Compiler Construction

ICOM 4029
1:30-3:10
CID 201

UPRM ICOM 4029
(Adapted from: Prof. Necula UCB CS 164)

ICOM 4029 - Outline

» Prontuario

» Course Outline

* Brief History of PLs

* Programming Language Design Criteria
» Programming Language Implementation

UPRM ICOM 4029
(Adapted from: Prof. Necula UCB CS 164)

Programming Assignments Highlights

* Implement a compiler in four phases

+ Teams of two students (Choose your partner!)
Development in C++ or Java for Linux

+ Use Academic Computer Center (Amadeus) if needed

» Can work on your personal computers

» Source Language = COOL (UC Berkeley CS164)

* Target Language = MIPS Assembly (SPIM)

+ Each project must have some unique feature chosen
by the development team

* Each compiler must pass a minimal set of tests in
order to pass the class.

UPRM ICOM 4029 3
(Adapted from: Prof. Necula UCB CS 164)

Homework for next week

* Read the COOL Reference Manual
» Choose your partner
- notify me by email
* Choose your development language
- C++ or Java

- Read the Flex (C++) or JLex (Java) manual

UPRM ICOM 4029
(Adapted from: Prof. Necula UCB CS 164)

(Short) History of High-Level Languages

+ 1953 IBM develops the 701
» All programming done in assembly

- Problem: Software costs exceeded hardware
costsl!

» John Backus: "Speedcoding”
- An interpreter
- Ran 10-20 times slower than hand-written assembly

UPRM ICOM 4029 5
(Adapted from: Prof. Necula UCB CS 164)

FORTRAN I

+ 1954 IBM develops the 704
» John Backus

- Idea: translate high-level code to assembly

- Many thought this impossible
* Had already failed in other projects

+ 1954-7 FORTRAN I project
+ By 1958, >50% of all software is in FORTRAN

» Cut development time dramatically
- (2 wks — 2 hrs)

UPRM ICOM 4029 6
(Adapted from: Prof. Necula UCB CS 164)

FORTRAN I

» The first compiler
- Produced code almost as good as hand-written
- Huge impact on computer science

» Led to an enormous body of theoretical work

* Modern compilers preserve the outlines of
FORTRAN I

UPRM ICOM 4029 7
(Adapted from: Prof. Necula UCB CS 164)

History of Ideas: Abstraction

- Abstraction = detached from concrete details

» Abstraction necessary to build software
systems

* Modes of abstraction
- Via languages/compilers:
» Higher-level code, few machine dependencies
- Via subroutines
+ Abstract interface to behavior
- Via modules
- Export interfaces; hide implementation
- Via abstract data types
* Bundle data with its operations

UPRM ICOM 4029 8
(Adapted from: Prof. Necula UCB CS 164)

History of Ideas: Types

* Originally, few types
- FORTRAN: scalars, arrays
- LISP: no static type distinctions
+ Readlization: Types help
- Allow the programmer to express abstraction
- Allow the compiler to check against many frequent errors
- Sometimes to the point that programs are guaranteed "safe”
* More recently
- Lots of interest in types
- Experiments with various forms of parameterization
- Best developed in functional programming

UPRM ICOM 4029 9
(Adapted from: Prof. Necula UCB CS 164)

History of Ideas: Reuse

* Reuse = exploits common patterns in software systems
* Goal: mass-produced software components
+ Reuse is difficult

» Two popular approaches (combined in C++)
- Type parameterization (List(int), List(double))
- Classes and inheritance: C++ derived classes

* Inheritance allows
- Specialization of existing abstraction
- Extension, modification, hiding behavior

UPRM ICOM 4029 10
(Adapted from: Prof. Necula UCB CS 164)

Programming Language Economics 101

» Languages are adopted to fill a void
- Enable a previously difficult/impossible application
- Orthogonal to language design quality (almost)

* Programmer training is the dominant cost
- Languages with many users are replaced rarely
- Popular languages become ossified
- But easy to start in a new niche . ..

UPRM ICOM 4029 11
(Adapted from: Prof. Necula UCB CS 164)

Why So Many Languages?

- Application domains have distinctive (and
conflicting) needs

+ Examples:
- Scientific Computing: high performance
- Business: report generation
- Artificial intelligence: symbolic computation
- Systems programming: low-level access
- Special purpose languages

UPRM ICOM 4029
(Adapted from: Prof. Necula UCB CS 164)

Topic: Language Design

* No universally accepted metrics for design
» "A good language is one people use” ?

- NO |
- Is COBOL the best language?

* Good language design is hard

UPRM ICOM 4029 13
(Adapted from: Prof. Necula UCB CS 164)

Language Evaluation Criteria

Characteristic Criteria

Readability | Writeability | Reliability
Simplicity * * *
Data types * * *
Syntax design * * *
Abstraction * *
Expressivity * *
Type checking *
Exception handling *

UPRM ICOM 4029 14

(Adapted from: Prof. Necula UCB CS 164)

Why Study Languages and Compilers ?

* Increase capacity of expression
* Improve understanding of program behavior
* Increase ability to learn new languages

» Learn to build a large and reliable system
+ See many basic CS concepts at work

UPRM ICOM 4029 15
(Adapted from: Prof. Necula UCB CS 164)

Trends

- Language design
- Many new special-purpose languages
- Popular languages to stay

» Compilers
- More needed and more complex

- Driven by increasing gap between
* hew languages
* new architectures

- Venerable and healthy area

UPRM ICOM 4029
(Adapted from: Prof. Necula UCB CS 164)

16

How are Languages Implemented?

- Two major strategies:
- Interpreters (older, less studied)
- Compilers (newer, much more studied)

» Interpreters run programs “as is"
- Little or no preprocessing

- Compilers do extensive preprocessing

UPRM ICOM 4029 17
(Adapted from: Prof. Necula UCB CS 164)

Language Implementations

* Batch compilation systems dominate
- E.g., gcc

- Some languages are primarily interpreted
- E.g., Java bytecode

- Some environments (Lisp) provide both
- Interpreter for development
- Compiler for production

UPRM ICOM 4029
(Adapted from: Prof. Necula UCB CS 164)

18

The Structure of a Compiler

Lexical Analysis
Parsing

Semantic Analysis
Optimization
Code Generation

S N

The first 3, at least, can be understood by
analogy to how humans comprehend English.

UPRM ICOM 4029 19
(Adapted from: Prof. Necula UCB CS 164)

Lexical Analysis

- First step: recognize words.
- Smallest unit above letters

This is a sentence.

- Note the

- Capital "T" (start of sentence symbol)
- Blank " * (word separator)

“w n

- Period "." (end of sentence symbol)

UPRM ICOM 4029 20
(Adapted from: Prof. Necula UCB CS 164)

More Lexical Analysis

» Lexical analysis is not trivial. Consider:
ist his ase nte nce

» Plus, programming languages are typically more
cryptic than English:

*p->f ++ = -.12345e-5

UPRM ICOM 4029 21
(Adapted from: Prof. Necula UCB CS 164)

And More Lexical Analysis

+ Lexical analyzer divides program text into
"words" or "tokens"

if x==ythenz=1; else z=2;

- Units:
if, x,==,y,then, z,=,1,; else, z,=,2,;

UPRM ICOM 4029 22
(Adapted from: Prof. Necula UCB CS 164)

Parsing

» Once words are understood, the next step is
to understand sentence structure

- Parsing = Diagramming Sentences
- The diagram is a tree

UPRM ICOM 4029 23
(Adapted from: Prof. Necula UCB CS 164)

Diagramming a Sentence

This ine IS a longer sentence

|

article noun verb article adjective noun

AV T~

subject object

sentence

UPRM ICOM 4029 24
(Adapted from: Prof. Necula UCB CS 164)

Parsing Programs

Consider:

Parsing program expressions is the same

fx==ythenz=1;elsez=2;

Diagrammed:
X —— y
S

relation
|

predicate

yA]
\/

assign
|
then-stmt

Z 2
~_

assign
\
else-stmt

L ———

if-then-else
UPRM ICOM 4029
(Adapted from: Prof. Necula UCB CS 164)

25

Semantic Analysis

* Once sentence structure is understood, we
can try to understand "meaning”

- But meaning is too hard for compilers

+ Compilers perform limited analysis to catch
Inconsistencies

»+ Some do more analysis to improve the
performance of the program

UPRM ICOM 4029 26
(Adapted from: Prof. Necula UCB CS 164)

Semantic Analysis in English

+ Example:
Jack said Jerry left his assignment at home.
What does “his" refer to? Jack or Jerry?

» Even worse:
Jack said Jack left his assignment at home?
How many Jacks are there?
Which one left the assignment?

UPRM ICOM 4029 27
(Adapted from: Prof. Necula UCB CS 164)

Semantic Analysis in Programming

+ Programming {
languages define int Jack = 3;
strict rules to avoid {

such ambiquities
Hen ambiguiTie int Jack = 4;

b << K;
» This C++ code prints =Y Jac

"4": the inner)
definition is used }

UPRM ICOM 4029 28
(Adapted from: Prof. Necula UCB CS 164)

More Semantic Analysis

» Compilers perform many semantic checks
besides variable bindings

+ Example:
Jack left her homework at home.

A "type mismatch” between her and Jack; we
know they are different people

- Presumably Jack is male

UPRM ICOM 4029 29
(Adapted from: Prof. Necula UCB CS 164)

Examples of Semantic Checks in PLs

- Variables defined before used

» Variables defined once

+ Type compatibility

+ Correct arguments to functions

» Constants are not modified

» Inheritance hierarchy has no cycles

UPRM ICOM 4029
(Adapted from: Prof. Necula UCB CS 164)

30

Optimization

* No strong counterpart in English, but akin to
editing

* Automatically modify programs so that they
- Run faster
- Use less memory
- In general, conserve some resource

» The project has no optimization component

UPRM ICOM 4029 31
(Adapted from: Prof. Necula UCB CS 164)

Optimization Example

X=Y*0 isthesame as X=0

NO!

Valid for integers, but not for floating point
numbers

UPRM ICOM 4029 32
(Adapted from: Prof. Necula UCB CS 164)

Examples of common optimizations in PLs

* Dead code elimination
» Evaluating repeated expressions only once

* Replace expressions by simpler equivalent
expressions

+ Evaluate expressions at compile time
* Inline procedures
* Move constant expressions out of loops

UPRM ICOM 4029 33
(Adapted from: Prof. Necula UCB CS 164)

Code Generation

» Produces assembly code (usually)

* A translation into another language
- Analogous to human translation

UPRM ICOM 4029
(Adapted from: Prof. Necula UCB CS 164)

34

Intermediate Languages

* Many compilers perform translations between
successive intermediate forms

- All but first and last are intermediate languages
internal to the compiler

- Typically there is 1 IL

+ IL's generally ordered in descending level of
abstraction

- Highest is source
- Lowest is assembly

UPRM ICOM 4029 35
(Adapted from: Prof. Necula UCB CS 164)

Intermediate Languages (Cont.)

» Il's are useful because lower levels expose
features hidden by higher levels
- registers
- memory layout
- efc.

* But lower levels obscure high-level meaning

UPRM ICOM 4029 36
(Adapted from: Prof. Necula UCB CS 164)

Issues

+ Compiling is almost this simple, but there are
many pitfalls.

+ Example: How are erroneous programs
handled?

- Language desigh has big impact on compiler
- Determines what is easy and hard to compile
- Course theme: many trade-offs in language design

UPRM ICOM 4029 37
(Adapted from: Prof. Necula UCB CS 164)

Compilers Today

» The overall structure of almost every compiler
adheres to our outline

» The proportions have changed since FORTRAN

- Early: lexing, parsing most complex, expensive

- Today: optimization dominates all other phases,
lexing and parsing are cheap

UPRM ICOM 4029 38
(Adapted from: Prof. Necula UCB CS 164)

Trends in Compilation

+ Compilation for speed is less interesting. But:
- scientific programs
- advanced processors (Digital Signal Processors,
advanced speculative architectures)

* Ideas from compilation used for improving
code reliability:
- memory safety
- detecting concurrency errors (data races)

UPRM ICOM 4029 39
(Adapted from: Prof. Necula UCB CS 164)

