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 Basics of Functions 
 Decision statements 
 Recursion 
 Iteration statements 

Outline 
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Built-in Functions 
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>>> import math 

>>> decibel = math.log10 (17.0) 

>>> angle = 1.5 

>>> height = math.sin(angle) 

>>> degrees = 45 

>>> angle = degrees * 2 * math.pi / 360.0 

>>> math.sin(angle) 

0.707106781187 

To convert from degrees to radians,  
divide by 360 and mul5ply by 2*pi 

Can you avoid having to write the formula to 

convert degrees to radians every 5me? 



Defining Your Own Functions 
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def <NAME> ( <LIST OF PARAMETERS> ): 
   <STATEMENTS> 

import math 
def radians(degrees): 

 result = degrees * 2 * math.pi / 360.0 
 return(result) 

>>> def radians(degrees): 
...     result=degrees * 2 * math.pi / 360.0 
...     return(result) 
...  

>>> radians(45) 
0.78539816339744828 
>>> radians(180) 
3.1415926535897931 



Monolithic Code 
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From string import * 

cds = “atgagtgaacgtctgagcadaccccgctggggccgtatatc” 

gc = float(count(cds, 'g') + count(cds, 'c'))/ len(cds) 

print gc 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def gcCount(sequence): 
 gc = float(count(sequence, 'g') + count(sequence, 'c'))/ len(sequence) 
 print gc 

>>> gcCount(“actgaccgggat”) 



Step 2: Add function to script file 
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  Save script in a file 
  Re‐load when you want to use the func8ons 
  No need to retype your func8ons 
  Keep a single group of related func8ons and declara8ons in each file 



 Powerful mechanism for creating building blocks 
 Code reuse 
 Modularity 
 Abstraction (i.e. hide (or forget) irrelevant detail) 

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 9 



 Should have a single well defined 'contract' 
 E.g. Return the gc‐value of a sequence 

 Contract should be easy to understand and 
remember 
 Should be as general as possible 
 Should be as efficient as possible 
 Should not mix calculations with I/O 

Function Design Guidelines 
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Applying the Guidelines 

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 11 

def gcCount(sequence): 
 gc = float(count(sequence, 'g') + count(sequence, 'c'))/ len(sequence) 
 print gc 

What can be improved? 

def gcCount(sequence): 
 gc = float(count(sequence, 'g' + count(sequence, 'c'))/ len(sequence) 
 return gc 

Why is this be@er? 

  More reusable func5on 
  Can call it to get the gcCount and then decide what to do with the value 
  May not have to print the value 
  Func5on has ONE well‐defined objec5ve or CONTRACT 



 Basics of Functions 
 Decision statements 
 Recursion 
 Iteration statements 

Outline 
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Decision statements 
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if <be1> : 
 <block1> 

elif <be2>: 
 <block2> 

… 
… 

else: 
 <blockn+1> 

  Each <bei> is a BOOLEAN expressions 
  Each <blocki>is a sequence of statements 
  Level of indenta8on determines what’s inside each block 

Indenta8on has meaning  
in Python 



Compute the complement of a DNA base 
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def complementBase(base): 
    if (base == ’a'): 
        return ’t' 
    elif (base == ’t'): 
        return ’a' 
    elif (base == ’c'): 
        return ’g' 
    elif (base == ’g'): 
        return ’c' 

How can we improve this func5on? 



 Expressions that yield True of False values 
 Ways to yield a Boolean value 

 Boolean constants: True and False 
 Comparison operators (>, <, ==, >=, <=) 

 Logical Operators (and, or, not) 
 Boolean func5ons 
 0 (means False) 

 Empty string '’ (means False) 

Boolean Expressions 
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 Lets assume that b,a are Boolean values: 
 (b and True) = b 
 (b or True) = True 
 (b and False) = False 
 (b or False) = b 
 not (a and b) = (not a) or (not b) 
 not (a or b) = (not a) and (not b) 

Some Useful Boolean Laws 
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De Morgan’s Laws 



A strange Boolean function 
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def test(x): 
    if x: 
        return True 
    else: 
        return False 

What can you use this func8on for? 

What types of values can it accept? 



 Basics of Functions 
 Decision statements 
 Recursion 
 Iteration statements 

Outline 
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Recursive Functions 
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A classic! 

>>> fact(5) 
120 
>>> fact(10) 
3628800 
>>> fact(100) 
93326215443944152681699238856266700490715968264381621468592963895217599993
22991560894146397615651828625369792082722375825118521091686400000000000000
0000000000L 
>>>  

def fact(n): 
    if (n==0): 
        return 1 
    else: 
        return n * fact(n - 1) 



Recursion Basics 
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n = 3  
fact(2) 

fact(3) 

n = 2  

n = 1  

fact(1) 

n = 0  

fact(0) 

1 

1 * 1 = 1 

2 * 1 = 2 

3 * 2 = 6 
n = 3  

n = 2  

n = 1  

n = 0  

def fact(n): 
    if (n==0): 
        return 1 
    else: 
        return n * fact(n - 1) 

Interpreter keeps a  
stack of ac8va8on records 



Beware of Infinite Recursions! 
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def fact(n): 
    if (n==0): 
        return 1 
    else: 
        return n * fact(n - 1) 

What if you call fact 5.5? Explain 

When using recursion always think about how will it stop or converge 



 Compute the reverse of a sequence 
 Compute the molecular mass of a sequence 
 Compute the reverse complement of a sequence 
 Determine if two sequences are complement of each other 
 Compute the number of stop codons in a sequence 
 Determine if a sequence has a subsequence of length 
greater than n surrounded by stop codons 
 Return the starting position of the subsequence identified in 
exercise 6 
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Write recursive Python func8ons to sa8sfy the following specifica8ons: 



Reversing a sequence recursively 

def reverse(sequence): 

    'Returns the reverse string of the argument sequence' 

    if (len(sequence)>1): 

        return reverse(sequence[1:])+sequence[0] 

    else: 

        return sequence 



Runtime Complexity - 'Big O' Notation 

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 24 

def fact(n): 
    if (n==0): 
        return 1 
    else: 
        return n * fact(n - 1) 

  How 'fast' is this func8on? 

  Can we come up with a more efficient version? 

  How can we measure 'efficiency' 

  Can we compare algorithms independently from a 
specific implementa8on, so[ware or hardware? 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•  What is a step? 
•  How can we measure the size of an input? 

•  Answer in both cases: YOU CAN DEFINE THESE! 

Big Idea 
Measure the number of steps taken by the  

algorithm as an asympto5c func5on of the size of its input 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•  A 'step' is a func5on call to fact 
•  The size of an input value n is n itself 

T(0) = 0 
T(n) = T(n‐1) + 1 = (T(n‐2) + 1) + 1 = … = T(n‐n) + n = T(0) + n = 0 + n = n 

Step 1: Count the number of steps for input n 

Step 2: Find the asympto8c func8on 

T(n) = O(n) 

def fact(n): 
    if (n==0): 
        return 1 
    else: 
        return n * fact(n - 1) 

A.K.A Linear Func5on 



 Basics of Func5ons 
 Decision statements 

 Recursion 
•  Itera5on statements 

27  These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 



Iteration 
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while <be>: 
 <block> 

SYNTAX 

SEMANTICS 

Repeat the execu8on of 
<block> as long as 
expression <be>  
remains true 

SYNTAX = FORMAT 
SEMANTICS = MEANING 



Iterative Factorial 
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def iterFact(n): 
    result = 1 
    while(n>0): 
        result = result * n 
        n = n - 1 
    return result 

Work out the run8me complexity: 

whiteboard 



Formatted Output using % operator 
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For more details visit: hdp://docs.python.org/lib/typesseq‐strings.html 

<format> % <values> 

>>> '%s is %d years old' % ('John', 12) 
'John is 12 years old' 
>>>  

  <format> is a string 
  <values> is a list of values n parenthesis (a.k.a. a tuple) 
  % produces a string replacing each %x with a correding value from the tuple 



The For Loop: Another Iteration Statement 
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for <var> in <sequence>: 
 <block> 

SYNTAX 

SEMANTICS  Repeat the execu8on of the 
<block> binding variable 
<var> to each element of 
the sequence 
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•  start = first value 
•  end = value right aser last one 
•  step = increment 

def iterFact2(n): 
    result = 1 
    for i in xrange(1,n+1): 
        result = result * i 
    return result 

xrange(start,end,step) generates a sequence of values : 



Revisiting code from Lecture 1 
seq="ACTGTCGTAT" 

print seq 

Acount= seq.count('A') 

Ccount= seq.count('C') 
Gcount= seq.count('G') 

Tcount= seq.count('T') 

Total = float(len(seq)) 

APct = int((Acount/Total) * 100) 

print 'A percent = %d ' % APct 

CPct = int((Ccount/Total) * 100) 

print 'C percent = %d ' % CPct 
GPct = int((Gcount/Total) * 100) 

print 'G percent = %d ' % GPct 

TPct = int((Tcount/Total) * 100) 

print 'T percent = %d ' % TPct 

Can we reduce the amount of repe55ve code? 



Approach: Use For Loop 
bases = ['A', 'C', 'T', 'G'] 

sequence = "ACTGTCGTAT" 

for base in bases: 

    nextPercent = 100 * sequence.count(base)/float(len(sequence)) 

    print 'Percent %s: %d' % (base, nextPercent) 

How many func5ons would you refactor this code into? 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Write itera8ve Python func8ons to sa8sfy the following specifica8ons: 

1.  Compute the reverse of a sequence 
2.  Compute the molecular mass of a sequence 
3.  Compute the reverse complement of a sequence 
4.  Determine if two sequences are complement of each other 
5.  Compute the number of stop codons in a sequence 
6.  Determine if a sequence has a subsequence of length greater than n 

surrounded by stop codons 
7.  Return the starting position of the subsequence identified in 

exercise 6 



Finding Patterns Within Sequences 
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from string import * 
def searchPadern(dna, padern): 

 'print all start posi5ons of a padern string inside a target string’ 
 site = find (dna, padern) 
 while site != ‐1: 
   print ’padern %s found at posi5on %d' % (padern, site) 
   site = find (dna, padern, site + 1) 

Example from: Pasteur Ins8tute Bioinforma8cs Using Python 

>>> searchPadern("acgctaggct","gc") 

padern gc at posi5on 2 

padern gc at posi5on 7 

>>>  



•  Extend searchPadern to handle unknown 
residues 


