
Advanced Data Structures

Advanced Programming

ICOM 4015

Lecture 18

Reading: Java Concepts Chapter 21

Chapter Goals

• To learn about the set and map data types

• To understand the implementation of hash
tables

• To be able to program hash functions

• To learn about binary trees

• To be able to use tree sets and tree maps

Continued

Chapter Goals

• To become familiar with the heap data
structure

• To learn how to implement the priority queue
data type

• To understand how to use heaps for sorting

Sets

• Set: unordered collection of distinct
elements

• Elements can be added, located, and
removed

• Sets don't have duplicates

A Set of Printers

Figure 1:
A Set of Printers

Fundamental Operations on a Set

• Adding an element
Adding an element has no effect if the
element is already in the set

• Removing an element
Attempting to remove an element that isn't in
the set is silently ignored

• Containment testing (does the set contain a
given object?)

• Listing all elements (in arbitrary order)

Sets

• We could use a linked list to implement a set
Adding, removing, and containment testing
would be relatively slow

• There are data structures that can handle
these operations much more quickly

Hash tables
Trees

Continued

Sets

• Standard Java library provides set
implementations based on both data
structures

HashSet
TreeSet

• Both of these data structures implement the
Set interface

Set Classes and Interface in the
Standard Library

Figure 2:
Set Classes and Interfaces in the Standard Library

Iterator

• Use an iterator to visit all elements in a set

• A set iterator does not visit the elements in
the order in which they were inserted

• An element can not be added to a set at an
iterator position

• A set element can be removed at an iterator
position

Code for Creating and Using a
Hash Set

•

•

•

•

//Creating a hash set
Set<String> names = new HashSet<String>();

//Adding an element names.add("Romeo");

//Removing an element names.remove("Juliet");

//Is element in set
if (names.contains("Juliet") { . . .}

Listing All Elements with an Iterator
Iterator<String> iter = names.iterator();
while (iter.hasNext())
{

String name = iter.next();
Do something with name

}

// Or, using the "for each" loop for (String name : names)
{

Do something with name
}

File SetTester.java
01: import java.util.HashSet;
02: import java.util.Iterator;
03: import java.util.Scanner;
04: import java.util.Set;
05:
06:
07: /**
08: This program demonstrates a set of strings. The user
09: can add and remove strings.
10: */
11: public class SetTester
12: {
13: public static void main(String[] args)
14: {
15: Set<String> names = new HashSet<String>();
16: Scanner in = new Scanner(System.in);
17: Continued

File SetTester.java
18: boolean done = false;
19: while (!done)
20: {
21: System.out.print("Add name, Q when done: ");
22: String input = in.next();
23: if (input.equalsIgnoreCase("Q"))
24: done = true;
25: else
26: {
27: names.add(input);
28: print(names);
29: }
30: }
31:
32: done = false;
33: while (!done)
34: { Continued

File SetTester.java
35: System.out.println("Remove name, Q when done");
36: String input = in.next();
37: if (input.equalsIgnoreCase("Q"))
38: done = true;
39: else
40: {
41: names.remove(input);
42: print(names);
43: }
44: }
45: }
46:
47: /**
48: Prints the contents of a set of strings.
49: @param s a set of strings
50: */
51: private static void print(Set<String> s)
52: { Continued

File SetTester.java
53: System.out.print("{ ");
54: for (String element : s)
55: {
56: System.out.print(element);
57: System.out.print(" ");
58: }
59: System.out.println("}");
60: }
61: }
62:
63:

Continued

File SetTester.java

• Output
Add name, Q when done: Dick
{ Dick }
Add name, Q when done: Tom
{ Tom Dick }
Add name, Q when done: Harry
{ Harry Tom Dick }
Add name, Q when done: Tom
{ Harry Tom Dick }
Add name, Q when done: Q
Remove name, Q when done: Tom
{ Harry Dick }
Remove name, Q when done: Jerry
{ Harry Dick }
Remove name, Q when done: Q

Self Test

1. Arrays and lists remember the order in
which you added elements; sets do not.
Why would you want to use a set instead of
an array or list?

2. Why are set iterators different from list
iterators?

Answers

1. Efficient set implementations can quickly
test whether a given element is a member of
the set.

2. Sets do not have an ordering, so it doesn't
make sense to add an element at a
particular iterator position, or to traverse a
set backwards.

Maps
• A map keeps associations between key and

value objects

• Mathematically speaking, a map is a function
from one set, the key set, to another set, the
value set

• Every key in a map has a unique value

• A value may be associated with several keys

• Classes that implement the Map interface
HashMap
TreeMap

An Example of a Map

Figure 3:
An Example of a Map

Map Classes and Interfaces

Figure 4:
Map Classes and Interfaces in the Standard Library

Code for Creating and Using a
HashMap

• //Changing an existing association
favoriteColor.put("Juliet",Color.RED);

• //Removing a key and its associated value
favoriteColors.remove("Juliet");

Code for Creating and Using a
HashMap

•

•

•

//Creating a HashMap
Map<String, Color> favoriteColors

= new HashMap<String, Color>();

//Adding an association
favoriteColors.put("Juliet", Color.PINK);

//Changing an existing association
favoriteColor.put("Juliet",Color.RED);

Continued

Code for Creating and Using a
HashMap

•

•

//Getting the value associated with a key
Color julietsFavoriteColor

= favoriteColors.get("Juliet");

//Removing a key and its associated value
favoriteColors.remove("Juliet");

Printing Key/Value Pairs

Set<String> keySet = m.keySet();
for (String key : keySet)
{

Color value = m.get(key);
System.out.println(key + "->" + value);

}

File MapTester.java

01: import java.awt.Color;
02: import java.util.HashMap;
03: import java.util.Iterator;
04: import java.util.Map;
05: import java.util.Set;
06:
07: /**
08: This program tests a map that maps names to colors.
09: */
10: public class MapTester
11: {
12: public static void main(String[] args)
13: {
14: Map<String, Color> favoriteColors
15: = new HashMap<String, Color>();
16: favoriteColors.put("Juliet", Color.pink);
17: favoriteColors.put("Romeo", Color.green);

Continued

File MapTester.java
18: favoriteColors.put("Adam", Color.blue);
19: favoriteColors.put("Eve", Color.pink);
20:
21: Set<String> keySet = favoriteColors.keySet();
22: for (String key : keySet)
23: {
24: Color value = favoriteColors.get(key);
25: System.out.println(key + "->" + value);
26: }
27: }
28: }

Continued

File MapTester.java

• Output

Romeo->java.awt.Color[r=0,g=255,b=0]
Eve->java.awt.Color[r=255,g=175,b=175]
Adam->java.awt.Color[r=0,g=0,b=255]
Juliet->java.awt.Color[r=255,g=175,b=175]

Self Check

1. What is the difference between a set and a
map?

2. Why is the collection of the keys of a map a
set?

Answers

1. A set stores elements. A map stores
associations between keys and values.

2. The ordering does not matter, and you
cannot have duplicates.

Hash Tables

• Hashing can be used to find elements in a
data structure quickly without making a
linear search

• A hash table can be used to implement sets
and maps

• A hash function computes an integer value
(called the hash code) from an object

Continued

Hash Tables

• A good hash function minimizes collisions–
identical hash codes for different objects

• To compute the hash code of object x:
int h = x.hashCode();

Sample Strings and Their Hash
Codes

2079199209"Katherine"
83491"Sue"

−2065036585"Juliet"
74676"Joe"
74478"Jim"

69496448"Harry"
70068"Eve"

2035631"Adam"
Hash CodeString

Simplistic Implementation of a
Hash Table

• To implement
Generate hash codes for objects
Make an array
Insert each object at the location of its hash
code

• To test if an object is contained in the set
Compute its hash code
Check if the array position with that hash code
is already occupied

Simplistic Implementation of a
Hash Table

Figure 5:
A Simplistic Implementation
of a Hash Table

Problems with Simplistic
Implementation

• It is not possible to allocate an array that is
large enough to hold all possible integer
index positions

• It is possible for two different objects to have
the same hash code

Solutions

• Pick a reasonable array size and reduce the
hash codes to fall inside the array

• When elements have the same hash code:
Use a node sequence to store multiple objects
in the same array position
These node sequences are called buckets

int h = x.hashCode();
if (h < 0) h = -h;
h = h % size;

Hash Table with Buckets to Store
Elements with Same Hash Code

Figure 6:
A Hash Table with Buckets to Store Elements with Same Hash Code

Algorithm for Finding an Object
x in a Hash Table

• Get the index h into the hash table
Compute the hash code
Reduce it modulo the table size

• Iterate through the elements of the bucket at
position h

For each element of the bucket, check
whether it is equal to x

• If a match is found among the elements of
that bucket, then x is in the set

Otherwise, x is not in the set

Hash Tables

• A hash table can be implemented as an array
of buckets

• Buckets are sequences of nodes that hold
elements with the same hash code

• If there are few collisions, then adding,
locating, and removing hash table elements
takes constant time

Big-Oh notation: O(1)

Continued

Hash Tables

• For this algorithm to be effective, the bucket
sizes must be small

• The table size should be a prime number
larger than the expected number of elements

An excess capacity of 30% is typically
recommended

Hash Tables

• Adding an element: simple extension of the
algorithm for finding an object

Compute the hash code to locate the bucket
in which the element should be inserted
Try finding the object in that bucket
If it is already present, do nothing; otherwise,
insert it

Continued

Hash Tables

• Removing an element is equally simple
Compute the hash code to locate the bucket
in which the element should be inserted
Try finding the object in that bucket
If it is present, remove it; otherwise, do
nothing

• If there are few collisions, adding or
removing takes O(1) time

File HashSet.java
001: import java.util.AbstractSet;
002: import java.util.Iterator;
003: import java.util.NoSuchElementException;
004:
005: /**
006: A hash set stores an unordered collection of objects, using
007: a hash table.
008: */
009: public class HashSet extends AbstractSet
010: {
011: /**
012: Constructs a hash table.
013: @param bucketsLength the length of the buckets array
014: */
015: public HashSet(int bucketsLength)
016: { Continued

File HashSet.java
017: buckets = new Node[bucketsLength];
018: size = 0;
019: }
020:
021: /**
022: Tests for set membership.
023: @param x an object
024: @return true if x is an element of this set
025: */
026: public boolean contains(Object x)
027: {
028: int h = x.hashCode();
029: if (h < 0) h = -h;
030: h = h % buckets.length;
031:
032: Node current = buckets[h];
033: while (current != null)
034: { Continued

File HashSet.java
035: if (current.data.equals(x)) return true;
036: current = current.next;
037: }
038: return false;
039: }
040:
041: /**
042: Adds an element to this set.
043: @param x an object
044: @return true if x is a new object, false if x was
045: already in the set
046: */
047: public boolean add(Object x)
048: {
049: int h = x.hashCode();
050: if (h < 0) h = -h;
051: h = h % buckets.length;
052: Continued

File HashSet.java
053: Node current = buckets[h];
054: while (current != null)
055: {
056: if (current.data.equals(x))
057: return false; // Already in the set
058: current = current.next;
059: }
060: Node newNode = new Node();
061: newNode.data = x;
062: newNode.next = buckets[h];
063: buckets[h] = newNode;
064: size++;
065: return true;
066: }
067: Continued

File HashSet.java
068: /**
069: Removes an object from this set.
070: @param x an object
071: @return true if x was removed from this set, false
072: if x was not an element of this set
073: */
074: public boolean remove(Object x)
075: {
076: int h = x.hashCode();
077: if (h < 0) h = -h;
078: h = h % buckets.length;
079:
080: Node current = buckets[h];
081: Node previous = null;
082: while (current != null)
083: {
084: if (current.data.equals(x))
085: { Continued

File HashSet.java
086: if (previous == null) buckets[h] = current.next;
087: else previous.next = current.next;
088: size--;
089: return true;
090: }
091: previous = current;
092: current = current.next;
093: }
094: return false;
095: }
096:
097: /**
098: Returns an iterator that traverses the elements

of this set.
099: @param a hash set iterator
100: */
101: public Iterator iterator()
102: {
103: return new HashSetIterator();
104: } Continued

File HashSet.java
105:
106: /**
107: Gets the number of elements in this set.
108: @return the number of elements
109: */
110: public int size()
111: {
112: return size;
113: }
114:
115: private Node[] buckets;
116: private int size;
117:
118: private class Node
119: {
120: public Object data;
121: public Node next;
122: }
123: Continued

File HashSet.java
124: private class HashSetIterator implements Iterator
125: {
126: /**
127: Constructs a hash set iterator that points to the
128: first element of the hash set.
129: */
130: public HashSetIterator()
131: {
132: current = null;
133: bucket = -1;
134: previous = null;
135: previousBucket = -1;
136: }
137:
138: public boolean hasNext()
139: {
140: if (current != null && current.next != null)
141: return true; Continued

File HashSet.java
142: for (int b = bucket + 1; b < buckets.length; b++)
143: if (buckets[b] != null) return true;
144: return false;
145: }
146:
147: public Object next()
148: {
149: previous = current;
150: previousBucket = bucket;
151: if (current == null || current.next == null)
152: {
153: // Move to next bucket
154: bucket++;
155:
156: while (bucket < buckets.length
157: && buckets[bucket] == null)
158: bucket++; Continued

File HashSet.java
159: if (bucket < buckets.length)
160: current = buckets[bucket];
161: else
162: throw new NoSuchElementException();
163: }
164: else // Move to next element in bucket
165: current = current.next;
166: return current.data;
167: }
168:
169: public void remove()
170: {
171: if (previous != null && previous.next == current)
172: previous.next = current.next;
173: else if (previousBucket < bucket)
174: buckets[bucket] = current.next;
175: else
176: throw new IllegalStateException(); Continued

File HashSet.java
177: current = previous;
178: bucket = previousBucket;
179: }
180:
181: private int bucket;
182: private Node current;
183: private int previousBucket;
184: private Node previous;
185: }
186: }

File SetTester.java
01: import java.util.Iterator;
02: import java.util.Set;
03:
04: /**
05: This program tests the hash set class.
06: */
07: public class SetTester
08: {
09: public static void main(String[] args)
10: {
11: HashSet names = new HashSet(101); // 101 is a prime
12:
13: names.add("Sue");
14: names.add("Harry");
15: names.add("Nina");
16: names.add("Susannah");
17: names.add("Larry");
18: names.add("Eve");

Continued

File SetTester.java
19: names.add("Sarah");
20: names.add("Adam");
21: names.add("Tony");
22: names.add("Katherine");
23: names.add("Juliet");
24: names.add("Romeo");
25: names.remove("Romeo");
26: names.remove("George");
27:
28: Iterator iter = names.iterator();
29: while (iter.hasNext())
30: System.out.println(iter.next());
31: }
32: } Continued

File SetTester.java

• Output
Harry
Sue
Nina
Susannah
Larry
Eve
Sarah
Adam
Juliet
Katherine
Tony

Self Check

1. If a hash function returns 0 for all values,
will the HashSet work correctly?

2. What does the hasNext method of the
HashSetIterator do when it has reached
the end of a bucket?

Answers

1. Yes, the hash set will work correctly. All
elements will be inserted into a single
bucket.

2. It locates the next bucket in the bucket
array and points to its first element.

Computing Hash Codes

• A hash function computes an integer hash
code from an object

• Choose a hash function so that different
objects are likely to have different hash
codes.

Continued

Computing Hash Codes

• Bad choice for hash function for a string
Adding the unicode values of the characters in
the string

Because permutations ("eat" and "tea") would
have the same hash code

int h = 0;
for (int i = 0; i < s.length(); i++)

h = h + s.charAt(i);

Computing Hash Codes
• Hash function for a string s from standard library

• For example, the hash code of "eat" is

• The hash code of "tea" is quite different, namely

final int HASH_MULTIPLIER = 31;
int h = 0;
for (int i = 0; i < s.length(); i++)

h = HASH_MULTIPLIER * h + s.charAt(i)

31 * (31 * 'e' + 'a') + 't' = 100184

31 * (31 * 't' + 'e') + 'a' = 114704

A hashCode Method for the Coin
Class

• There are two instance fields: String coin
name and double coin value

• Use String's hashCode method to get a
hash code for the name

• To compute a hash code for a floating-point
number:

Wrap the number into a Double object
Then use Double's hashCode method

• Combine the two hash codes using a prime
number as the HASH_MULTIPLIER

A hashCode Method for the Coin
Class

class Coin
{

public int hashCode()
{

int h1 = name.hashCode();
int h2 = new Double(value).hashCode();
final int HASH_MULTIPLIER = 29;
int h = HASH_MULTIPLIER * h1 + h2: return h

}
. . .

}

Creating Hash Codes for your
Classes

• Use a prime number as the HASH_MULTIPLIER

• Compute the hash codes of each instance field

• For an integer instance field just use the field
value

• Combine the hash codes

int h = HASH_MULTIPLIER * h1 +h2;
h = HASH_MULTIPLIER * h + h3;
h = HASH_MULTIPLIER *h + h4;
. . .
return h;

Creating Hash Codes for your
Classes

• Your hashCode method must be compatible
with the equals method

if x.equals(y) then x.hashCode() ==
y.hashCode()

Continued

Creating Hash Codes for your
Classes

• You get into trouble if your class defines an
equals method but not a hashCode method

If we forget to define hashCode method for
Coin it inherits the method from Object
superclass
That method computes a hash code from the
memory location of the object

Creating Hash Codes for your
Classes

Effect: any two objects are very likely to have
a different hash code

• In general, define either both hashCode and
equals methods or neither

Coin coin1 = new Coin(0.25, "quarter");
Coin coin2 = new Coin(0.25, "quarter");

Hash Maps

• In a hash map, only the keys are hashed

• The keys need compatible hashCode and
equals method

File Coin.java
01: /**
02: A coin with a monetary value.
03: */
04: public class Coin
05: {
06: /**
07: Constructs a coin.
08: @param aValue the monetary value of the coin.
09: @param aName the name of the coin
10: */
11: public Coin(double aValue, String aName)
12: {
13: value = aValue;
14: name = aName;
15: }
16: Continued

File Coin.java
17: /**
18: Gets the coin value.
19: @return the value
20: */
21: public double getValue()
22: {
23: return value;
24: }
25:
26: /**
27: Gets the coin name.
28: @return the name
29: */
30: public String getName()
31: {
32: return name;
33: }
34: Continued

File Coin.java
35: public boolean equals(Object otherObject)
36: {
37: if (otherObject == null) return false;
38: if (getClass() != otherObject.getClass()) return false;
39: Coin other = (Coin) otherObject;
40: return value == other.value && name.equals(other.name);
41: }
42:
43: public int hashCode()
44: {
45: int h1 = name.hashCode();
46: int h2 = new Double(value).hashCode();
47: final int HASH_MULTIPLIER = 29;
48: int h = HASH_MULTIPLIER * h1 + h2;
49: return h;
50: }
51: Continued

File Coin.java
52: public String toString()
53: {
54: return "Coin[value=" + value + ",name=" + name + "]";
55: }
56:
57: private double value;
58: private String name;
59: }

File HashCodeTester.java
01: import java.util.HashSet;
02: import java.util.Iterator;
03: import java.util.Set;
04:
05: /**
06: A program to test hash codes of coins.
07: */
08: public class HashCodeTester
09: {
10: public static void main(String[] args)
11: {
12: Coin coin1 = new Coin(0.25, "quarter");
13: Coin coin2 = new Coin(0.25, "quarter");
14: Coin coin3 = new Coin(0.05, "nickel");
15: Continued

File HashCodeTester.java
16: System.out.println("hash code of coin1="
17: + coin1.hashCode());
18: System.out.println("hash code of coin2="
19: + coin2.hashCode());
20: System.out.println("hash code of coin3="
21: + coin3.hashCode());
22:
23: Set<Coin> coins = new HashSet<Coin>();
24: coins.add(coin1);
25: coins.add(coin2);
26: coins.add(coin3);
27:
28: for (Coin c : coins)
29: System.out.println(c);
30: }
31: } Continued

File HashCodeTester.java

• Output
hash code of coin1=-1513525892
hash code of coin2=-1513525892
hash code of coin3=-1768365211
Coin[value=0.25,name=quarter]
Coin[value=0.05,name=nickel]

Self Check

1. What is the hash code of the string "to"?

2. What is the hash code of new Integer(13)?

Answers

1. 31 × 116 + 111 = 3707

2. 13.

Binary Search Trees

• Binary search trees allow for fast insertion
and removal of elements

• They are specially designed for fast
searching

• A binary tree consists of two nodes, each of
which has two child nodes

Continued

Binary Search Trees

• All nodes in a binary search tree fulfill the
property that:

Descendants to the left have smaller data
values than the node data value
Descendants to the right have larger data
values than the node data value

A Binary Search Tree

Figure 7:
A Binary Search Tree

A Binary Tree That Is Not a
Binary Search Tree

Figure 8:
A Binary Tree That Is Not a Binary Search Tree

Implementing a Binary Search Tree

• Implement a class for the tree containing a
reference to the root node

• Implement a class for the nodes
A node contains two references (to left and
right child nodes)
A node contains a data field
The data field has type Comparable, so that
you can compare the values in order to place
them in the correct position in the binary
search tree

Implementing a Binary Search Tree
public class BinarySearchTree
{

public BinarySearchTree() {. . .}
public void add(Comparable obj) {. . .}
. . .
private Node root;
private class Node
{

public void addNode(Node newNode) { . . . }
. . .
public Comparable data;
public Node left;
public Node right;

}
}

Insertion Algorithm

• If you encounter a non-null node reference,
look at its data value

If the data value of that node is larger than
the one you want to insert,
continue the process with the left subtree
If the existing data value is smaller,
continue the process with the right subtree

• If you encounter a null node pointer, replace
it with the new node

Example

BinarySearchTree tree = new BinarySearchTree();

tree.add("Juliet");

tree.add("Tom");

tree.add("Dick");

tree.add("Harry");

Example

Figure 9:
Binary Search Trees After
Four Insertions

Example Continued

Figure 10:
Binary Search Trees After Five Insertions

Tree: Add Romeo

Insertion Algorithm:
BinarySearchTree Class

public class BinarySearchTree
{

. . .
public void add(Comparable obj)
{

Node newNode = new Node();
newNode.data = obj;
newNode.left = null;
newNode.right = null;
if (root == null) root = newNode;
else root.addNode(newNode);

}
. . .

}

Insertion Algorithm: Node Class
private class Node
{

. . .
public void addNode(Node newNode)
{

int comp = newNode.data.compareTo(data);
if (comp < 0)
{

if (left == null) left = newNode;
else left.addNode(newNode);

}
else if (comp > 0)
{

if (right == null) right = newNode;
else right.addNode(newNode);

}
}
. . .

}

Binary Search Trees

• When removing a node with only one child,
the child replaces the node to be removed

• When removing a node with two children,
replace it with the smallest node of the right
subtree

Removing a Node with One Child

Figure 11:
Removing a Node with One Child

Removing a Node with Two Children

Figure 12:
Removing a Node
with Two Children

Binary Search Trees

• Balanced tree: each node has approximately
as many descendants on the left as on the
right

• If a binary search tree is balanced, then
adding an element takes O(log(n)) time

• If the tree is unbalanced, insertion can be
slow

Perhaps as slow as insertion into a linked list

An Unbalanced Binary Search Tree

Figure 13:
An Unbalanced Binary Search Tree

File BinarySearchTree.java
001: /**
002: This class implements a binary search tree whose
003: nodes hold objects that implement the Comparable
004: interface.
005: */
006: public class BinarySearchTree
007: {
008: /**
009: Constructs an empty tree.
010: */
011: public BinarySearchTree()
012: {
013: root = null;
014: }
015: Continued

File BinarySearchTree.java
016: /**
017: Inserts a new node into the tree.
018: @param obj the object to insert
019: */
020: public void add(Comparable obj)
021: {
022: Node newNode = new Node();
023: newNode.data = obj;
024: newNode.left = null;
025: newNode.right = null;
026: if (root == null) root = newNode;
027: else root.addNode(newNode);
028: }
029: Continued

File BinarySearchTree.java
030: /**
031: Tries to find an object in the tree.
032: @param obj the object to find
033: @return true if the object is contained in the tree
034: */
035: public boolean find(Comparable obj)
036: {
037: Node current = root;
038: while (current != null)
039: {
040: int d = current.data.compareTo(obj);
041: if (d == 0) return true;
042: else if (d > 0) current = current.left;
043: else current = current.right;
044: }
045: return false;
046: }
047: Continued

File BinarySearchTree.java
048: /**
049: Tries to remove an object from the tree. Does nothing
050: if the object is not contained in the tree.
051: @param obj the object to remove
052: */
053: public void remove(Comparable obj)
054: {
055: // Find node to be removed
056:
057: Node toBeRemoved = root;
058: Node parent = null;
059: boolean found = false;
060: while (!found && toBeRemoved != null)
061: {
062: int d = toBeRemoved.data.compareTo(obj);
063: if (d == 0) found = true;
064: else
065: { Continued

File BinarySearchTree.java
066: parent = toBeRemoved;
067: if (d > 0) toBeRemoved = toBeRemoved.left;
068: else toBeRemoved = toBeRemoved.right;
069: }
070: }
071:
072: if (!found) return;
073:
074: // toBeRemoved contains obj
075:
076: // If one of the children is empty, use the other
077:
078: if (toBeRemoved.left == null

|| toBeRemoved.right == null)
079: {
080: Node newChild;
081: if (toBeRemoved.left == null)
082: newChild = toBeRemoved.right; Continued

File BinarySearchTree.java
083: else
084: newChild = toBeRemoved.left;
085:
086: if (parent == null) // Found in root
087: root = newChild;
088: else if (parent.left == toBeRemoved)
089: parent.left = newChild;
090: else
091: parent.right = newChild;
092: return;
093: }
094:
095: // Neither subtree is empty
096:
097: // Find smallest element of the right subtree
098: Continued

File BinarySearchTree.java
099: Node smallestParent = toBeRemoved;
100: Node smallest = toBeRemoved.right;
101: while (smallest.left != null)
102: {
103: smallestParent = smallest;
104: smallest = smallest.left;
105: }
106:
107: // smallest contains smallest child in right subtree
108:
109: // Move contents, unlink child
110:
111: toBeRemoved.data = smallest.data;
112: smallestParent.left = smallest.right;
113: }
114: Continued

File BinarySearchTree.java
115: /**
116: Prints the contents of the tree in sorted order.
117: */
118: public void print()
119: {
120: if (root != null)
121: root.printNodes();
122: }
123:
124: private Node root;
125:
126: /**
127: A node of a tree stores a data item and references
128: of the child nodes to the left and to the right.
129: */
130: private class Node
131: { Continued

File BinarySearchTree.java
132: /**
133: Inserts a new node as a descendant of this node.
134: @param newNode the node to insert
135: */
136: public void addNode(Node newNode)
137: {
138: if (newNode.data.compareTo(data) < 0)
139: {
140: if (left == null) left = newNode;
141: else left.addNode(newNode);
142: }
143: else
144: {
145: if (right == null) right = newNode;
146: else right.addNode(newNode);
147: }
148: }
149: Continued

File BinarySearchTree.java
150: /**
151: Prints this node and all of its descendants
152: in sorted order.
153: */
154: public void printNodes()
155: {
156: if (left != null)
157: left.printNodes();
158: System.out.println(data);
159: if (right != null)
160: right.printNodes();
161: }
162:
163: public Comparable data;
164: public Node left;
165: public Node right;
166: }
167: } Continued

File BinarySearchTree.java
168:
169:
170:

Self Check

1. What is the difference between a tree, a
binary tree, and a balanced binary tree?

2. Give an example of a string that, when
inserted into the tree of Figure 10,
becomes a right child of Romeo.

Answers

1. In a tree, each node can have any number
of children. In a binary tree, a node has at
most two children. In a balanced binary
tree, all nodes have approximately as many
descendants to the left as to the right.

2. For example, Sarah. Any string between
Romeo and Tom will do.

Tree Traversal

• Print the tree elements in sorted order:
Print the left subtree
Print the data
Print the right subtree

Continued

Example

• Let's try this out with the tree in Figure 10.
The algorithm tells us to
1. Print the left subtree of Juliet; that is, Dick

and descendants
2. Print Juliet
3. Print the right subtree of Juliet; that is,

Tom and descendants

Continued

Example

• How do you print the subtree starting at
Dick?
1. Print the left subtree of Dick. There is

nothing to print
2. Print Dick
3. Print the right subtree of Dick, that is,

Harry

Example

• Algorithm goes on as above

• Output:

• The tree is printed in sorted order

Dick
Harry
Juliet
Romeo
Tom

BinarySearchTree Class print
Method

public class BinarySearchTree
{

. . .
public void print()
{

if (root != null)
root.printNodes();

}
. . .

}

Node Class printNodes Method

private class Node
{

. . .
public void printNodes()
{

if (left != null)
left.printNodes();

System.out.println(data);
if (right != null)

right.printNodes();
}
. . .

}

Tree Traversal

• Tree traversal schemes include
Preorder traversal
Inorder traversal
Postorder traversal

Preorder Traversal

• Visit the root

• Visit the left subtree

• Visit the right subtree

Inorder Traversal

• Visit the left subtree

• Visit the root

• Visit the right subtree

Postorder Traversal

• Visit the left subtree

• Visit the right subtree

• Visit the root

Tree Traversal
• Postorder traversal of an expression tree

yields the instructions for evaluating the
expression on a stack-based calculator

Figure 14:
Expression Trees

Continued

Tree Traversal

• The first tree ((3 + 4) * 5) yields
3 4 + 5 *

• Whereas the second tree (3 + 4 * 5)
yields
3 4 5 * +

A Stack-Based Calculator

• A number means:
Push the number on the stack

• An operator means:
Pop the top two numbers off the stack
Apply the operator to these two numbers
Push the result back on the stack

A Stack-Based Calculator

• For evaluating arithmetic expressions
1. Turn the expression into a tree
2. Carry out a postorder traversal of the

expression tree
3. Apply the operations in the given order

• The result is the value of the expression

A Stack-Based Calculator

Figure 15:
A Stack-Based Calculator

Self Check

1. What are the inorder traversals of the two
trees in Figure 14?

2. Are the trees in Figure 14 binary search
trees?

Answers

1. For both trees, the inorder traversal is 3 +
4 * 5.

2. No–for example, consider the children of +.
Even without looking up the Unicode
codes for 3, 4, and +, it is obvious that +
isn't between 3 and 4.

Reverse Polish Notation

Using Tree Sets and Tree Maps

• HashSet and TreeSet both implement the
Set interface

• With a good hash function, hashing is
generally faster than tree-based algorithms

• TreeSet's balanced tree guarantees
reasonable performance

• TreeSet's iterator visits the elements in
sorted order rather than the HashSet's
random order

To Use a TreeSet

• Either your objects must implement
Comparable interface

• Or you must provide a Comparator object

To Use a TreeMap

• Either the keys must implement the
Comparable interface

• Or you must provide a Comparator object
for the keys

• There is no requirement for the values

File TreeSetTester.java
01: import java.util.Comparator;
02: import java.util.Iterator;
03: import java.util.Set;
04: import java.util.TreeSet;
05:
06: /**
07: A program to test hash codes of coins.
08: */
09: public class TreeSetTester
10: {
11: public static void main(String[] args)
12: {
13: Coin coin1 = new Coin(0.25, "quarter");
14: Coin coin2 = new Coin(0.25, "quarter");
15: Coin coin3 = new Coin(0.01, "penny");
16: Coin coin4 = new Coin(0.05, "nickel");
17: Continued

File TreeSetTester.java
18: class CoinComparator implements Comparator<Coin>
19: {
20: public int compare(Coin first, Coin second)
21: {
22: if (first.getValue()

< second.getValue()) return -1;
23: if (first.getValue()

== second.getValue()) return 0;
24: return 1;
25: }
26: }
27:
28: Comparator<Coin> comp = new CoinComparator();
29: Set<Coin> coins = new TreeSet<Coin>(comp);
30: coins.add(coin1);
31: coins.add(coin2);
32: coins.add(coin3);
33: coins.add(coin4); Continued

File TreeSetTester.java
34:
35: for (Coin c : coins)
36: System.out.println(c);
37: }
38: }

File TreeSetTester.java

• Output:

Coin[value=0.01,name=penny]
Coin[value=0.05,name=nickel]
Coin[value=0.25,name=quarter]

Self Check

1. When would you choose a tree set over a
hash set?

2. Suppose we define a coin comparator
whose compare method always returns 0.
Would the TreeSet function correctly?

Answers

1. When it is desirable to visit the set
elements in sorted order.

2. No–it would never be able to tell two coins
apart. Thus, it would think that all coins are
duplicates of the first.

Priority Queues

• A priority queue collects elements, each of
which has a priority

• Example: collection of work requests, some
of which may be more urgent than others

• When removing an element, element with
highest priority is retrieved

Customary to give low values to high
priorities, with priority 1 denoting the highest
priority

Continued

Priority Queues

• Standard Java library supplies a
PriorityQueue class

• A data structure called heap is very suitable
for implementing priority queues

Example

• Consider this sample code:

• When calling q.remove() for the first time,
the work order with priority 1 is removed

• Next call to q.remove() removes the order
with priority 2

PriorityQueue<WorkOrder> q = new PriorityQueue<WorkOrder>;
q.add(new WorkOrder(3, "Shampoo carpets"));
q.add(new WorkOrder(1, "Fix overflowing sink"));
q.add(new WorkOrder(2, "Order cleaning supplies"));

Heaps

• A heap (or, a min-heap) is a binary tree with
two special properties
1. It is almost complete

• All nodes are filled in, except the last level may
have some nodes missing toward the right

2. The tree fulfills the heap property
• All nodes store values that are at most as large

as the values stored in their descendants

• Heap property ensures that the smallest
element is stored in the root

An Almost Complete Tree

Figure 16:
An Almost Complete Tree

A Heap

Figure 17:
A Heap

Differences of a Heap with a Binary
Search Tree

1. The shape of a heap is very regular
Binary search trees can have arbitrary
shapes

2. In a heap, the left and right subtrees both
store elements that are larger than the root
element

In a binary search tree, smaller elements are
stored in the left subtree and larger
elements are stored in the right subtree

Inserting a New Element in a Heap

1. Add a vacant slot to the end of the tree

Figure 18:
Inserting a New Element in a Heap

Inserting a New Element in a Heap

1. Demote the parent of the empty slot if it is
larger than the element to be inserted

Move the parent value into the vacant slot,
and move the vacant slot up
Repeat this demotion as long as the parent
of the vacant slot is larger than the element
to be inserted

Continued

Inserting a New Element in a Heap

Figure 18 (continued):
Inserting a New Element in a Heap

Inserting a New Element in a Heap

1. Demote the parent of the empty slot if it is
larger than the element to be inserted

Move the parent value into the vacant slot,
and move the vacant slot up
Repeat this demotion as long as the parent
of the vacant slot is larger than the element
to be inserted

Continued

Inserting a New Element in a Heap

Figure 18 (continued):
Inserting a New Element in a Heap

Inserting a New Element in a Heap

1. At this point, either the vacant slot is at the
root, or the parent of the vacant slot is
smaller than the element to be inserted.
Insert the element into the vacant slot

Continued

Inserting a New Element in a Heap

Figure 18 (continued):
Inserting a New Element in a Heap

Removing an Arbitrary Node from
a Heap

1. Extract the root node value

Figure 19:
Removing the Minimum Value from a Heap

Removing an Arbitrary Node from a
Heap

1. Move the value of the last node of the heap
into the root node, and remove the last
node. Hep property may be violated for root
node (one or both of its children may be
smaller).

Continued

Removing an Arbitrary Node from
a Heap

Figure 19 (continued):
Removing the Minimum Value from a Heap

Removing an Arbitrary Node from a
Heap

1. Promote the smaller child of the root node.
Root node again fulfills the heap property.
Repeat process with demoted child.
Continue until demoted child has no smaller
children. Heap property is now fulfilled
again.
This process is called "fixing the heap".

Removing an Arbitrary Node from a
Heap

Figure 19 (continued):
Removing the Minimum Value from a Heap

Removing an Arbitrary Node from
a Heap

Figure 19 (continued):
Removing the Minimum Value from a Heap

Heap Efficiency

• Insertion and removal operations visit at
most h nodes

• h: Height of the tree

• If n is the number of elements, then

Continued

Heap Efficiency

• Thus, insertion and removal operations take
O(log(n)) steps

• Heap's regular layout makes it possible to
store heap nodes efficiently in an array

Storing a Heap in an Array

Figure 20:
Storing a Heap in an Array

File MinHeap.java
001: import java.util.*;
002:
003: /**
004: This class implements a heap.
005: */
006: public class MinHeap
007: {
008: /**
009: Constructs an empty heap.
010: */
011: public MinHeap()
012: {
013: elements = new ArrayList<Comparable>();
014: elements.add(null);
015: }
016: Continued

File MinHeap.java
017: /**
018: Adds a new element to this heap.
019: @param newElement the element to add
020: */
021: public void add(Comparable newElement)
022: {
023: // Add a new leaf
024: elements.add(null);
025: int index = elements.size() - 1;
026:
027: // Demote parents that are larger than the new element
028: while (index > 1
029: && getParent(index).compareTo(newElement) > 0)
030: {
031: elements.set(index, getParent(index));
032: index = getParentIndex(index);
033: } Continued

File MinHeap.java
034:
035: // Store the new element into the vacant slot
036: elements.set(index, newElement);
037: }
038:
039: /**
040: Gets the minimum element stored in this heap.
041: @return the minimum element
042: */
043: public Comparable peek()
044: {
045: return elements.get(1);
046: }
047:
048: /**
049: Removes the minimum element from this heap.
050: @return the minimum element
051: */ Continued

File MinHeap.java
052: public Comparable remove()
053: {
054: Comparable minimum = elements.get(1);
055:
056: // Remove last element
057: int lastIndex = elements.size() - 1;
058: Comparable last = elements.remove(lastIndex);
059:
060: if (lastIndex > 1)
061: {
062: elements.set(1, last);
063: fixHeap();
064: }
065:
066: return minimum;
067: }
068: Continued

File MinHeap.java
069: /**
070: Turns the tree back into a heap, provided only the
071: root node violates the heap condition.
072: */
073: private void fixHeap()
074: {
075: Comparable root = elements.get(1);
076:
077: int lastIndex = elements.size() - 1;
078: // Promote children of removed root while

they are larger than last
079:
080: int index = 1;
081: boolean more = true;
082: while (more)
083: {
084: int childIndex = getLeftChildIndex(index);
085: if (childIndex <= lastIndex)
086: { Continued

File MinHeap.java
087: // Get smaller child
088:
089: // Get left child first
090: Comparable child = getLeftChild(index);
091:
092: // Use right child instead if it is smaller
093: if (getRightChildIndex(index) <= lastIndex
094: && getRightChild(index).compareTo(child) < 0)
095: {
096: childIndex = getRightChildIndex(index);
097: child = getRightChild(index);
098: }
099:
100: // Check if larger child is smaller than root
101: if (child.compareTo(root) < 0)
102: {
103: // Promote child Continued

File MinHeap.java
104: elements.set(index, child);
105: index = childIndex;
106: }
107: else
108: {
109: // Root is smaller than both children
110: more = false;
111: }
112: }
113: else
114: {
115: // No children
116: more = false;
117: }
118: }
119:
120: // Store root element in vacant slot
121: elements.set(index, root);
122: } Continued

File MinHeap.java
123:
124: /**
125: Returns the number of elements in this heap.
126: */
127: public int size()
128: {
129: return elements.size() - 1;
130: }
131:
132: /**
133: Returns the index of the left child.
134: @param index the index of a node in this heap
135: @return the index of the left child of the given node
136: */
137: private static int getLeftChildIndex(int index)
138: {
139: return 2 * index;
140: } Continued

File MinHeap.java
141:
142: /**
143: Returns the index of the right child.
144: @param index the index of a node in this heap
145: @return the index of the right child of the given node
146: */
147: private static int getRightChildIndex(int index)
148: {
149: return 2 * index + 1;
150: }
151:
152: /**
153: Returns the index of the parent.
154: @param index the index of a node in this heap
155: @return the index of the parent of the given node
156: */

Continued

File MinHeap.java
157: private static int getParentIndex(int index)
158: {
159: return index / 2;
160: }
161:
162: /**
163: Returns the value of the left child.
164: @param index the index of a node in this heap
165: @return the value of the left child of the given node
166: */
167: private Comparable getLeftChild(int index)
168: {
169: return elements.get(2 * index);
170: }
171:
172: /**
173: Returns the value of the right child.
174: @param index the index of a node in this heap

Continued

File MinHeap.java
175: @return the value of the right child of the given node
176: */
177: private Comparable getRightChild(int index)
178: {
179: return elements.get(2 * index + 1);
180: }
181:
182: /**
183: Returns the value of the parent.
184: @param index the index of a node in this heap
185: @return the value of the parent of the given node
186: */
187: private Comparable getParent(int index)
188: {
189: return elements.get(index / 2);
190: }
191:
192: private ArrayList<Comparable> elements;
193: }

File HeapTester.java
01: /**
02: This program demonstrates the use of a heap as a

priority queue.
03: */
04: public class HeapTester
05: {
06: public static void main(String[] args)
07: {
08: MinHeap q = new MinHeap();
09: q.add(new WorkOrder(3, "Shampoo carpets"));
10: q.add(new WorkOrder(7, "Empty trash"));
11: q.add(new WorkOrder(8, "Water plants"));
12: q.add(new WorkOrder(10, "Remove pencil sharpener

shavings"));
13: q.add(new WorkOrder(6, "Replace light bulb"));
14: q.add(new WorkOrder(1, "Fix broken sink"));
15: q.add(new WorkOrder(9, "Clean coffee maker"));
16: q.add(new WorkOrder(2, "Order cleaning supplies"));
17: Continued

File HeapTester.java
18: while (q.size() > 0)
19: System.out.println(q.remove());
20: }
21: }

File WorkOrder.java
01: /**
02: This class encapsulates a work order with a priority.
03: */
04: public class WorkOrder implements Comparable
05: {
06: /**
07: Constructs a work order with a given priority and

// description.
08: @param aPriority the priority of this work order
09: @param aDescription the description of this work order
10: */
11: public WorkOrder(int aPriority, String aDescription)
12: {
13: priority = aPriority;
14: description = aDescription;
15: }
16: Continued

File WorkOrder.java
17: public String toString()
18: {
19: return "priority=" + priority + ", description="

+ description;
20: }
21:
22: public int compareTo(Object otherObject)
23: {
24: WorkOrder other = (WorkOrder) otherObject;
25: if (priority < other.priority) return -1;
26: if (priority > other.priority) return 1;
27: return 0;
28: }
29:
30: private int priority;
31: private String description;
32: }

File WorkOrder.java

• Output:

priority=1, description=Fix broken sink
priority=2, description=Order cleaning supplies
priority=3, description=Shampoo carpets
priority=6, description=Replace light bulb
priority=7, description=Empty trash
priority=8, description=Water plants
priority=9, description=Clean coffee maker
priority=10, description=Remove pencil sharpener shavings

Self Check

1. The software that controls the events in a
user interface keeps the events in a data
structure. Whenever an event such as a
mouse move or repaint request occurs, the
event is added. Events are retrieved
according to their importance. What abstract
data type is appropriate for this application?

2. Could we store a binary search tree in an
array so that we can quickly locate the
children by looking at array locations
2 * index and 2 * index + 1?

Answers

1. A priority queue is appropriate because we
want to get the important events first, even
if they have been inserted later.

2. Yes, but a binary search tree isn't almost
filled, so there may be holes in the array.
We could indicate the missing nodes with
null elements.

The Heapsort Algorithm

• Based on inserting elements into a heap and
removing them in sorted order

• This algorithm is an O(n log(n)) algorithm:
Each insertion and removal is O(log(n))
These steps are repeated n times, once for
each element in the sequence that is to be
sorted

The Heapsort Algorithm

• Can be made more efficient
Start with a sequence of values in an array
and "fixing the heap" iteratively

• First fix small subtrees into heaps, then fix
larger trees

• Trees of size 1 are automatically heaps

Continued

The Heapsort Algorithm

• Begin the fixing procedure with the subtrees
whose roots are located in the next-to-lowest
level of the tree

• Generalized fixHeap method fixes a subtree
with a given root index:

void fixHeap(int rootIndex, int lastIndex)

Turning a Tree into a Heap

Figure 21a:
Turning a Tree into a Heap

Turning a Tree into a Heap

Figure 21b:
Turning a Tree into a Heap

Turning a Tree into a Heap

Figure 21c:
Turning a Tree into a Heap

The Heapsort Algorithm

• After array has been turned into a heap,
repeatedly remove the root element

Swap root element with last element of the
tree and then reduce the tree length

• Removed root ends up in the last position of
the array, which is no longer needed by the
heap

Continued

The Heapsort Algorithm

• We can use the same array both to hold the
heap (which gets shorter with each step)
and the sorted sequence (which gets longer
with each step)

• Use a max-heap rather than a min-heap so
that sorted sequence is accumulated in the
correct order

Using Heapsort to Sort an Array

Figure 22:
Using Heapsort to Sort an Array

File Heapsorter.java
001: /**
002: This class applies the heapsort algorithm to sort an array.
003: */
004: public class HeapSorter
005: {
006: /**
007: Constructs a heap sorter that sorts a given array.
008: @param anArray an array of integers
009: */
010: public HeapSorter(int[] anArray)
011: {
012: a = anArray;
013: }
014:
015: /**
016: Sorts the array managed by this heap sorter.
017: */

Continued

File Heapsorter.java
018: public void sort()
019: {
020: int n = a.length - 1;
021: for (int i = (n - 1) / 2; i >= 0; i--)
022: fixHeap(i, n);
023: while (n > 0)
024: {
025: swap(0, n);
026: n--;
027: fixHeap(0, n);
028: }
029: }
030:
031: /**
032: Ensures the heap property for a subtree, provided its
033: children already fulfill the heap property.

Continued

File Heapsorter.java
034: @param rootIndex the index of the subtree to be fixed
035: @param lastIndex the last valid index of the tree that
036: contains the subtree to be fixed
037: */
038: private void fixHeap(int rootIndex, int lastIndex)
039: {
040: // Remove root
041: int rootValue = a[rootIndex];
042:
043: // Promote children while they are larger than the root
044:
045: int index = rootIndex;
046: boolean more = true;
047: while (more)
048: {
049: int childIndex = getLeftChildIndex(index);
050: if (childIndex <= lastIndex)

Continued

File Heapsorter.java
051: {
052: // Use right child instead if it is larger
053: int rightChildIndex = getRightChildIndex(index);
054: if (rightChildIndex <= lastIndex
055: && a[rightChildIndex] > a[childIndex])
056: {
057: childIndex = rightChildIndex;
058: }
059:
060: if (a[childIndex] > rootValue)
061: {
062: // Promote child
063: a[index] = a[childIndex];
064: index = childIndex;
065: }
066: else
067: { Continued

File Heapsorter.java
068: // Root value is larger than both children
069: more = false;
070: }
071: }
072: else
073: {
074: // No children
075: more = false;
076: }
077: }
078:
079: // Store root value in vacant slot
080: a[index] = rootValue;
081: }
082: Continued

File Heapsorter.java
083: /**
084: Swaps two entries of the array.
085: @param i the first position to swap
086: @param j the second position to swap
087: */
088: private void swap(int i, int j)
089: {
090: int temp = a[i];
091: a[i] = a[j];
092: a[j] = temp;
093: }
094:
095: /**
096: Returns the index of the left child.
097: @param index the index of a node in this heap
098: @return the index of the left child of the given node
099: */ Continued

File Heapsorter.java
100: private static int getLeftChildIndex(int index)
101: {
102: return 2 * index + 1;
103: }
104:
105: /**
106: Returns the index of the right child.
107: @param index the index of a node in this heap
108: @return the index of the right child of the given node
109: */
110: private static int getRightChildIndex(int index)
111: {
112: return 2 * index + 2;
113: }
114:
115: private int[] a;
116: }

Self Check

1. Which algorithm requires less storage,
heapsort or mergesort?

2. Why are the computations of the left child
index and the right child index in the
HeapSorter different than in MinHeap?

Answers

1. Heapsort requires less storage because
it doesn't need an auxiliary array.

2. The MinHeap wastes the 0 entry to make
the formulas more intuitive. When sorting
an array, we don't want to waste the 0
entry, so we adjust the formulas instead.

