ICOM4015 Fall 2008

LAB-6 Exercises

[image: image1.png]Exercise P6.1. Curvency conversion. Write a program CurrencyConverter that asks the
user to enter today’s exchange rate between U.S. dollars and the euro. Then the pro-
gram reads U.S. dollar values and converts each to curo values. Stop when the user
enters 0.

Exercise P6.2. Projectile flight. Suppose a cannonball is propelled vertically into the
air with a starting velocity v, Any caleulus book will tell us that the position of
the ball after ¢ seconds is s(t) = ~0.5 - g - £+ vq - £, where g = 9.81 m/sec? is the
gravitational force of the carth. No calculus book ever mentions why someone
would want to carry out such an ebviausly dangerous experiment, so we will do it
in the safety of the computer.

In fact, we will confirm the theorem from calculus by a simulation. In our simula-
tion, we will consider how the ball moves in very short time intervals A. In a short
time inerval the velocity  is nearly constant, and we can compute the distance the
ball moves as As = v- At. In our program, we will simply set

double deltaT = 0.01;
and update the position by

s =5+ v deleaT;

The velocity changes constantly —in fact, it s reduced by the gravitational force of
the carth. In a short time interval, v decreases by g- Af, and we must keep the
velocity updated as

V=v-g*delea

In the next iteration the new velocity is used to update the distance.

Now run the simulation until the cannonball falls back to the carth. Get the initial
velocity as an input (100 m/sec is a good value). Update the position and velocity
100 times per second, but only print out the pasition every full second. Also print
out the values from the exact formula s(¢) = ~0.5 - g - 2 + v, - ¢ for comparison. Use
a class Cannonball.

What is the benefit of this kind of simulation when an exact formula is available?
Well, the formula from the calculus book is not exact. Actually, the gravitational
force diminishes the farther the cannonball is away from the surface of the carth.
‘This complicates the algebra sufficiently that it is not passible to give an exact for-




[image: image2.png]mula for the actual motion, but the computer simulation can simply be extended to
apply a variable gravitational foree. For cannonballs, the caleulus-book formaula is
actually good enough, but computers are necessary to compute aceurate trajectories
for higher-flying objects such as ballistic missiles.




[image: image3.png]Exercise P6.3. Write a program that prints the powers of ten

1.0
10.0
100.0
1000.0
10000.0
100000.0
1000000.0
1.067
1.068
1.069
1.0E10
1.0E11

Implement a class

public class PowerGenerator

{
Jun
Constructs a power gencrator.
@paran aFactor the mumber that will be muldplicd by itself
*/
public PowerGenerator(double afactor) 1 . . . }
Jun
Computes the next power.
i/
public double nextpower®) { . . . }
3

Then supply a test class PowerGeneratorRunner that calls Systen.out.prinInC
myGenerator.nextPower () twelve times.

Exercise P6.4. The Fibonacci sequence is defined by the following rule. The first two
values in the sequence are 1 and 1. Every subsequent value is the sum of the two
values preceding it. For example, the third value is 1 + 1 = 2, the fourth value is
1+2=3,and the fifth is 2 + 3 = 5. If , denotes the nth value in the Fibonacci
sequence, then

fi=1
f=t
fo=fomt* fama ifn>2

Write a program that prompts the user for s and prints the first # values in the
Fibonacci sequence. Use a class FibonacciGenerator with a method nextiumber.




[image: image4.png]Hint: There is no need to store all values for f,,. You only need the last two values to
compute the next one in the series:

foldl = 1;
foldz = 1
few = foldl + fold2;

After that, discard fold2, which is no longer needed, and set fo1d2 to fold1 and
foldl to fnew.

Your generator class will be tested with this runner program:

public class FibonacciRunner
1{
public static void main(string[] args)

{

Scanner in = new Scanner(System.in);

System.out.printnC"Enter n:
int n = in.nextIne0);

FibonacciGenerator fg = new FibonacciGenerator();

for Cint i =1; i <= n; i+
System.out.printin(fg.nexthunber());




[image: image5.png]Exercise P6.5. Mean and standard deviation. Write a program that reads a set of
floating-point data values from the input. When the user indicates the end of input,
print out the count of the values, the average, and the standard deviation. The aver-
ageof adatasetxy, ..., x, is

= % + -+ x, is the sum of the input values. The standard deviation is

where 3

However, that formula is not suitable for our task. By the time you have computed
the mean, the individual x; are long gone. Until you know how to save these values,
use the numerically less stable formula

[e-2zx)

i e

You can compute this quantity by keeping track of the count, the sum, and the sum
of squares in the Dataset class as you process the inpu values.




[image: image6.png]Exercise P6.6. Factoring of integers. Write a program that asks the user for an integer
and then prints out allits factors in increasing order. For example, when the user
enters 150, the program should print

2
3
5
5

Use a class FactorGenerator with a constructor FactorGenerator(int numberToFac-
tor) and methods nexcFactor and hashoreFactors. Supply a class Factorprinter
whose nain method reads a user input, constructs a FactorGenerator object, and
prints the factors.

Exercise P6.7. Prime numbers. Write a program that prompts the user for an integer
and then prints out all prime numbers up to that integer. For example, when the
user enters 20, the program should print

2

3

s

7

1

13

7

1

Recall that a number is a prime number if itis not divisible by any number except |
and iself.

Supply a class PrineGenerator with a method nextPrine.

Exercise P6.8. The Heron method is a method for computing square roots that was
known to the ancient Grecks. If x is a guess for the value v , then the average of x
and a/x is a better gucss.

ajx Va %

f

Midpoint

Implement a class RootApproximator that starts with an initial guess of 1 and whose
nextGuess method produces a sequence of increasingly better guesses. Supply a
method hashoreGuesses that returns false if two successive guesses are sufficiently
close to each other (that is, they differ by no more than a small value ). Then test
your class like this:

RootApproxinator approx = new RootApproximator(a, EPSILON);
while (approx. hashoreGuesses ())
System.out.println(approx. nextGuess());




[image: image7.png]Exercise P6.9. The best known iterative method for computing the roots of a func-
tion £ (that s, the x-values for which f{x) is 0) is Newton-Raphson approximation.
To find the zero of a function whose derivaive is also known, compute

oew = %ola = f (5 )/ ' (%o1a) -

For this exercise, write a program to compute nth roots of floating-point
numbers. Prompt the user for « and 1, then obtain ¥a by computing a zero of
the function f(x) = x” ~ a. Follow the approach of Excrcise P6.5.

Exercise P6.10. The value of ¢* can be computed as the power serics

wheren!=1:2.3.....n.

Write a program that computes e* using this formula. Of course, you can’t compute
an infinite sum. Just keep adding values until an individual summand (term) is less
than a certain threshold. At cach step, you need to compute the new term and add it
to the toral. Update these terms as follows:

tern

term * x / n;

Follow the approach of the preceding two exerciscs, by implementing a class
ExpApproxinator. Its first guess should be 1.

Exercise P6.11. Write a program RandomDataanalyzer that generates 100 random
numbers berween 0 and 1000 and adds them to a bataset. Print out the average and
the maximum.

Exercise P6.12. Program the following simulation: Darts are thrown at random
points onta the square with corners (1,1) and (~1,-1). If the dart lands inside the
unit circle (that is, the circle with center (0,0) and radius 1), itis a hir. Otherwise itis
amiss. Run this simulation and use it to determine an approximate value for 7.
Extra credit if you explain why this s a better method for estimating 7 than the
Buffon needle program.

Exercise P6.13. Random walk. Simulate the wandering of an intoxicated person in a
square strect grid. Draw a grid of 20 streets horizontally and 20 streets vertically.
Represent the simulated drunkard by a o, placed in the middle of the grid to start.
For 100 times, have the simulated drunkard randomly pick a direction (cast, west,
north, south), move one block in the chosen direction, and draw the dot. (One
might expect that on average the person might not get anywhere because the moves
to different dircctions cancel one another out in the long run, but in fact it can be
shown with probability 1 that the person eventually moves outside any finite
region. Sce, for example, [3, Chapter 8] for more details.) Use classes for the grid
and the drunkard.




[image: image8.png]Exercise P6.14. This excrcise is a continuation of Exercise P6.2. Most cannonballs are
not shot upright but at an angle. If the starting velocity has magnitude v and the




[image: image9.png]starting angle is o then the velocity is a vector with components v = v - cos(c),
©, = v-sin(@). In the x-dircction the velocity does no change. In the y-direction
the gravitational force takes its foll. Repeat the simulation from the previous exer-
cise, but update the x and  components of the location and the velocity separately.
In every iteration, plot the location of the cannonball on the graphics display as a
tiny circle. Repeat until the cannonball has reached the carth again.

This kind of problem is of historical inerest. The first computers were designed to
carry out just such ballistic calculations, taking into account the diminishing gravity
for high-flying projectiles and wind speeds.

Exercise P6.15. Write a graphical application that displays a checkerboard with 64
squares, alternating white and black.

Exercise P6.16. Write a graphical application that prompts a user to enter a number n
and that draws n circles with random diameter and random location. The circles
should be completely contained inside the window:

Exercise P6.17, Write a graphical application that draws a spiral, such as the
following:

=

Exercise P6.18. It is casy and fun to draw graphs of curves with the Java graphics
library. Simply draw 100 line segments joining the points (x, f(x)) and (x + d,
flx + d)), where x ranges from %y t0 Xyay and d = (X ~ Xpi)/100.

0.00005x” — 0.03x% + 4x + 200, where x ranges from 0 to

Draw the curve f(x)
400 in this fashion.

Exercise P6.19. Draw a picture of the “four-leaved rose” whose equation in polar
coordinates is 7 = cos(26). Let 0 go from O to 2xin 100 steps. Each time, compute r
and then compute the (x,3) coordinates from the polar coordinates by using the
formula

x = rcos6, y = rsing




