NV PSC

Essential Computing for Bioinformatics

Lecture 4
High-level Programming with Python

Controlling the flow of your program

MARC: Developing Bioinformatics Programs
July 2009

Alex Ropelewski
PSC-NRBSC

Bienvenido Vélez
UPR Mayaguez

Reference: How to Think Like a Computer Scientist: Learning with Python 1

VW PSC wa

Essential Computing for Bioinformatics

*The following material is the result of a curriculum development effort to provide a set
of courses to support bioinformatics efforts involving students from the biological
sciences, computer science, and mathematics departments. They have been
developed as a part of the NIH funded project “Assisting Bioinformatics Efforts at
Minority Schools” (2T36 GM008789). The people involved with the curriculum
development effort include:

Dr. Hugh B. Nicholas, Dr. Troy Wymore, Mr. Alexander Ropelewski and Dr. David
Deerfield |, National Resource for Biomedical Supercomputing, Pittsburgh
Supercomputing Center, Carnegie Mellon University.

*Dr. Ricardo Gonzalez Méndez, University of Puerto Rico Medical Sciences Campus.
Dr. Alade Tokuta, North Carolina Central University.

Dr. Jaime Seguel and Dr. Bienvenido Vélez, University of Puerto Rico at Mayaguez.
Dr. Satish Bhalla, Johnson C. Smith University.

*Unless otherwise specified, all the information contained within is Copyrighted © by
Carnegie Mellon University. Permission is granted for use, modify, and reproduce these
materials for teaching purposes.

*Most recent versions of these presentations can be found at hitp://marc.psc.edu/

V' PSC
Outline

=Basics of Functions
*Decision statements
=Recursion

=|teration statements

These matet'?ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

NV PSC

>>> import math

>>> decibel = math.log10 (17.0)
To convert from degrees to radians,

>>> angle = 1.5 divide by 360 and multiply by 2*pi
>>> height = math.sin(angle)

>>> degrees =45
>>> angle = degrees * 2 * math.pi / 360.0
>>> math.sin(angle)

0.707106781187

Can you avoid having to write the formula to

convert degrees to radians every time?

These matelz'fls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

def <NAME> (<LIST OF PARAMETERS>):
<STATEMENTS>

import math

def radians(degrees):
result = degrees * 2 * math.pi / 360.0
return(result)

>>> def radians(degrees):
result=degrees * 2 * math.pi / 360.0
return(result)

>>> radians(45)
0.78539816339744828
>>> radians(180)
3.1415926535897931

These matel@ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

NV PSC

From string import *
cds = “atgagtgaacgtctgagcattaccccgctggggcecgtatatc”

gc = float(count(cds, 'g') + count(cds, 'c'))/ len(cds)

print gc

These mate@ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

NV PSC

def gcCount(sequence):
gc = float(count(sequence, 'g') + count(sequence, 'c'))/ len(sequence)
print gc

>>> gcCount(“actgaccgggat”)

These mater'?ils were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

NV PSC

MyFunctions - C:/Python25/MyFunctions E]E]

File Edit Format Run Options Windows Help

from string import * ;I

def gcCount (sedquence) :

ge = float{count (Sequence, "g") + count (Sequence,

"c"))/ len(sequence)
print gc

Ln: 6|Col: 0

® Save script in a file

® Re-load when you want to use the functions
® No need to retype your functions

® Keep a single group of related functions and declarations in each file

These matelgls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

NV PSC

*Powerful mechanism for creating building blocks
=Code reuse

=*Modularity

=Abstraction (i.e. hide (or forget) irrelevant detail)

These mate@ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

=Should have a single well defined 'contract'

=E.g. Return the gc-value of a sequence

=Contract should be easy to understand and
remember

=Shou
=Shou
=Shou

d be as general as possible
d be as efficient as possible
d not mix calculations with 1/O

These matfc'jils were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

def gcCount(sequence):
gc = float(count(sequence, 'g') + count(sequence, 'c'))/ len(sequence)
print gc

What can be improved?

def gcCount(sequence):
gc = float(count(sequence, 'g' + count(sequence, 'c'))/ len(sequence)
return gc

Why is this better?

® More reusable function

® Can call it to get the gcCount and then decide what to do with the value
® May not have to print the value

® Function has ONE well-defined objective or CONTRACT

These matirials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

V' PSC
Outline

v'Basics of Functions
*Decision statements
=Recursion

=|teration statements

1 2 These materials were developed with funding from the US National Institutes of Health grant #2T36 GMO008789 to the Pittsburgh Supercomputing Center

V' PSC
Decision statements

[if <be,>:
<block,>

elif <be,>:

Indentation has meaning < <b|ock2>
in Python

else:
N <block,,,>

® Fach <be is a BOOLEAN expressions
® Fach <block>is a sequence of statements
® [evel of indentation determines what’s inside each block

These matit'?ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

def complementBase (base) :

1f (base == "a'):
return 't

elif (base == "t'):
return "a'

elif (base == ’c'):

return g’
elif (base == ’'g'):
return 'c'

How can we improve this function?

These matfz‘fls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

=Expressions that yield True of False values
=\Ways to yield a Boolean value
"Boolean constants: True and False

*Comparison operators (>, <, ==, >=, <=)
" ogical Operators (and, or, not)
"Boolean functions

=0 (means False)

"Empty string " (means False)

These ma tf'gls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

VPSC
Some Useful Boolean Laws —

= ets assume that b,a are Boolean values:
5(b and True)=b

*(b or True) = True

*(b and False) = False

"(b or False) =b
"not (a and b) = (not a) or (not b) De Morgan's Laws
"not (a or b) = (not a) and (not b)

These matI@ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

def test(x):
if x:
return True
else:
return False

What can you use this function for?

What types of values can it accept?

These matf-'?als were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

V' PSC
Outline

v'Basics of Functions
v'Decision statements
=Recursion

=|teration statements

1 8 These materials were developed with funding from the US National Institutes of Health grant #2T36 GMO008789 to the Pittsburgh Supercomputing Center

NV PSC

A classic!

def fact(n):

if (n==0):
return 1
else:

return n * fact(n - 1)

>>> fact(5)

120

>>> fact(10)

3628800

>>> fact(100)
93326215443944152681699238856266700490715968264381621468592963895217599993
22991560894146397615651828625369792082722375825118521091686400000000000000
0000000000L

>>>

These matI@ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

NV PSC

def fact(n):
if (n==0):
n =20
return 1
else:
return n * fact(n - 1) n =1
fact (3) N
Yy n =2
no= 3 ,i§§§(2)
‘\‘s
______ X n =3
3 x2 =6
) n =2
fact (1)
5w 1 = o T 3 ’-\\ Interpreter keeps a
stack of activation records
1% 1 = 1_ _______ -1 fact (0)
4
1 - . n =20

These ma?rc‘jils were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

V' PSC

def fact(n):
if (n==0):
return 1
else:
return n * fact(n - 1)

What if you call fact 5.57 Explain

When using recursion always think about how will it stop or converge

These ma?rials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

NV PSC

Write recursive Python functions to satisfy the following specifications:
=Compute the reverse of a sequence

=Compute the molecular mass of a sequence

=Compute the reverse complement of a sequence
=Determine if two sequences are complement of each other
=Compute the number of stop codons in a sequence

*Determine if a sequence has a subsequence of length
greater than n surrounded by stop codons

=Return the starting position of the subsequence identified in
exercise 6

These ma ?t'?ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

def reverse (sequence):
'Returns the reverse string of the argument sequence'
if (len(sequence)>1):
return reverse (sequence[l:])+sequence[0]
else:

return sequence

=7 NRBSC

Runtime Complexity - 'Big O’ Notstion

def fact(n):
if (n==0):
return 1
else:
return n * fact(n - 1)

® How 'fast'is this function?
® Can we come up with a more efficient version?
® How can we measure 'efficiency’

® Can we compare algorithms independently from a
specific implementation, software or hardware?

These ma?lz‘fls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

NV PSC

Big Idea
Measure the number of steps taken by the
algorithm as an asymptotic function of the size of its input

* What is a step?

* How can we measure the size of an input?
* Answer in both cases: YOU CAN DEFINE THESE!

?l'gls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

NV PSC

 A'step'is a function call to fact
* The size of an input value n is n itself

def fact(n):
if (n==0):
return 1
else:
return n * fact(n - 1)

Step 1: Count the number of steps for input n

T(0)=0
T(n)=T(n-1) +1=(T(n-2)+1)+1=..=T(n-n) +n=T(0)+n=0+n=n

Step 2: Find the asymptotic function Z A KA Linear Function
T(n) =0O(n)

These ma?@ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

NV PSC

v"Basics of Functions
v'Decision statements
v'Recursion

* |teration statements

27 These materials were developed with funding from the US National Institutes of Health grant #2T36 GMO008789 to the Pittsburgh Supercomputing Center

NV PSC

while <be>:
<block>

v

SYNTAX

Repeat the execution of
semantics | — <block> as long as
expression <be>
‘remains true

SYNTAX = FORMAT
SEMANTICS = MEANING

These mai ?lgls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

V' PSC
Iterative Factorial

def iterFact (n):
result =1
while (n>0) :
result = result * n
n =n - 1
return result

Work out the runtime complexity:

whiteboard

These ma?@ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

NV PSC

<format> % <values>

>>> '%s is %d years old' % ('John', 12)
'John is 12 years old'
>>>

® <format> is a string
® <values> is a list of values n parenthesis (a.k.a. a tuple)
® % produces a string replacing each %x with a correding value from the tuple

For more details visit: http://docs.python.org/lib/typesseq-strings.html

These magr@ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

SYNTAX

A 4

SEMANTICS

These magrials were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

for <var> in <sequence>:
<block>

Repeat the execution of the
<block> binding variable
<var> to each element of
the sequence

NV PSC

def iterFact2(n):
result =1
for i in xrange(l,n+l):
result = result * 1
return result

xrange(start,end,step) generates a sequence of values :

e start = first value
* end =value right after last one
* step =increment

These ma gt'?ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

seg="ACTGTCGTAT"
print seq

Acount= seqg.count
Ccount= seqg.count

Tcount= seqg.count
Total = float(len(seq))
APct = int ((Acount/Total
print 'A percent = %d '
CPct = int ((Ccount/Total

(
(
Gcount= seqg.count ('
(
(

print 'C percent = 3%d
GPct = int ((Gcount/Total
print 'G percent = %d '

TPct = int ((Tcount/Total

print 'T percent = %d '

)
%
)
%
)
%
)
%

* 100)
APct
* 100)
Ckct
* 100)
Gbct
* 100)
TPct

Can we reduce the amount of repetitive code?

bases = ['A', 'C', 'T', 'G']
sequence = "ACTGTCGTAT"
for base 1n bases:
nextPercent = 100 * sequence.count (base)/float (len (sequence))

[¢)

print 'Percent %s: %d' % (base, nextPercent)

How many functions would you refactor this code into?

NV PSC

Write iterative Python functions to satisfy the following specifications:

Compute the reverse of a sequence

Compute the molecular mass of a sequence

Compute the reverse complement of a sequence
Determine if two sequences are complement of each other
Compute the number of stop codons in a sequence

Determine if a sequence has a subsequence of length greater than n
surrounded by stop codons

Return the starting position of the subsequence identified in
exercise 6

These magl'?ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

NRBSC

c S,
e e
51075 DO

from string import *
def searchPattern(dna, pattern):
'print all start positions of a pattern string inside a target string’
site = find (dna, pattern)
while site !=-1:
print ‘pattern %s found at position %d' % (pattern, site)
site = find (dna, pattern, site + 1)

>>> searchPattern("acgctaggct","gc")
pattern gc at position 2

pattern gc at position 7

>>>

Example from: Pasteur Institute Bioinformatics Using Python

These mag@ls were developed with funding from the US National Institutes of Health grant #2T36 GM008789 to the Pittsburgh Supercomputing Center

NV PSC

e Extend searchPattern to handle unknown
residues

