An Introduction to
Data Structures

Advanced Programming
ICOM 4015

Lecture 17

Reading: Java Concepts Chapter 20

Fall 2006 Adapded from Java Concepts Companion Slides

Chapter Goals

To learn how to use the linked lists provided
In the standard library

To be able to use iterators to traverse linked
lists

To understand the implementation of linked
lists

To distinguish between abstract and concrete
data types

Fall 2006 Adapded from Java Concepts Companion Slides Continged

Chapter Goals

 To know the efficiency of fundamental
operations of lists and arrays

« To become familiar with the stack and queue
types

Fall 2006 Adapded from Java Concepts Companion Slides

Using Linked Lists

A linked list consists of a number of nodes,
each of which has a reference to the next
node

Adding and removing elements in the middle
of alinked list is efficient

Visiting the elements of a linked list In
sequential order is efficient

Random access Is not efficient

Fall 2006 Adapded from Java Concepts Companion Slides

Inserting an Element into a
Linked List

LinkedList<String> Node<String> (» Node<String> _ Node<String> -~ Node<String>
| |

: | i
Dick / arry ‘ Romeo | Tom
|
L\ null
'l "

~.» | Node<String-

Juliet

Figure 1:
Fdihggnding an Elemadepidi@rhirkeddnisipts Companion Slides

Java's LinkedList class

e Generic class

= Specify type of elements in angle brackets:
LinkedList<Product>

« Package: Java.util

« Easy access to first and last elements with
methods

void addFirst(E obj)
void addLast(E obj)
E getFirst()

E getLast()

E removeFirst()

E removelast() s Companion Slides

List Iterator

Listlterator type

= Glves access to elements inside a linked list

» Encapsulates a position anywhere inside the
linked list

» Protects the linked list while giving access

Fall 2006 Adapded from Java Concepts Companion Slides

A List lterator

LinkedList<String> ,»~ Node<String- ~ Node<String> [. Node<String> »~ Node<String>
|

[

| | | |

/ Dick Harry F Romeo / Tom

— B nul |

ListIterator<String>

F@I%H(Sbe 2 Adapded from Java Concepts Companion Slides
A List Iterator

A Conceptual View of a List Iterator

[nitial ListIterator position I D H R T

After calling next D | H R T

After inserting J D J | H R T

Figure 3: .
"AlEBRceptual ViWBAH P8R &pgFerts Companion Slides

List Iterator

 Think of an iterator as pointing between two
elements

» Analogy: like the cursor in a word processor
points between two characters

« The listlterator method of the
LinkedList class gets a list iterator

LinkedList<String> employeeNames = . .
Listlterator<String> i1terator = employeeNames listlterator();

Fall 2006 Adapded from Java Concepts Companion Slides

List Iterator

Initially, the iterator points before the first
element

The next method moves the iterator

iterator.next();

next throws a NoSuchElementException if
you are already past the end of the list

hasNext returns true if there Is a next
element

IT (iterator.hasNext())
iterator.next();

List Iterator

e The next method returns the element that the
Iiterator Is passing

while 1terator.hasNext()

{

String name = i1terator.next();
Do something with name

}

Fall 2006 Adapded from Java Concepts Companion Slides Continiped

List Iterator
e Shorthand:

for (String name : employeeNames)

1
}

Do something with name

Behind the scenes, the for loop uses an
iterator to visit all list elements

Fall 2006 Adapded from Java Concepts Companion Slides

List Iterator

e LinkedList is adoubly linked list

= Class stores two links:
 One to the next element, and
* One to the previous element

« To move the list position backwards, use:
* hasPrevious

" previous

Fall 2006 Adapded from Java Concepts Companion Slides

Adding and Removing from a
LinkedList

e The add method:

= Adds an object after the iterator

= Moves the iterator position past the new
element

iterator.add('Juliet™);

Fall 2006 Adapded from Java Concepts Companion Slides

Adding and Removing from a
LinkedList

e The remove method

= Removes and

» Returns the object that was returned by the
ast call to next or previous

//Remove all names that fulfill a certain condition
while (iterator.hasNext())

{

String name = i1terator.next();
iIT (name fulfills condition)
iterator.remove();

Fall 2006 Adapded from Java Concepts Companion Slides Continued 3

Adding and Removing from a
LinkedList

 Be careful when calling remove:

= |t can be called only once after calling next or
previous

= You cannot call it immediately after a call to add

= |f you call it improperly, it throws an
11 legalStateException

Fall 2006 Adapded from Java Concepts Companion Slides

Sample Program

e ListTester is a sample program that

* [nserts strings into a list

= [terates through the list, adding and removing
elements

= Prints the list

Fall 2006 Adapded from Java Concepts Companion Slides

File ListTester. java

O1l: mmport java.util._LinkedList;

02: mmport java.util_Listlterator;

03:

04: /**

05: A program that demonstrates the LinkedList class

06:

07: ListTester

08:

09: main(String[] args)

10:

11: LinkedList<String> staff = LinkedList<String>();
12: staff.addLast(''Dick™™);

13: staff.addLast("'Harry'");

14: staff.addLast("'Romeo'");

15: staff.addLast("'Tom™);

16:

17: // | 1In the comments iIndicates the i1terator position

18: Continued

File ListTester. java

19: Listlterator<String> i1terator

20: = staff._listlterator(); // |DHRT
21: 1terator.next(); // D|HRT

22 1terator._next(); // DH|RT

23:

24 - // Add more elements after second element
25:

26: iterator.add('Juliet™); // DHJ|RT

27: iterator.add(''Nina"); 7/ DHIN|RT

28:

29: iterator.next(); 7/ DHINR|T

30:

31: // Remove last traversed element

32:

33: 1terator.remove(); // DHIN|T

34: Continued

Fall 2006 Adapded from Java Concepts Companion Slides 20

File ListTester. java

35: // Print all elements

36:

37: (String name : staff)
38: System.out.printin(name);
39: }

40: }

Fall 2006 Adapded from Java Concepts Companion Slides

File ListTester. java

 Qutput:

Dick
Harry
Juliet
Nina
Tom

Fall 2006 Adapded from Java Concepts Companion Slides

Self Test

1. Do linked lists take more storage space
than arrays of the same size?

2. Why don't we need iterators with arrays?

Fall 2006 Adapded from Java Concepts Companion Slides

ANnswers

1. Yes, for two reasons. You need to store the
node references, and each node iIs a
separate object. (There is a fixed overhead
to store each object in the virtual machine.)

. An integer index can be used to access any
array location.

Fall 2006 Adapded from Java Concepts Companion Slides

Implementing Linked Lists

Previous section: Java's LinkedLiIst class

Now, we will look at the implementation of a
simplified version of this class

It will show you how the list operations
manipulate the links as the list is modified

Fall 2006 Adapded from Java Concepts Companion Slides .
P P P Continued

Implementing Linked Lists

 To keep it simple, we will implement a singly
linked list

= Class will supply direct access only to the first
list element, not the last one

e Our list will not use atype parameter

= Store raw Object values and insert casts
when retrieving them

Fall 2006 Adapded from Java Concepts Companion Slides

Implementing Linked Lists

 Node: stores an object and a reference to the
next node

Methods of linked list class and iterator
class have frequent access to the Node
Instance variables

Fall 2006 Adapded from Java Concepts Companion Slides .
P P P Continued

Implementing Linked Lists

e To make It easier to use:

= \We do not make the instance variables private

= \We make Node a private inner class of
LinkedList

= |t Is safe to leave the instance variables public
* None of the list methods returns a Node object

Fall 2006 Adapded from Java Concepts Companion Slides

Implementing Linked Lists

public class LinkedList

{

private class Node

{
public Object data;

public Node next;

}

}

Fall 2006 Adapded from Java Concepts Companion Slides

Implementing Linked Lists

e | InkedLi1st class
= Holds a reference Ffi1rst to the first node

» Has a method to get the first element

Fall 2006 Adapded from Java Concepts Companion Slides

Implementing Linked Lists

public class LinkedList

{
public LinkedList()

{

+
public Object getFirst()

{

First = null;

it (First == null)
throw new NoSuchElementException();
return first.data;

}

private Node first;

}

Fall 2006 Adapded from Java Concepts Companion Slides

Adding a New First Element

e When a new node Is added to the list
= [t becomes the head of the list
= The old list head becomes its next node

Fall 2006 Adapded from Java Concepts Companion Slides

Adding a New First Element

e The addFirst method

public class LinkedList

{

public void addFirst(Object obj)
1

Node newNode

new Node(); [:] 2]

newNode.data = obj; newNode.next = Ffirst;

First = newNode;
\ ©

Fall 2006 Adapded from Java Concepts Companion Slides

Adding a Node to the Head of a
Linked List

LinkedList

newNode =

Figure 4:
Addirzgoa Node to thisdkbdediomddvartiomcebtsgiompanion Slides

Removing the First Element

e When the first element is removed

= The data of the first node are saved and later
returned as the method result

= The successor of the first node becomes the
first node of the shorter list

* The old node will be garbage collected when
there are no further references to it

Fall 2006 Adapded from Java Concepts Companion Slides

Removing the First Element

e The removeFirst method

public class LinkedList

{

public Object removeFirst()

{
it (First == null)
throw new NoSuchElementException();
Object obj = first.data;

First = first.next; [:]
return obj;

}

}

Fall 2006 Adapded from Java Concepts Companion Slides

Removing the First Node from a
Linked List

LinkedList Node

first = —8- data = Dick
) { next =

Figure 5:
Removing the First Node from a Linked List

Fall 2006 Adapded from Java Concepts Companion Slides

Linked List lterator

We define LinkedListlterator: private
Inner class of LinkedLi1st

Implements a simplified Listlterator
Interface

Has access to the First field and private
Node class

Clients of LinkedList don't actually know
the name of the iterator class

= They only know It Is a class that implements
Fal2006the L 1 Stelterator-mterfageides 38

LinkedListlterator

e The LinkListlterator class

public class LinkedList

{

public Listlterator listlterator()
1

}

private class LinkedListlterator implements Listlterator

{

return new LinkedListlterator();

public LinkedListlterator()
1

position = null;

previous null;
b5 Continued

LinkedListlterator

private Node position;
private Node previous;

}

Fall 2006

Adapded from Java Concepts Companion Slides

The Linked List lterator's next
Method

position: reference to the last visited node

Also, store areference to the last reference
before that

next method: position reference s
advanced to position.next

Old position is remembered in previous

If the iterator points before the first element
of the list, then the old positionis null

and position must be set to First

Fall 2006 Adapded from Java Concepts Companion Slides

The Linked List lterator's next
Method

public Object next()
{
1T (ThasNext())
throw new NoSuchElementException();
previous = position; // Remember for remove
iIT (position == null)
position = first;
else
position = position.next;
return position.data;

}

Fall 2006 Adapded from Java Concepts Companion Slides

The Linked List lterator's hasNext
Method

e The next method should only be called
when the iterator is not at the end of the list

e The iterator is at the end

= if the list Is empty (First == null)

= |f there Is no element after the current position
(position.next == null)

Fall 2006 Adapded from Java Concepts Companion Slides

The Linked List lterator's hasNext
Method

private class LinkedListlterator implements Listlterator

{

public boolean hasNext()
{
I (position == null)
return first '= null;
else
return position.next !'= null;

Fall 2006 Adapded from Java Concepts Companion Slides

The Linked List lterator's remove
Method

e |f the element to be removed is the first
element, call removeFirst

 Otherwise, the node preceding the element
to be removed needs to have its next

reference updated to skip the removed
element

Fall 2006 Adapded from Java Concepts Companion Slides)
P P P Continued

The Linked List lterator's remove
Method

* |f the previous reference equals position:

= this call does not immediately follow a call to
next

» throw an 1l legalArgumentException

= |t Is Illegal to call remove twice In a row

" remove sets the previous reference to
position

Fall 2006 Adapded from Java Concepts Companion Slides

The Linked List lterator's remove
Method

public void remove()

{
iIT (previous == position)
throw new IllegalStateException();
IT (position == First)
{

}

else

{

removeFirst();

previous.next = position.next; m

}

position = previous; @
+

Fall 2006 Adapded from Java Concepts Companion Slides

Removing a Node From the Middle
of a Linked List

LinkedList

first =

Node
data = Romeo /
next = -

previous =
position =

Figure 6: .
REfBving a Nod&4ePdF AR JoifR HPEBT aqomrealE T4t

The Linked List lterator's set
Method

« Changes the data stored in the previously
visited element

e The set method

public void set(Object obj)
{
iIT (position == null)
throw new NoSuchElementException();
position.data = obj;

}

Fall 2006 Adapded from Java Concepts Companion Slides

The Linked List lterator's add
Method

e The most complex operation is the addition
of a node

add inserts the new node after the current
position

Sets the successor of the new node to the
successor of the current position

Fall 2006 Adapded from Java Concepts Companion Slides

The Linked List lterator's add Method

public void add(Object obj)
{

iIT (position == null)
{
addFirst(obj);
position = FiIrst;
+
else
{
Node newNode new Node();
newNode.data = obj;

newNode . next position-next;ﬁ]

position.next = newNode; : 2 I

position = newNode; E]

+
previous = position;[@]

}

Adding a Node to the Middle of a
Linked List

LinkedList

first =

Node Node =
/

/ . /
data = Harry | data = Romeo /
next = -3\ next = =—

ListIterator Py .. Node \©

previous = ——=="" 22~ newNode = data = Juliet
position = - next =

a1 &ing o Node TETHE IR SPETRR LY S

File LinkedLi1st. java

001: import java.util_NoSuchElementException;

0]0)23s

003: /**

004: A linked list 1s a sequence of nodes with efficient
005: element 1nsertion and removal. This class

006: contains a subset of the methods of the standard
007: Java.util._LinkedList class.

008: */

009: LinkedList

010: {

O11: /**

012: Constructs an empty linked list.

013: */

014: LinkedList()

015: {

016: first =

017: }

018: Continued

File LinkedLi1st. java

/**
Returns the first element 1n the linked list.
@return the first element 1n the linked list
*/
Object getFirst()
{
(first ==)
NoSuchElementException();
first.data;

}

/**
Removes the fTirst element 1n the linked list.
@return the removed element
*/
Object removeFirst()
{

Continued

File LinkedLi1st. java

036: (first ==)

037: NoSuchElementException();

038: Object element = first.data;

039: first = first.next;

040: element;

041: }

042:

043: /**

044: Adds an element to the front of the linked list.
045: @param element the element to add

046: */

047: addFirst(Object element)

048: {

049: Node newNode = Node();
050: newNode.data = element;
051: newNode.next = First;

052: first = newNode;

053: .
054 - Continued

File LinkedLi1st. java

055: /**

056: Returns an i1terator for iterating through this list.
057: @return an i1terator for i1terating through this list
058: */

059: Listlterator listlterator()

060: {

061: LinkedListlterator();

062:

063:

064: Node first;

065:

066: Node

067:

068: Object data;

069: Node next;

070:
0O71: Continued

ain £2UU9U AUAQPUTU TTUTIT Java CUTITCTULS LUTTTPArmurTt oluco JU

File LinkedLi1st. java

072: LinkedListlterator Listlterator
073:

074: /**

075: Constructs an i1terator that points to the front
076: of the linked list.

077: */

078: LinkedListlterator()

079: {

080: position =

081: previous =

082: }

083:

084: /**

085: Moves the i1terator past the next element.

086: @return the traversed element

087: */ Continued

Fall 2006 Adapded from Java Concepts Companion Slides 57

File LinkedLi1st. java

088: Object next()

089:

090: (ThasNext())

091: NoSuchElementException();

092: previous = position; // Remember for remove
093:

094: (position ==)

095: position = First;

096:

097: position = position.next;

098:

099: position.data;

100: }

101:

102: /**

103: Tests 1T there 1s an element after the iterator

104 : ition. .
posiLion Continued

ain £2UU9U AUAQPUTU TTUTIT Java CUTITCTULS LUTTTPArmurTt oluco JO

File LinkedLi1st. java

105:

106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:

@return true 1T there 1s an element after the
// 1terator
position
4
hasNext()
{
(position ==)
first 1= .

position.next !=

}

/**
Adds an element before the i1terator position
and moves the i1terator past the iInserted element.

@param element the element to add

=/ Continued

File LinkedLi1st. java

121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:

}

add(Object element)
(position ==)

addFirst(element);
position = FiIrst;

Node newNode Node();
newNode.data = element;
newNode . next position.next;
position.next = newNode;
position = newNode;

previous = position;

Continued

File LinkedLi1st. java

139:
140:
141 :
142:
143:
144 :
145:
146:
147 :
148:
149:
150:
151:
152:
153:
154 :
155:

/**
Removes the last traversed element. This method may
only be called after a call to the next() method.
*/
remove()

{
(previous == position)
I1legalStateException();
(position == First)

removeFirst();

previous.next = position.next;
Continued

ain £2UU9U

AUAQPUTU TTUTIT Java CUTITCTULS LUTTTPArmurTt oluco UL

File LinkedLi1st. java

156: position = previous;

157: }

158:

159: /**

160: Sets the last traversed element to a different
161: value.

162: @param element the element to set

163: */

164: set(Object element)

165: {

166: (position ==)

167: NoSuchElementException();
168: position.data = element;

169: }

170:

171: Node position;

172: Node previous;

173: }

174: }

File Listlterator. java

01: /**

(0)22 A list 1terator allows access of a position 1n a linked list.
03: This 1nterface contains a subset of the methods of the

04: standard java.util._Listlterator interface. The methods for
05: backward traversal are not included.

06: */

07: Listlterator

08: {

09: /**

10: Moves the i1terator past the next element.

11: @return the traversed element

12: */

13: Object next();

14:

15: /**

16: Tests 1T there 1s an element after the i1terator

17: position.

Continued

File Listlterator. java

18:
19:
20:
21:
22-
23:
24 -
25:
26:
27
28:
29:
30:
31:
32:
33:

@return true 1f there 1s an element after the i1terator
position
*/
hasNext();

/**
Adds an element before the i1terator position
and moves the i1terator past the iInserted element.
@param element the element to add
*/
add(Object element);

/**
Removes the last traversed element. This method may
only be called after a call to the next() method.
*/
Continued

Fall 2006 Adapded from Java Concepts Companion Slides

File Listlterator. java

34:
35:
36:
37:
38:
39:
40:
41:
42: }

remove();

/**
Sets the last traversed element to a different
value.
@param element the element to set
*/
set(Object element);

Fall 2006

Adapded from Java Concepts Companion Slides

Self Check

1. Trace through the addFirst method when
adding an element to an empty list.

. Conceptually, an iterator points between
elements (see Figure 3). Does the position
reference point to the element to the left or
to the element to the right?

. Why does the add method have two
separate cases?

Fall 2006 Adapded from Java Concepts Companion Slides

ANnswers

1. When the list is empty, firstis null. A
new Node Is allocated. Its data field Is set
to the newly inserted object. Its next field Is
set to null because firstis null. The
firstfield is set to the new node. The
result is a linked list of length 1.

It points to the element to the left. You can
see that by tracing out the first call to next.

It leaves position to point to the first node.

Fall 2006 Adapded from Java Concepts Companion Slides Continued

ANnswers

1. If positionis null, we must be at the head
of the list, and inserting an element requires
updating the Firstreference. If we are In
the middle of the list, the Firstreference

should not be changed.

Fall 2006 Adapded from Java Concepts Companion Slides

Abstract and Concrete Data Types

 There are two ways of looking at a linked list

» To think of the concrete implementation of
such a list

e Sequence of node objects with links between them

» Think of the abstract concept of the linked list

e Ordered sequence of data items that can be
traversed with an iterator

Fall 2006 Adapded from Java Concepts Companion Slides

Abstract and Concrete Data Types

LinkedList

Figure 8:
Adorerete View ofdupdeukech Dagd Concepts Companion Slides

Abstract and Concrete Data Types

Figure 9:
An Abstract View of a Linked List

Fall 2006 Adapded from Java Concepts Companion Slides

Abstract Data Types

 Define the fundamental operations on the
data

Do not specify an implementation

Fall 2006 Adapded from Java Concepts Companion Slides

Abstract and Concrete Array Type

As with a linked list, there are two ways of
looking at an array list

Concrete implementation: a partially filled
array of object references

We don't usually think about the concrete
Implementation when using an array list

» \We take the abstract point of view

Abstract view: ordered sequence of data

items, each of which can be accessed by an
Fall f?(;i@teg er | n/ﬂ@%d from Java Concepts Companion Slides 73

Abstract and Concrete Data Types

ArrayList

Figure 10:
A Concrete View of an Array List

Fall 2006 Adapded from Java Concepts Companion Slides

Abstract and Concrete Data Types

Figure 11:
An Abstract View of an Array List

Fall 2006 Adapded from Java Concepts Companion Slides

Abstract and Concrete Data Types

« Concrete implementations of a linked list and
an array list are quite different

e The abstractions seem to be similar at first
glance

 To see the difference, consider the public
Interfaces stripped down to their minimal
essentials

Fall 2006 Adapded from Java Concepts Companion Slides

Fundamental Operations on
Array List

public class ArrayList

{
public Object get(int Index) { . . . }
public void set(int index, Object value) { . . .

Fall 2006 Adapded from Java Concepts Companion Slides

Fundamental Operations on
Linked List

public class LinkedList

{
public Listlterator listlterator() { - - .

}

public interface Listlterator

{
Object next();

boolean hasNext();

void add(Object value);
void remove();

void set(Object value);

}

Fall 2006 Adapded from Java Concepts Companion Slides

Abstract and Concrete Data Types

« ArrayList: combines the interfaces of an
array and a list

Both ArrayList and LinkedList implement
an interface called List

» List defines operations for random access
and for sequential access

Terminology Is not In common use outside
the Java library

Fall 2006 Adapded from Java Concepts Companion Slides

Continued

Abstract and Concrete Data Types

 More traditional terminology: array and list

e Javalibrary provides concrete
Implementations ArrayList and

LinkedList for these abstract types

e Java arrays are another implementation of
the abstract array type

Fall 2006 Adapded from Java Concepts Companion Slides

Efficiency of Operations for Arrays
and Lists

 Adding or removing an element

= A fixed number of node references need to be
modified to add or remove a node, regardless
of the size of the list

* |[n big-Oh notation: O(1)

 Adding or removing an element
= On average n/2 elements need to be moved
* In big-Oh notation: O(n)

Fall 2006 Adapded from Java Concepts Companion Slides

Efficiency of Operations for Arrays
and Lists

Operation

Random Access

Linear Traversal Step

Add/Remove an Element

Fall 2006 Adapded from Java Concepts Companion Slides

Abstract Data Types

e Abstract list

» Ordered sequence of items that can be
traversed sequentially

= Allows for insertion and removal of elements
at any position

 Abstract array

» Ordered sequence of items with random
access via an integer index

Fall 2006 Adapded from Java Concepts Companion Slides

Self Check

1. What is the advantage of viewing a type
abstractly?

How would you sketch an abstract view of a
doubly linked list? A concrete view?

How much slower is the binary search

algorithm for a linked list compared to the
linear search algorithm?

Fall 2006 Adapded from Java Concepts Companion Slides

ANnswers

1. You can focus on the essential
characteristics of the data type without
being distracted by implementation details.

. The abstract view would be like Figure 9,
but with arrows in both directions. The
concrete view would be like Figure 8, but
with references to the previous node added
to each node.

Fall 2006 Adapded from Java Concepts Companion Slides Continued

ANnswers

1. To locate the middle element takes n /2
steps. To locate the middle of the
subinterval to the left or right takes another
n /4 steps. The next lookup takes n /8

steps. Thus, we expect almost n steps to
locate an element. At this point, you are
better off just making a linear search that,
on average, takes n / 2 steps.

Fall 2006 Adapded from Java Concepts Companion Slides

Stacks and Queues

e Stack: collection of items with "last in first
out" retrieval

e Queue: collection of items with "first in first
out" retrieval

Fall 2006 Adapded from Java Concepts Companion Slides

Stack

Allows insertion and removal of elements
only at one end

» Traditionally called the top of the stack

New items are added to the top of the stack
ltems are removed at the top of the stack
Called last in, first out or LIFO order

Traditionally, addition and removal
operations are called push and pop

7NNk of ASHHER O PEesIegon s

A Stack of Books

Figure 12:
Fall 2006Stack of Botylkgded from

Queue

Add items to one end of the queue (the tail)

Remove items from the other end of the
gueue (the head)

Queues store items in afirst in, first out or
FIFO fashion

ltems are removed in the same order in
which they have been added
Think of people lining up

» People join the tall of the queue and wait until
Fal2006they haverreachetrtre ead odfthe queue

TRANEL THE WoRLD
ARRIVAL FLICHT
BRAGSAGE CLAIN B-0!

Figure 13: | | \
A Queue R

Fall 2006 Adapded from Java Concepts Companion Slides

Stacks and Queues: Uses In
Computer Science

e Queue

= Event queue of all events, kept by the Java
GUI system

= Queue of print jobs

e Stack

* Run-time stack that a processor or virtual
machine keeps to organize the variables of
nested methods

Fall 2006 Adapded from Java Concepts Companion Slides

Abstract Data Type Stack

o Stack: concrete implementation of a stack in
the Java library

Stack<String> s = new Stack<String>();

s.push("A"™);

s.push(''B");

s.push(''C'™);

// The following loop prints C, B, and A

while (s.size() > 0)
System.out.printin(s.pop());

 Uses an array to implement a stack

Fall 2006 Adapded from Java Concepts Companion Slides

Abstract Data Type Queue

 Queue implementations in the standard
library are designed for use with
multithreaded programs

« However, it is simple to implement a basic
gueue yourself

Fall 2006 Adapded from Java Concepts Companion Slides

A Queue Implementation

public class LinkedListQueue

{

/** Constructs an empty queue that uses a linked list.
*/

public LinkedListQueue()

{

by

/**
Adds an 1tem to the tail of the queue.
@param x the 1tem to add

*/

public void add(Object x)

{

list = new LinkedList();

list.addLast(x); Conti q
ontinue

Fall 2006 Adapded from Java Concepts Companion Slides 95

A Queue Implementation

}

/**
Removes an 1tem from the head of the queue.
@return the removed i1tem

*/

public Object remove()

{

}

/**
Gets the number of 1tems iIn the queue.
@return the size

*/

int size()

{

+
private LinkedList list;

return list.removeFirst();

return list.size();

Self Check

Draw a sketch of the abstract queue type,
similar to Figures 9 and 11.

Why wouldn't you want to use a stack to

manage print jobs?

Fall 2006 Adapded from Java Concepts Companion Slides

ANnswers

|

remove

Stacks use a "last in, first out" discipline. If

you are the first one to submit a print job
and lots of people add print jobs before the
printer has a chance to deal with your job,
they get their printouts first, and you have
to wait until all other jobs are completed.

Fall 2006 Adapded from Java Concepts Companion Slides

