
MARC: Developing Bioinforma5cs Programs 
July 2009 

Alex Ropelewski 
PSC‐NRBSC 

Bienvenido Vélez 
UPR Mayaguez 

Reference: How to Think Like a Computer Scien5st: Learning with Python  1 

Essen5al Compu5ng for Bioinforma5cs 

Lecture 4 

High‐level Programming with Python 

Controlling the flow of your program 

• The following material is the result of a curriculum development effort to provide a set
of courses to support bioinformatics efforts involving students from the biological
sciences, computer science, and mathematics departments. They have been
developed as a part of the NIH funded project “Assisting Bioinformatics Efforts at
Minority Schools” (2T36 GM008789). The people involved with the curriculum
development effort include:

• Dr. Hugh B. Nicholas, Dr. Troy Wymore, Mr. Alexander Ropelewski and Dr. David
Deerfield II, National Resource for Biomedical Supercomputing, Pittsburgh
Supercomputing Center, Carnegie Mellon University.
• Dr. Ricardo González Méndez, University of Puerto Rico Medical Sciences Campus.
• Dr. Alade Tokuta, North Carolina Central University.
• Dr. Jaime Seguel and Dr. Bienvenido Vélez, University of Puerto Rico at Mayagüez.
• Dr. Satish Bhalla, Johnson C. Smith University.

• Unless otherwise specified, all the information contained within is Copyrighted © by
Carnegie Mellon University. Permission is granted for use, modify, and reproduce these
materials for teaching purposes.
• Most recent versions of these presentations can be found at http://marc.psc.edu/

Essen5al Compu5ng for Bioinforma5cs 

 Basics of Functions
 Decision statements
 Recursion
 Iteration statements

Outline

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 3 

Built-in Functions

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 4 

>>> import math 

>>> decibel = math.log10 (17.0) 

>>> angle = 1.5 

>>> height = math.sin(angle) 

>>> degrees = 45 

>>> angle = degrees * 2 * math.pi / 360.0 

>>> math.sin(angle) 

0.707106781187 

To convert from degrees to radians,  
divide by 360 and mul5ply by 2*pi 

Can you avoid having to write the formula to 

convert degrees to radians every 5me? 

Defining Your Own Functions

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 5 

def <NAME> ( <LIST OF PARAMETERS> ): 
   <STATEMENTS> 

import math 
def radians(degrees): 

 result = degrees * 2 * math.pi / 360.0 
 return(result) 

>>> def radians(degrees): 
...     result=degrees * 2 * math.pi / 360.0 
...     return(result) 
...  

>>> radians(45) 
0.78539816339744828 
>>> radians(180) 
3.1415926535897931 

Monolithic Code

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 6 

From string import * 

cds = “atgagtgaacgtctgagcadaccccgctggggccgtatatc” 

gc = float(count(cds, 'g') + count(cds, 'c'))/ len(cds) 

print gc 

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 7 

def gcCount(sequence): 
 gc = float(count(sequence, 'g') + count(sequence, 'c'))/ len(sequence) 
 print gc 

>>> gcCount(“actgaccgggat”) 

Step 2: Add function to script file

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 8 

  Save script in a file 
  Re‐load when you want to use the func8ons 
  No need to retype your func8ons 
  Keep a single group of related func8ons and declara8ons in each file 

 Powerful mechanism for creating building blocks
 Code reuse
 Modularity
 Abstraction (i.e. hide (or forget) irrelevant detail)

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 9 

 Should have a single well defined 'contract'
 E.g. Return the gc‐value of a sequence 

 Contract should be easy to understand and
remember
 Should be as general as possible
 Should be as efficient as possible
 Should not mix calculations with I/O

Function Design Guidelines

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 10 

Applying the Guidelines

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 11 

def gcCount(sequence): 
 gc = float(count(sequence, 'g') + count(sequence, 'c'))/ len(sequence) 
 print gc 

What can be improved? 

def gcCount(sequence): 
 gc = float(count(sequence, 'g' + count(sequence, 'c'))/ len(sequence) 
 return gc 

Why is this be@er? 

  More reusable func5on 
  Can call it to get the gcCount and then decide what to do with the value 
  May not have to print the value 
  Func5on has ONE well‐defined objec5ve or CONTRACT 

 Basics of Functions
 Decision statements
 Recursion
 Iteration statements

Outline

12  These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

Decision statements

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 13 

if <be1> : 
 <block1> 

elif <be2>: 
 <block2> 

… 
… 

else: 
 <blockn+1> 

  Each <bei> is a BOOLEAN expressions 
  Each <blocki>is a sequence of statements 
  Level of indenta8on determines what’s inside each block 

Indenta8on has meaning  
in Python 

Compute the complement of a DNA base

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 14 

def complementBase(base):
 if (base == ’a'):
 return ’t'
 elif (base == ’t'):
 return ’a'
 elif (base == ’c'):
 return ’g'
 elif (base == ’g'):
 return ’c'

How can we improve this func5on? 

 Expressions that yield True of False values
 Ways to yield a Boolean value

 Boolean constants: True and False 
 Comparison operators (>, <, ==, >=, <=) 

 Logical Operators (and, or, not) 
 Boolean func5ons 
 0 (means False) 

 Empty string '’ (means False) 

Boolean Expressions

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 15 

 Lets assume that b,a are Boolean values:
 (b and True) = b 
 (b or True) = True 
 (b and False) = False 
 (b or False) = b 
 not (a and b) = (not a) or (not b) 
 not (a or b) = (not a) and (not b) 

Some Useful Boolean Laws

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 16 

De Morgan’s Laws 

A strange Boolean function

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 17 

def test(x): 
    if x: 
        return True 
    else: 
        return False 

What can you use this func8on for? 

What types of values can it accept? 

 Basics of Functions
 Decision statements
 Recursion
 Iteration statements

Outline

18  These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

Recursive Functions

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 19 

A classic! 

>>> fact(5) 
120 
>>> fact(10) 
3628800 
>>> fact(100) 
93326215443944152681699238856266700490715968264381621468592963895217599993
22991560894146397615651828625369792082722375825118521091686400000000000000
0000000000L 
>>>  

def fact(n):
 if (n==0):
 return 1
 else:
 return n * fact(n - 1)

Recursion Basics

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 20 

n = 3
fact(2)

fact(3)

n = 2

n = 1

fact(1)

n = 0

fact(0)

1

1 * 1 = 1

2 * 1 = 2

3 * 2 = 6
n = 3

n = 2

n = 1

n = 0

def fact(n):
 if (n==0):
 return 1
 else:
 return n * fact(n - 1)

Interpreter keeps a  
stack of ac8va8on records 

Beware of Infinite Recursions!

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 21 

def fact(n):
 if (n==0):
 return 1
 else:
 return n * fact(n - 1)

What if you call fact 5.5? Explain 

When using recursion always think about how will it stop or converge 

 Compute the reverse of a sequence
 Compute the molecular mass of a sequence
 Compute the reverse complement of a sequence
 Determine if two sequences are complement of each other
 Compute the number of stop codons in a sequence
 Determine if a sequence has a subsequence of length
greater than n surrounded by stop codons
 Return the starting position of the subsequence identified in
exercise 6

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 22 

Write recursive Python func8ons to sa8sfy the following specifica8ons: 

Reversing a sequence recursively

def reverse(sequence):

 'Returns the reverse string of the argument sequence'

 if (len(sequence)>1):

 return reverse(sequence[1:])+sequence[0]

 else:

 return sequence

Runtime Complexity - 'Big O' Notation

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 24 

def fact(n):
 if (n==0):
 return 1
 else:
 return n * fact(n - 1)

  How 'fast' is this func8on? 

  Can we come up with a more efficient version? 

  How can we measure 'efficiency' 

  Can we compare algorithms independently from a 
specific implementa8on, so[ware or hardware? 

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 25 

•  What is a step? 
•  How can we measure the size of an input? 

•  Answer in both cases: YOU CAN DEFINE THESE! 

Big Idea 
Measure the number of steps taken by the  

algorithm as an asympto5c func5on of the size of its input  

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 26 

•  A 'step' is a func5on call to fact 
•  The size of an input value n is n itself 

T(0) = 0 
T(n) = T(n‐1) + 1 = (T(n‐2) + 1) + 1 = … = T(n‐n) + n = T(0) + n = 0 + n = n 

Step 1: Count the number of steps for input n 

Step 2: Find the asympto8c func8on 

T(n) = O(n) 

def fact(n):
 if (n==0):
 return 1
 else:
 return n * fact(n - 1)

A.K.A Linear Func5on 

 Basics of Func5ons 
 Decision statements 

 Recursion 
•  Itera5on statements 

27  These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

Iteration

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 28 

while <be>: 
 <block>

SYNTAX 

SEMANTICS 

Repeat the execu8on of 
<block> as long as 
expression <be>  
remains true

SYNTAX = FORMAT 
SEMANTICS = MEANING 

Iterative Factorial

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 29 

def iterFact(n):
 result = 1
 while(n>0):
 result = result * n
 n = n - 1
 return result

Work out the run8me complexity: 

whiteboard 

Formatted Output using % operator

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 30 

For more details visit: hdp://docs.python.org/lib/typesseq‐strings.html 

<format> % <values> 

>>> '%s is %d years old' % ('John', 12) 
'John is 12 years old' 
>>>  

  <format> is a string 
  <values> is a list of values n parenthesis (a.k.a. a tuple) 
  % produces a string replacing each %x with a correding value from the tuple 

The For Loop: Another Iteration Statement

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 31 

for <var> in <sequence>: 
 <block>

SYNTAX 

SEMANTICS  Repeat the execu8on of the 
<block> binding variable 
<var> to each element of 
the sequence

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 32 

•  start = first value 
•  end = value right aser last one 
•  step = increment 

def iterFact2(n):
 result = 1
 for i in xrange(1,n+1):
 result = result * i
 return result

xrange(start,end,step) generates a sequence of values : 

Revisiting code from Lecture 1
seq="ACTGTCGTAT"

print seq

Acount= seq.count('A')

Ccount= seq.count('C')
Gcount= seq.count('G')

Tcount= seq.count('T')

Total = float(len(seq))

APct = int((Acount/Total) * 100)

print 'A percent = %d ' % APct

CPct = int((Ccount/Total) * 100)

print 'C percent = %d ' % CPct
GPct = int((Gcount/Total) * 100)

print 'G percent = %d ' % GPct

TPct = int((Tcount/Total) * 100)

print 'T percent = %d ' % TPct

Can we reduce the amount of repe55ve code? 

Approach: Use For Loop
bases = ['A', 'C', 'T', 'G']

sequence = "ACTGTCGTAT"

for base in bases:

 nextPercent = 100 * sequence.count(base)/float(len(sequence))

 print 'Percent %s: %d' % (base, nextPercent)

How many func5ons would you refactor this code into? 

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 35 

Write itera8ve Python func8ons to sa8sfy the following specifica8ons: 

1.  Compute the reverse of a sequence
2.  Compute the molecular mass of a sequence
3.  Compute the reverse complement of a sequence
4.  Determine if two sequences are complement of each other
5.  Compute the number of stop codons in a sequence
6.  Determine if a sequence has a subsequence of length greater than n

surrounded by stop codons
7.  Return the starting position of the subsequence identified in

exercise 6

Finding Patterns Within Sequences

These materials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center 36 

from string import * 
def searchPadern(dna, padern): 

 'print all start posi5ons of a padern string inside a target string’ 
 site = find (dna, padern) 
 while site != ‐1: 
   print ’padern %s found at posi5on %d' % (padern, site) 
   site = find (dna, padern, site + 1) 

Example from: Pasteur Ins8tute Bioinforma8cs Using Python 

>>> searchPadern("acgctaggct","gc") 

padern gc at posi5on 2 

padern gc at posi5on 7 

>>>  

•  Extend searchPadern to handle unknown 
residues 

