
ICOM 4015: Advanced
Programming

Lecture 3

Chapter Three: Implementing Classes

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Chapter Three: Implementing Classes

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• To become familiar with the process of implementing classes

• To be able to implement simple methods

• To understand the purpose and use of constructors

• To understand how to access instance fields and local variables

• To appreciate the importance of documentation comments

• To implement classes for drawing graphical shapes

Chapter Goals

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• A black box magically does its thing

• Hides its inner workings

• Encapsulation: the hiding of unimportant details

• What is the right concept for each particular black box?

• Concepts are discovered through abstraction

• Abstraction: taking away inessential features, until only the
essence of the concept remains

•  In object-oriented programming the black boxes from which a
program is manufactured are called objects

Black Boxes

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Black boxes in a car: transmission, electronic control module, etc.

Levels of Abstraction: A Real Life Example

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Users of a car do not need to understand how black boxes work

•  Interaction of a black box with outside world is well-defined
•  Drivers interact with car using pedals, buttons, etc.
•  Mechanic can test that engine control module sends the right firing

signals to the spark plugs
•  For engine control module manufacturers, transistors and capacitors are

black boxes magically produced by an electronics component
manufacturer

• Encapsulation leads to efficiency:
•  Mechanic deals only with car components (e.g. electronic control

module), not with sensors and transistors
•  Driver worries only about interaction with car (e.g. putting gas in the

tank), not about motor or electronic control module

Levels of Abstraction: A Real Life Example

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Levels of Abstraction: Software Design

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Old times: computer programs manipulated primitive types such
as numbers and characters

•  Manipulating too many of these primitive quantities is too much
for programmers and leads to errors

•  Solution: Encapsulate routine computations to software black
boxes

•  Abstraction used to invent higher-level data types

•  In object-oriented programming, objects are black boxes

•  Encapsulation: Programmer using an object knows about its
behavior, but not about its internal structure

Continued

Levels of abstraction: Software Design

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  In software design, you can design good and bad abstractions
with equal facility; understanding what makes good design is an
important part of the education of a software engineer

• First, define behavior of a class; then, implement it

Levels of abstraction: Software Design (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

In Chapters 1 and 2, you used System.out as a black box to
cause output to appear on the screen. Who designed and
implemented System.out?

 Answer: The programmers who designed and implemented
 the Java library.

Self Check 3.1

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Suppose you are working in a company that produces personal
finance software. You are asked to design and implement a class
for representing bank accounts. Who will be the users of your
class?

 Answer: Other programmers who work on the personal finance
 application.

Self Check 3.2

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Behavior of bank account (abstraction):
• deposit money
• withdraw money
• get balance

Specifying the Public Interface of a Class

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Methods of BankAccount class:
• deposit
• withdraw
• getBalance

We want to support method calls such as the following:
harrysChecking.deposit(2000);
harrysChecking.withdraw(500);
System.out.println(harrysChecking.getBalance());

Specifying the Public Interface of a Class: Methods

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

access specifier (such as public)
•  return type (such as String or void)
• method name (such as deposit)
•  list of parameters (double amount for deposit)
• method body in { }

Examples:
• public void deposit(double amount) { . . . }
• public void withdraw(double amount) { . . . }
• public double getBalance() { . . . }

Specifying the Public Interface of a Class: Method Definition

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

accessSpecifier returnType methodName(parameterType
parameterName, . . .)
{
 method body
}

Example:
public void deposit(double amount)
{
 . . .
}

Purpose:

To define the behavior of a method.

Syntax 3.1 Method Definition

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• A constructor initializes the instance fields

• Constructor name = class name
 public BankAccount()
{
 // body--filled in later
}

• Constructor body is executed when new object is created

• Statements in constructor body will set the internal data of the
object that is being constructed

• All constructors of a class have the same name

• Compiler can tell constructors apart because they take different
parameters

Specifying the Public Interface of a Class: Constructor
Definition

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

accessSpecifier ClassName(parameterType parameterName, . . .)
{
 constructor body
}

Example:
public BankAccount(double initialBalance)
{
 . . .
}

Purpose:

To define the behavior of a constructor.

Syntax 3.2 Constructor Definition

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

The public constructors and methods of a class form the public
interface of the class.

public class BankAccount
{
 // Constructors
 public BankAccount()
 {
 // body--filled in later
 }
 public BankAccount(double initialBalance)
 {
 // body--filled in later
 }

Continued

BankAccount Public Interface

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

 // Methods
 public void deposit(double amount)
 {
 // body--filled in later
 }
 public void withdraw(double amount)
 {
 // body--filled in later
 }
 public double getBalance()
 {
 // body--filled in later
 }
 // private fields--filled in later
}

BankAccount Public Interface (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

accessSpecifier class ClassName
{
 constructors
 methods
 fields
}

Example:
public class BankAccount
{
 public BankAccount(double initialBalance) {. . .}
 public void deposit(double amount) {. . .}
 . . .
}

Purpose:

To define a class, its public interface, and its implementation
details.

Syntax 3.3 Class Definition

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

How can you use the methods of the public interface to empty the
harrysChecking bank account?

 Answer:
 harrysChecking.withdraw(harrysChecking.getBalance())

Self Check 3.3

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Suppose you want a more powerful bank account abstraction that
keeps track of an account number in addition to the balance. How
would you change the public interface to accommodate this
enhancement?

 Answer: Add an accountNumber parameter to the constructors,
 and add a getAccountNumber method. There is no need for a
 setAccountNumber method – the account number never
 changes after construction.

Self Check 3.4

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

/**
 Withdraws money from the bank account.
 @param the amount to withdraw
*/
public void withdraw(double amount)
{
 //implementation filled in later
}
/**
 Gets the current balance of the bank account.
 @return the current balance
*/
public double getBalance()
{
 //implementation filled in later
}

Commenting the Public Interface

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

/**
 A bank account has a balance that can be changed by
 deposits and withdrawals.
 */
 public class BankAccount
 {
 . . .
 }

• Provide documentation comments for
•  every class
•  every method
•  every parameter
•  every return value.

Class Comment

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Javadoc Method Summary

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Javadoc Method Detail

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Suppose we enhance the BankAccount class so that each account
has an account number. Supply a documentation comment for the
constructor
public BankAccount(int accountNumber, double
 initialBalance)

 Answer:
 /**
 Constructs a new bank account with a given initial
 balance.
 @param accountNumber the account number for
 this account
 @param initialBalance the initial balance
 for this account
 */

Self Check 3.5

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why is the following documentation comment questionable?
/**
 Each account has an account number.
 @return the account number of this account
*/
public int getAccountNumber()

 Answer: The first sentence of the method description should
 describe the method – it is displayed in isolation in the summary
 table.

Self Check 3.6

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• An object stores its data in instance fields

• Field: a technical term for a storage location inside a block of
memory

•  Instance of a class: an object of the class

• The class declaration specifies the instance fields
 public class BankAccount
 {
 . . .
 private double balance;
 }

Instance Fields

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• An instance field declaration consists of the following parts:
•  access specifier (usually private)
•  type of variable (such as double)
•  name of variable (such as balance)

• Each object of a class has its own set of instance fields

• You should declare all instance fields as private

Instance Fields

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Instance Fields

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

accessSpecifier class ClassName
{
 . . .
 accessSpecifier fieldType fieldName;
 . . .
}

Example:
public class BankAccount
{
 . . .
 private double balance;
 . . .
}

Purpose:

To define a field that is present in every object of a class.

Syntax 3.4 Instance Field Declaration

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• The deposit method of the BankAccount class can access the
private instance field:

 public void deposit(double amount)
 {
 double newBalance = balance + amount;
 balance = newBalance;
 }

Continued

Accessing Instance Fields

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Other methods cannot:
 public class BankRobber
 {
 public static void main(String[] args)
 {
 BankAccount momsSavings = new BankAccount(1000);
 . . .
 momsSavings.balance = -1000; // ERROR
 }
 }

• Encapsulation is the process of hiding object data and providing
methods for data access

• To encapsulate data, declare instance fields as private and
define public methods that access the fields

Accessing Instance Fields (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Suppose we modify the BankAccount class so that each bank
account has an account number. How does this change affect the
instance fields?

 Answer: An instance field
 private int accountNumber;
 needs to be added to the class.

Self Check 3.7

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What are the instance fields of the Rectangle class?

 Answer: There are four fields, x, y, width and height. All four
 fields have type int.

Self Check 3.8

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Constructors contain instructions to initialize the instance fields
of an object

 public BankAccount()
 {
 balance = 0;
 }
 public BankAccount(double initialBalance)
 {
 balance = initialBalance;
 }

Implementing Constructors

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• BankAccount harrysChecking = new BankAccount(1000);
•  Create a new object of type BankAccount
•  Call the second constructor (since a construction parameter is supplied)
•  Set the parameter variable initialBalance to 1000
•  Set the balance instance field of the newly created object to

initialBalance
•  Return an object reference, that is, the memory location of the object, as

the value of the new expression
•  Store that object reference in the harrysChecking variable

Constructor Call Example

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Some methods do not return a value

 public void withdraw(double amount)
 {
 double newBalance = balance - amount;
 balance = newBalance;
 }

• Some methods return an output value
 public double getBalance()
 {
 return balance;
 }

Implementing Methods

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• harrysChecking.deposit(500);
•  Set the parameter variable amount to 500
•  Fetch the balance field of the object whose location is stored in
harrysChecking

•  Add the value of amount to balance and store the result in the variable
newBalance

•  Store the value of newBalance in the balance instance field,
overwriting the old value

Method Call Example

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

return expression;
or
return;

Example:

return balance;

Purpose:

To specify the value that a method returns, and exit the method
immediately. The return value becomes the value of the method
call expression.

Syntax 3.5 The return Statement

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: A bank account has a balance that can be changed by
03: deposits and withdrawals.
04: */
05: public class BankAccount
06: {
07: /**
08: Constructs a bank account with a zero balance.
09: */
10: public BankAccount()
11: {
12: balance = 0;
13: }
14:
15: /**
16: Constructs a bank account with a given balance.
17: @param initialBalance the initial balance
18: */
19: public BankAccount(double initialBalance)
20: {
21: balance = initialBalance;
22: }
23: Continued

ch03/account/BankAccount.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

24: /**
25: Deposits money into the bank account.
26: @param amount the amount to deposit
27: */
28: public void deposit(double amount)
29: {
30: double newBalance = balance + amount;
31: balance = newBalance;
32: }
33:
34: /**
35: Withdraws money from the bank account.
36: @param amount the amount to withdraw
37: */
38: public void withdraw(double amount)
39: {
40: double newBalance = balance - amount;
41: balance = newBalance;
42: }
43:
44: /**
45: Gets the current balance of the bank account.
46: @return the current balance
47: */

Continued

ch03/account/BankAccount.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

48: public double getBalance()
49: {
50: return balance;
51: }
52:
53: private double balance;
54: }

ch03/account/BankAccount.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

The Rectangle class has four instance fields: x, y, width, and
height. Give a possible implementation of the getWidth method.

 Answer:
 public int getWidth()
 {
 return width;
 }

Self Check 3.9

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Give a possible implementation of the translate method of the
Rectangle class.

 Answer: There is more than one correct answer. One possible
 implementation is as follows:
 public void translate(int dx, int dy)
 {
 int newx = x + dx;
 x = newx;
 int newy = y + dy;
 y = newy;
 }

Self Check 3.10

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Unit test: verifies that a class works correctly in isolation,
outside a complete program.

•  To test a class, use an environment for interactive testing, or
write a tester class.

•  Test class: a class with a main method that contains statements
to test another class.

•  Typically carries out the following steps:
1. Construct one or more objects of the class that is being tested
2. Invoke one or more methods
3. Print out one or more results

Continued

Unit Testing

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Details for building the program vary. In most environments, you
need to carry out these steps:
1. Make a new subfolder for your program
2. Make two files, one for each class
3. Compile both files
4. Run the test program

Unit Testing (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: /**
02: A class to test the BankAccount class.
03: */
04: public class BankAccountTester
05: {
06: /**
07: Tests the methods of the BankAccount class.
08: @param args not used
09: */
10: public static void main(String[] args)
11: {
12: BankAccount harrysChecking = new BankAccount();
13: harrysChecking.deposit(2000);
14: harrysChecking.withdraw(500);
15: System.out.println(harrysChecking.getBalance());
16: System.out.println("Expected: 1500");
17: }
18: }

Output:
1500
Expected: 1500

ch03/account/BankAccountTester.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Testing With BlueJ

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

When you run the BankAccountTester program, how many objects
of class BankAccount are constructed? How many objects of type
BankAccountTester?

 Answer: One BankAccount object, no BankAccountTester
 object. The purpose of the BankAccountTester class is
 merely to hold the main method.

Self Check 3.11

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Why is the BankAccountTester class unnecessary in development
environments that allow interactive testing, such as BlueJ?

 Answer: In those environments, you can issue interactive
 commands to construct BankAccount objects, invoke methods,
 and display their return values.

Self Check 3.12

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Categories of variables
1. Instance fields (balance in BankAccount)
2. Local variables (newBalance in deposit method)
3. Parameter variables (amount in deposit method)

•  An instance field belongs to an object

•  The fields stay alive until no method uses the object any longer

•  In Java, the garbage collector periodically reclaims objects
when they are no longer used

•  Local and parameter variables belong to a method

•  Instance fields are initialized to a default value, but you must
initialize local variables

Categories of Variables

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Animation 3.1 –

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

harrysChecking.deposit(500);

Lifetime of Variables – Calling Method deposit

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

harrysChecking.deposit(500);

Lifetime of Variables – Calling Method deposit

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

harrysChecking.deposit(500);
double newBalance = balance + amount;

Lifetime of Variables – Calling Method deposit

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

harrysChecking.deposit(500);
double newBalance = balance + amount;
balance = newBalance;

Lifetime of Variables – Calling Method deposit

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

What do local variables and parameter variables have in
common? In which essential aspect do they differ?

 Answer: Variables of both categories belong to methods – they
 come alive when the method is called, and they die when the
 method exits. They differ in their initialization. Parameter
 variables are initialized with the call values; local variables must
 be explicitly initialized.

Self Check 3.13

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

During execution of the BankAccountTester program in the
preceding section, how many instance fields, local variables, and
parameter variables were created, and what were their names?

 Answer: One instance field, named balance. Three local
 variables, one named harrysChecking and two named
 newBalance (in the deposit and withdraw methods); two
 parameter variables, both named amount (in the deposit and
 withdraw methods).

Self Check 3.14

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• The implicit parameter of a method is the object on which the
method is invoked

• The this reference denotes the implicit parameter

• Use of an instance field name in a method denotes the instance
field of the implicit parameter

 public void withdraw(double amount)
 {
 double newBalance = balance - amount;
 balance = newBalance;
 }

Continued

Implicit and Explicit Method Parameters

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• balance is the balance of the object to the left of the dot:
 momsSavings.withdraw(500)

 means
 double newBalance = momsSavings.balance - amount;
 >momsSavings.balance = newBalance;

Implicit and Explicit Method Parameters (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Every method has one implicit parameter

• The implicit parameter is always called this

• Exception: Static methods do not have an implicit parameter
(more on Chapter 8)

•  double newBalance = balance + amount;
 // actually means
 double newBalance = this.balance + amount;

• When you refer to an instance field in a method, the compiler
automatically applies it to the this parameter

momsSavings.deposit(500);

Implicit Parameters and this

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Implicit Parameters and this

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

How many implicit and explicit parameters does the withdraw
method of the BankAccount class have, and what are their names
and types?

 Answer: One implicit parameter, called this, of type
 BankAccount, and one explicit parameter, called amount, of
 type double.

Self Check 3.15

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

In the deposit method, what is the meaning of this.amount? Or, if
the expression has no meaning, why not?

 Answer: It is not a legal expression. this is of type BankAccount
 and the BankAccount class has no field named amount.

Self Check 3.16

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

How many implicit and explicit parameters does the main method
of the BankAccountTester class have, and what are they called?

 Answer: No implicit parameter–the method is static–and one
 explicit parameter, called args.

Self Check 3.17

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Good practice: Make a class for each graphical shape

 public class Car
 {
 public Car(int x, int y)
 {
 // Remember position
 . . .
 }
 public void draw(Graphics2D g2)
 {
 // Drawing instructions
 . . .
 }
 }

Shape Classes

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

•  Draw two cars: one in top-left corner of window, and
 another in the bottom right

•  Compute bottom right position, inside paintComponent
 method:
 int x = getWidth() - 60;
 int y = getHeight() - 30;

 Car car2 = new Car(x, y);

•  getWidth and getHeight are applied to object that
 executes paintComponent

•  If window is resized paintComponent is called and car
 position recomputed

Continued

Drawing Cars

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Drawing Cars (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Plan Complex Shapes on Graph Paper

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

• Car: responsible for drawing a single car
•  Two objects of this class are constructed, one for each car

• CarComponent: displays the drawing

• CarViewer: shows a frame that contains a CarComponent

Classes of Car Drawing Program

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.Graphics2D;
02: import java.awt.Rectangle;
03: import java.awt.geom.Ellipse2D;
04: import java.awt.geom.Line2D;
05: import java.awt.geom.Point2D;
06:
07: /**
08: A car shape that can be positioned anywhere on the screen.
09: */
10: public class Car
11: {
12: /**
13: Constructs a car with a given top left corner
14: @param x the x coordinate of the top left corner
15: @param y the y coordinate of the top left corner
16: */
17: public Car(int x, int y)
18: {
19: xLeft = x;
20: yTop = y;
21: }
22: Continued

ch03/car/Car.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

23: /**
24: Draws the car.
25: @param g2 the graphics context
26: */
27: public void draw(Graphics2D g2)
28: {
29: Rectangle body
30: = new Rectangle(xLeft, yTop + 10, 60, 10);
31: Ellipse2D.Double frontTire
32: = new Ellipse2D.Double(xLeft + 10, yTop + 20, 10, 10);
33: Ellipse2D.Double rearTire
34: = new Ellipse2D.Double(xLeft + 40, yTop + 20, 10, 10);
35:
36: // The bottom of the front windshield
37: Point2D.Double r1
38: = new Point2D.Double(xLeft + 10, yTop + 10);
39: // The front of the roof
40: Point2D.Double r2
41: = new Point2D.Double(xLeft + 20, yTop);
42: // The rear of the roof
43: Point2D.Double r3
44: = new Point2D.Double(xLeft + 40, yTop);
45: // The bottom of the rear windshield

Continued

ch03/car/Car.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

46: Point2D.Double r4
47: = new Point2D.Double(xLeft + 50, yTop + 10);
48:
49: Line2D.Double frontWindshield
50: = new Line2D.Double(r1, r2);
51: Line2D.Double roofTop
52: = new Line2D.Double(r2, r3);
53: Line2D.Double rearWindshield
54: = new Line2D.Double(r3, r4);
55:
56: g2.draw(body);
57: g2.draw(frontTire);
58: g2.draw(rearTire);
59: g2.draw(frontWindshield);
60: g2.draw(roofTop);
61: g2.draw(rearWindshield);
62: }
63:
64: private int xLeft;
65: private int yTop;
66: }

ch03/car/Car.java (cont.)

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import java.awt.Graphics;
02: import java.awt.Graphics2D;
03: import javax.swing.JComponent;
04:
05: /**
06: This component draws two car shapes.
07: */
08: public class CarComponent extends JComponent
09: {
10: public void paintComponent(Graphics g)
11: {
12: Graphics2D g2 = (Graphics2D) g;
13:
14: Car car1 = new Car(0, 0);
15:
16: int x = getWidth() - 60;
17: int y = getHeight() - 30;
18:
19: Car car2 = new Car(x, y);
20:
21: car1.draw(g2);
22: car2.draw(g2);
23: }
24: }

ch03/car/CarComponent.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

01: import javax.swing.JFrame;
02:
03: public class CarViewer
04: {
05: public static void main(String[] args)
06: {
07: JFrame frame = new JFrame();
08:
09: frame.setSize(300, 400);
10: frame.setTitle("Two cars");
11: frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12:
13: CarComponent component = new CarComponent();
14: frame.add(component);
15:
16: frame.setVisible(true);
17: }
18: }
19:

ch03/car/CarViewer.java

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Which class needs to be modified to have the two cars positioned
next to each other?

 Answer: CarComponent

Self Check 3.18

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Which class needs to be modified to have the car tires painted in
black, and what modification do you need to make?

 Answer: In the draw method of the Car class, call
 g2.fill(frontTire);
 g2.fill(rearTire);

Self Check 3.19

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

How do you make the cars twice as big?

 Answer: Double all measurements in the draw method of the
 Car class.

Self Check 3.20

Big Java by Cay Horstmann
Copyright © 2008 by John Wiley & Sons. All rights reserved.

Rectangle leftRectangle = new Rectangle(100, 100, 30,
 60);
Rectangle rightRectangle = new Rectangle(160, 100, 30,
 60);
Line2D.Double topLine = new Line2D.Double(130, 100, 160,
 100);
Line2D.Double bottomLine = new Line2D.Double(130, 160,
 160, 160);

Drawing Graphical Shapes

