
ICOM 4029 Compiler Writing Handout 4

Fall 2004 page 1 of 6

Programming Assignment IV1
A Semantic Analyzer for COOL
PART A: Due Monday, October 25, 2007
PART B: Due Monday, November 8, 2007

1. Introduction
In this assignment you will implement the static semantics of Cool. You will use the abstract syntax trees
(AST) built by the parser to check that a program is in conformance with the Cool specification. Your
static semantic component should reject erroneous programs; for correct programs, it must gather certain
information for use by the code generator. The output of the semantic analyzer will be an attributed AST
for use by the code generator.

This assignment has much more room for design decisions than previous assignments. Your program is
correct if it checks programs against the specification. There is no “right" way to do the assignment, but
there are wrong ways. There are a number of standard practices which we think make life easier and we
will try to convey them to you. However, what you do is largely up to you. Whatever you decide to do, be
prepared to justify and explain your solution.

You will need to refer to the typing rules, identifier scoping rules, and other restrictions of Cool as
defined in the CoolAid manual. You will also need to add methods and data members to the AST class
definitions for this phase. The functions the tree package provides are documented online in:

http://amadeus.ece.uprm.edu/~rbadia/cooldoc/

There is a lot of information in this handout, and you need to know most of it to write a working semantic
analyzer. Please read the handout thoroughly.

2. Files and Directories
To get the project files, type:

gmake -f ~icom4029/cool/assignments/PA4J/Makefile source

(notice the \J" in the path name). This will create several symbolic links in the correct directory. You
should not edit the files pointed to by these links. In fact, if you make and modify private copies of these
files, you may find it impossible to complete the assignment. See the instructions in the README file.

This is a list of the files that you will need to modify:
• cool-tree.java (Java version)
This file contains the definitions for the AST nodes. You will need to add the code for your semantic
analysis phase in this file. The semantic analyzer is invoked by calling method semant() of class
program. Do not modify the existing declarations.

• ClassTable.java (Java version)
This class is a placeholder for some useful methods (including error reporting and initialization of basic
classes). You may wish to enhance it for use in your analyzer.

1 This programming assignment is essentially the same one used at UC Berkeley CS 164 in the Spring of 2003.
Used with permission.

ICOM 4029 Compiler Writing Handout 4

Fall 2004 page 2 of 6

• TreeConstants.java (Java version)
This file defines some useful symbol constants.

• good.cl bad.cl
These files test a few semantic features. You should add tests to ensure that good.cl exercises as many
legal semantic combinations as possible and that bad.cl exercises as many kinds of semantic errors as
possible. It is not possible to exercise all possible combinations in one file; you are only responsible for
achieving reasonable coverage. Explain your tests in these files and put any overall comments in the
README file.

• README
This file will contain the write-up for your assignment. For this assignment it is critical that you explain
design decisions, how your code is structured, and why you believe that the design is a good one (i.e.,
why it leads to a correct and robust program). It is part of the assignment to explain things in text as well
as to comment your code. Inadequate README files will be penalized more heavily in this assignment,
as the README is the major guideline we have to understanding your code.

As usual, there are other files used in the assignment that are symbolically linked to your directory or are
included from ~icom4029/cool/include/PA4J. You should not modify these files. Almost all of these files
have been described in previous assignments.

3. Testing the Semantic Analyzer
You will need a working scanner and parser to test your semantic analyzer. You may use either your own
scanner/parser or the coolc scanner/parser. By default, the coolc phases are used; to change that,
replace the lexer and/or parser executable (which are symbolic links in your project directory) with your
own scanner/parser. Even if you use your own scanner and/or parser, it is wise to test your semantic
analyzer with the coolc scanner and parser at least once, because we will grade your semantic analyzer
using coolc's scanner and parser.

You will run your semantic analyzer using mysemant, a shell script that “glues” together the analyzer
with the parser and the scanner. Note that mysemant takes a -s flag for debugging the analyzer; using
this flag merely causes semant_debug (a static field of class Flags) to be set. Adding the actual code
to produce useful debugging information is up to you. See the project README for details.

Once you are confident that your semantic analyzer is working, try running mycoolc to invoke your
analyzer together with other compiler phases. You should test this compiler on both good and bad inputs
to see if everything is working. Remember, bugs in the semantic analyzer may manifest themselves in the
code generated or only when the compiled program is executed under spim.

4. Tree Traversal
As a result of assignment 3, your parser builds abstract syntax trees. The method dump with types,
defined on most AST nodes, illustrates how to traverse the AST and gather information from it. This
algorithmic style - a recursive traversal of a complex tree structure - is very important, because it is a very
natural way to structure many computations on ASTs.

Your programming task for this assignment is to 1) traverse the tree, 2) manage various pieces of
information that you glean from the tree, and 3) use that information to enforce the semantics of Cool.

ICOM 4029 Compiler Writing Handout 4

Fall 2004 page 3 of 6

One traversal of the AST is called a “pass”. You will probably need to make at least two passes over the
AST to check everything.

You will most likely need to attach customized information to the AST nodes. To do so, you may
edit cool-tree.java directly.

5. Inheritance
Inheritance relationships specify a directed graph of class dependencies. A typical requirement of most
languages with inheritance is that the inheritance graph be acyclic. It is up to your semantic checker to
enforce this requirement. One fairly easy way to do this is to construct a representation of the type graph
and then check for cycles. A well known method for accomplishing this is to conduct a depth-first
traversal of the graph.

In addition, Cool has restrictions on inheriting from the basic classes (see the manual). It is also an error if
class A inherits from class B but class B is not defined.

The project skeleton includes appropriate definitions of all the basic classes. You will need to incorporate
these classes into the inheritance hierarchy.

We suggest that you divide your semantic analysis phase into two smaller components. First, check that
the inheritance graph is well-defined, meaning that all the restrictions on inheritance are satisfied. If the
inheritance graph is not well-defined, it is acceptable to abort compilation (after printing appropriate error
messages, of course!). Second, check all the other semantic conditions. It is much easier to implement this
second component if one knows the inheritance graph and that it is legal.

6. Naming and Scoping
A major portion of any semantic checker is the management of names. The specific problem is
determining which declaration is in effect for each use of an identifier, especially when names can be
reused. For example, if i is declared in two let expressions, one nested within the other, then wherever i
is referenced the semantics of the language specify which declaration is in effect. It is the job of the
semantic checker to keep track of which declaration a name refers to.

As discussed in class, a symbol table is a convenient data structure for managing names and scoping.
You may use our implementation of symbol tables for your project. Our implementation provides
methods for entering, exiting, and augmenting scopes as needed. You are also free to implement your
own symbol table, of course.

Besides the identifier self, which is implicitly bound in every class, there are four ways that an object
name can be introduced in Cool:

• attribute definitions
• formal parameters of methods
• let expressions
• branches of case statements

In addition to object names, there are also method names and class names. It is, of course, an error to use
any name that has no matching declaration.

ICOM 4029 Compiler Writing Handout 4

Fall 2004 page 4 of 6

Remember that neither, classes, methods, nor attributes need be declared before use. Think about how this
affects your analysis.

7. Type Checking
Type checking is another major function of the semantic analyzer. The semantic analyzer must check that
valid types are declared where required. For example, the return types of methods must be declared.
Using this information, the semantic analyzer must also verify that every expression has a valid type
according to the type rules. The type rules are discussed in detail in the CoolAid and the course lecture
notes.

One difficult issue is what to do if an expression doesn't have a valid type according to the rules. First, an
error message should be printed with the line number and a description of what went wrong. It is
relatively easy to give informative error messages in the semantic analysis phase, because it is generally
obvious what the error is. We expect you to give informative error messages. Second, the semantic
analyzer should attempt to recover and continue. A good semantic analyzer will avoid cascading errors
using any of several standard techniques. We do expect your semantic analyzer to recover, but we do not
expect it to avoid cascading errors. A simple recovery mechanism is to assign the type Object to any
expression that cannot otherwise be given a type (we used this method in coolc).

8. Code Generator Interface
For the semantic analyzer to work correctly with the rest of the coolc compiler, some care must be
taken to adhere to the interface with the code generator. We have deliberately adopted a very simple,
naive interface to avoid cramping your creative impulses in semantic analysis. However, there is one
thing you must do. For every expression node, its type field must be set to the Symbol naming the type
inferred by your type checker. This Symbol must be the result of the addString method of the
idtable. The special expression no_expr must be assigned the type No_type which is a predefined
symbol in the project skeleton.

9. Output and Grading
For incorrect programs, the output of semantic analysis is error messages. You are expected to recover
from all errors except for ill-formed class hierarchies. You are also expected to produce complete and
informative errors. Assuming the inheritance hierarchy is well-formed, the semantic checker should catch
and report all semantic errors in the program. When in doubt, use coolc as a guide in determining what
informative error messages should say. Your error messages need not be identical to those of coolc.

We have supplied you with a simple error reporting method ClassTable.semantError(). This
routine takes a filename and the AST node where the error occurred, and it returns the error stream after it
has printed an error header. The filename should be the file in which the error occurs. The parser ensures
that Class_ nodes store the file in which the class was defined (recall that class definitions cannot be
split across files). In an error message, the line number of the error message is obtained from the AST
node where the error is detected and the file name is obtained from the enclosing class.

For correct programs, the output is a type-annotated abstract syntax tree. You will be graded on whether
your semantic phase correctly annotates ASTs with types, on whether your semantic phase works
correctly with the coolc code generator, and on whether your semantic phase recovers from errors except
for ill-formed class hierarchies.

You are also expected to program in good, structured style and to comment your code. You should spend
some time thinking about the class definitions you will use.

ICOM 4029 Compiler Writing Handout 4

Fall 2004 page 5 of 6

Due to the size of this assignment and to facilitate its development, it will be divided into two parts:

PART A
i. Deliverables

On the first part your program is expected to do the following:
• Build a class inheritance graph or tree.
• Check that the graph is well-formed. (It is not cyclic).
• Check the following elements for type correctness and change their type accordingly:

o Class Feature ‘attr’
o Class Method ‘method’
o Formal Parameter ‘formal’
o Integer Constant ‘int_const’
o Boolean Constant ‘bool_const’
o String Constant ‘string_const’
o Assignment ‘assign’
o Addition ‘plus’
o Subtraction ‘sub’
o Multiplication ‘mul’
o Division ‘divide’
o Instantiation ‘new_’

• Perform error checking pertaining to the above expressions.

Ignore any other expressions that are not in this part (do not bother evaluating them) unless your
implementation requires it, in which case you may return the “no_type” Symbol. The test cases will
not include any expressions that are not of PART A. At this stage, your semantic analyzer may not
yet work with the reference code generator.

ii. Turning In PART A

You must perform the following instructions for turning it in:

1. Make sure your code is in cool-tree.java, ClassTable.java, and

TreeConstants.java and that it compiles and works.

2. Your test cases should be in good.cl and bad.cl.

3. Include any relevant comments in the README file and answer any questions that appear in it.

4. Make sure everything (cool-tree.java, ClassTable.java, TreeConstants.java,

good.cl, bad.cl, and README) is in a directory called PA4.

5. Create a tar-gzipped file PA4.tar.gz containing the PA4 directory:

tar –czf PA4.tar.gz PA4

6. Submit the file (before October 25, 2004 11:59pm):
~icom4029/submit/submit 4 PA4.tar.gz

You must use any of the group members’ class accounts when submitting the assignment. You can
submit multiple times; if you do so, any previous submissions will be overwritten (until after the
project’s deadline).

ICOM 4029 Compiler Writing Handout 4

Fall 2004 page 6 of 6

PART B
i. Deliverables

On the second part your program is expected to do the following:
• Check the following elements for type correctness and change their type accordingly:

o Case ‘typ_case’
o Static Dispatch ‘static_dispatch’
o Dispatch ‘dispatch’
o If-Then-Else-Fi ‘cond’
o While-Loop-Pool ‘loop’
o Block ‘block’
o Let ‘let’
o Negation ‘neg’
o Less than ‘lt’
o Equality ‘eq’
o Less than or equals ‘leq’
o Complement ‘comp’
o Void Test ‘isvoid’
o Object Variable ‘object’

(NOT the class type)
• Complete error checking.
• Correctly perform semantic analysis on any Cool program.
• Produce a type-annotated abstract syntax tree.
• Work with the other reference stages of the compiler.

ii. Turning In PART B

Follow the same steps as PART A above except for step 6:

6. Submit the file (before November 8, 2004 11:59pm):
~icom4029/submit/submit 5 PA4.tar.gz

10. Notes
At a high level, your semantic checker will have to perform the following major tasks:

1. Look at all classes and build an inheritance graph.
2. Check that the graph is well-formed.
3. For each class

(a) Traverse the AST, gathering all visible declarations in a symbol table.
(b) Check each expression for type correctness.

This list of tasks is not exhaustive; it is up to you to faithfully implement the specification in the manual.

