966

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-35

IBM 704 and FORTRAN

• FORTRAN 77 - 1978
– Character string handling
– Logical loop control statement
– IF-THEN-ELSE statement

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-36

IBM 704 and FORTRAN

• FORTRAN 90 - 1990
– Modules
– Dynamic arrays
– Pointers
– Recursion
– CASE statement
– Parameter type checking

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-37

LISP - 1959

• LISt Processing language
(Designed at MIT by McCarthy)

• AI research needed a language that:
– Process data in lists (rather than arrays)
– Symbolic computation (rather than numeric)

• Only two data types: atoms and lists
• Syntax is based on lambda calculus
• Same syntax for data and code

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-38

Representation of Two LISP Lists

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-39

LISP

• Pioneered functional programming
– No need for variables or assignment
– Control via recursion and conditional expressions

• Still the dominant language for AI
• COMMON LISP and Scheme are

contemporary dialects of LISP
• ML, Miranda, and Haskell are related

languages

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-40

ALGOL 58 and 60

• Environment of development:
– FORTRAN had (barely) arrived for IBM 70x
– Many other languages were being developed, all

for specific machines
– No portable language; all were machine-

dependent
– No universal language for communicating

algorithms

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-41

ALGOL 58 and 60

• ACM and GAMM met for four days for
design

• Goals of the language:
– Close to mathematical notation
– Good for describing algorithms
– Must be translatable to machine code

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-42

ALGOL 58 and 60

• ALGOL 58 Language Features:
– Concept of type was formalized
– Names could have any length
– Arrays could have any number of subscripts
– Parameters were separated by mode (in & out)
– Subscripts were placed in brackets
– Compound statements (begin ... end)
– Semicolon as a statement separator
– Assignment operator was :=
– if had an else-if clause
– No I/O - “would make it machine dependent”

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-43

ALGOL 58

• Comments:
– Not meant to be implemented, but variations

of it were (MAD, JOVIAL)
– Although IBM was initially enthusiastic, all

support was dropped by mid-1959

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-44

ALGOL 58 and 60

• ALGOL 60
– Modified ALGOL 58 at 6-day meeting in Paris
– New features:

• Block structure (local scope)
• Two parameter passing methods
• Subprogram recursion
• Stack-dynamic arrays
• Still no I/O and no string handling

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-45

ALGOL 60

• Successes:
– It was the standard way to publish algorithms for

over 20 years
– All subsequent imperative languages are based on

it
– First machine-independent language
– First language whose syntax was formally defined

(BNF)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-46

ALGOL 60

• Failure:
– Never widely used, especially in U.S.

• Reasons:
– No I/O and the character set made programs non-

portable
– Too flexible--hard to implement
– Entrenchment of FORTRAN
– Formal syntax description
– Lack of support of IBM

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-47

COBOL - 1960

• Environment of development:
– UNIVAC was beginning to use FLOW-MATIC
– USAF was beginning to use AIMACO
– IBM was developing COMTRAN

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-48

COBOL

• Based on FLOW-MATIC
• FLOW-MATIC features:

– Names up to 12 characters, with embedded
hyphens

– English names for arithmetic operators (no
arithmetic expressions)

– Data and code were completely separate
– Verbs were first word in every statement

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-49

COBOL

• First Design Meeting (Pentagon) - May 1959
• Design goals:

– Must look like simple English
– Must be easy to use, even if that means it will be less

powerful
– Must broaden the base of computer users
– Must not be biased by current compiler problems

• Design committee members were all from computer
manufacturers and DoD branches

• Design Problems: arithmetic expressions? subscripts?
Fights among manufacturers

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-50

COBOL

• Contributions:
– First macro facility in a high-level language
– Hierarchical data structures (records)
– Nested selection statements
– Long names (up to 30 characters), with hyphens
– Separate data division

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-51

COBOL

• Comments:
– First language required by DoD; would have failed

without DoD
– Still the most widely used business applications

language

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-52

BASIC - 1964

• Designed by Kemeny & Kurtz at Dartmouth
• Design Goals:

– Easy to learn and use for non-science students
– Must be “pleasant and friendly”
– Fast turnaround for homework
– Free and private access
– User time is more important than computer time

• Current popular dialect: Visual BASIC
• First widely used language with time sharing

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-53

PL/I - 1965

• Designed by IBM and SHARE
• Computing situation in 1964 (IBM's point of view)

– Scientific computing
• IBM 1620 and 7090 computers
• FORTRAN
• SHARE user group

– Business computing
• IBM 1401, 7080 computers
• COBOL
• GUIDE user group

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-54

PL/I

• By 1963, however,
– Scientific users began to need more elaborate I/O,

like COBOL had; Business users began to need
floating point and arrays (MIS)

– It looked like many shops would begin to need two
kinds of computers, languages, and support staff--
too costly

• The obvious solution:
– Build a new computer to do both kinds of

applications
– Design a new language to do both kinds of

applications

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-55

PL/I

• Designed in five months by the 3 X 3
Committee

• PL/I contributions:
– First unit-level concurrency
– First exception handling
– Switch-selectable recursion
– First pointer data type
– First array cross sections

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-56

PL/I

• Comments:
– Many new features were poorly designed
– Too large and too complex
– Was (and still is) actually used for both scientific

and business applications

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-57

APL and SNOBOL

• Characterized by dynamic typing and dynamic
storage allocation

• APL (A Programming Language) 1962
– Designed as a hardware description language (at

IBM by Ken Iverson)
– Highly expressive (many operators, for both

scalars and arrays of various dimensions)
– Programs are very difficult to read

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-58

APL and SNOBOL

• SNOBOL(1964)
– Designed as a string manipulation language (at

Bell Labs by Farber, Griswold, and Polensky)
– Powerful operators for string pattern matching

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-59

SIMULA 67 - 1967

• Designed primarily for system simulation
(in Norway by Nygaard and Dahl)

• Based on ALGOL 60 and SIMULA I
• Primary Contribution:

– Co-routines - a kind of subprogram
– Implemented in a structure called a class
– Classes are the basis for data abstraction
– Classes are structures that include both local data and

functionality
– Objects and inheritance

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-60

ALGOL 68 - 1968

• From the continued development of ALGOL
60, but it is not a superset of that language

• Design is based on the concept of
orthogonality

• Contributions:
– User-defined data structures
– Reference types
– Dynamic arrays (called flex arrays)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-61

ALGOL 68

• Comments:
– Had even less usage than ALGOL 60
– Had strong influence on subsequent languages,

especially Pascal, C, and Ada

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-62

Important ALGOL Descendants

• Pascal - 1971
– Designed by Wirth, who quit the ALGOL 68

committee (didn't like the direction of that work)
– Designed for teaching structured programming
– Small, simple, nothing really new
– From mid-1970s until the late 1990s, it was the

most widely used language for teaching
programming in colleges

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-63

Important ALGOL Descendants

• C - 1972
– Designed for systems programming (at Bell Labs

by Dennis Richie)
– Evolved primarily from B, but also ALGOL 68
– Powerful set of operators, but poor type checking
– Initially spread through UNIX

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-64

Important ALGOL Descendants

• Modula-2 - mid-1970s (Wirth)
– Pascal plus modules and some low-level features

designed for systems programming

• Modula-3 - late 1980s (Digital & Olivetti)
– Modula-2 plus classes, exception handling,

garbage collection, and concurrency

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-65

Important ALGOL Descendants

• Oberon - late 1980s (Wirth)
– Adds support for OOP to Modula-2
– Many Modula-2 features were deleted (e.g., for

statement, enumeration types, with statement,
noninteger array indices)

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-66

Prolog - 1972

• Developed at the University of Aix-Marseille,
by Comerauer and Roussel, with some help
from Kowalski at the University of Edinburgh

• Based on formal logic
• Non-procedural
• Can be summarized as being an intelligent

database system that uses an inferencing
process to infer the truth of given queries

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-67

Ada - 1983 (began in mid-1970s)

• Huge design effort, involving hundreds of people,
much money, and about eight years

• Environment: More than 450 different languages
being used for DOD embedded systems (no
software reuse and no development tools)

• Contributions:
– Packages - support for data abstraction
– Exception handling - elaborate
– Generic program units
– Concurrency - through the tasking model

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-68

Ada

• Comments:
– Competitive design
– Included all that was then known about software

engineering and language design
– First compilers were very difficult; the first really

usable compiler came nearly five years after the
language design was completed

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-69

Ada

• Ada 95 (began in 1988)
– Support for OOP through type derivation
– Better control mechanisms for shared data (new

concurrency features)
– More flexible libraries

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-70

Smalltalk - 1972-1980

• Developed at Xerox PARC, initially by Alan
Kay, later by Adele Goldberg

• First full implementation of an object-oriented
language (data abstraction, inheritance, and
dynamic type binding)

• Pioneered the graphical user interface
everyone now uses

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-71

C++ - 1985

• Developed at Bell Labs by Stroustrup
• Evolved from C and SIMULA 67
• Facilities for object-oriented programming, taken

partially from SIMULA 67, were added to C
• Also has exception handling
• A large and complex language, in part because it

supports both procedural and OO programming
• Rapidly grew in popularity, along with OOP
• ANSI standard approved in November, 1997

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-72

C++ Related Languages

• Eiffel - a related language that supports OOP
– (Designed by Bertrand Meyer - 1992)
– Not directly derived from any other language
– Smaller and simpler than C++, but still has most of

the power

• Delphi (Borland)
– Pascal plus features to support OOP
– More elegant and safer than C++

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-73

Java (1995)

• Developed at Sun in the early 1990s
• Based on C++

– Significantly simplified (does not include
struct, union, enum, pointer arithmetic,
and half of the assignment coercions of C++)

– Supports only OOP
– Has references, but not pointers
– Includes support for applets and a form of

concurrency

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-74

Scripting Languages for the Web

• JavaScript
– Used in Web programming (client-side) to create

dynamic HTML documents
– Related to Java only through similar syntax

• PHP
– Used for Web applications (server-side); produces

HTML code as output

Copyright © 2004 Pearson Addison-Wesley. All rights reserved. 1-75

C#

• Part of the .NET development platform
• Based on C++ and Java
• Provides a language for component-based

software development
• All .NET languages (C#, Visual BASIC.NET,

Managed C++, J#.NET, and Jscript.NET) use
Common Type System (CTS), which provides
a common class library

• Likely to become widely used

