INEL 4206 Fall 2002	Examen Final	5/13/03
Nombre:		Sección:

¡Anota tu nombre en todas las hojas del examen!

Tienes 2 horas para completar todos los problemas. Lee cuidadosamente todo el examen antes de empezar a trabajar. Muestra todo el trabajo conducente a tu contestación. Podrás recibir crédito parcial por contestaciones parciales siempre y cuando muestres tu trabajo por escrito. Usa tu tiempo inteligentemente. Exito!

INEL 4206 Staff

Sección: _____

Nombre: _____

100

	Nombre:	Sección:
Pr	roblem 1. (25 points) Computer Arithmetic and Logic	
a)	(6 points) Find the shortest sequence of <u>native</u> MIPS instructions necessary to pseudo instruction abs $$t2$, $$t1$. This instruction places in register $$t2$ the two's complement integer held in register $$t1$. (HINT: it can be done in three instruction)	e absolute value of the
b)	(6 points) Find the shortest sequence of <u>native</u> MIPS instructions to implement instruction. This instruction determines if the parity of an unsigned integer number is if the number of bits set to 1 is even. Place a 1 or 0 in register $$t^2$$ if the respectively.	ber held in \$t1 is even,

	Nombre: Sección:
c)	(6 points) Suppose that all the conditional branch instructions except beq and bne were removed from the MIPS instructions set along with slt and all of its variants (slti, sltu, sltui). Show a sequence of MIPS instructions equivalent to the instruction slt \$t0, \$s0, s1, using the modified instruction set in which slt is not available. The only register that can be modified by the sequence is register \$at.
d)	(7 points) Imagine that we add a new instruction, called $\mathtt{div2}$, that tests whether or not the content of a register is divisible by 2^n where n resides in the low 5 bits of another register. The new instruction places a 1 or 0 in a third target register if the number is or is not divisible by 2^n , respectively. Show a sequence of MIPS instructions that implements $\mathtt{div2}$ \$t0, \$s1, \$s2 where \$t0 is the target register, \$s1 the number to be determined divisible, and \$s2 the exponent of 2 (low 5 bits). The only register that can be modified by the sequence is register \$at.

Nombre:	Sección:
Nombre:	Seccion:

Problem 3. (25 points) Instruction Set Design

The following is MIPS code implementing a *mystery* function of two integer arguments a (\$a0) and b (\$a1) and returning an integer value in \$v0. You may assume the arguments are always positive or zero.

mystery:	addu	\$sp, \$sp, -4
	SW	\$ra, 0(\$sp)
	bgt	\$a1, \$zero, call
	li	\$v0, zero
	j	end
call:	addi	\$a1, \$a1, -1
	jal	mystery
	add	\$v0, \$v0, \$a0
end:	lw	\$ra, 0(\$sp)
	addu	\$sp, \$sp, 4
	jr	\$ra

a)	(10 points) What is the output of the mystery when passed 5 in a (\$a0) and 3 in b (\$a1):
b)	(5 points) Describe what the function returns as a mathematical function of its arguments a and b.

_	
c)	(10 points) Provide a C implementation of the mystery function
c)	(10 points) 110 rue a C implementation of the mysicry function

Nombre:	Sección:	_

(c) (10 points) Provide a definition of an fbrzr function that executes the BrZr instruction:

fbrzr:		

INEL 4206 Fall 2002	Exámen Final	5/13/03	
Nombre:		Sección:	
Appendices			