
Fall 2006 Adapted from Java Concepts Companion Slides 1

Inheritance

Advanced Programming

ICOM 4015

Lecture 11

Reading: Java Concepts Chapter 13

Fall 2006 Adapted from Java Concepts Companion Slides 2

Chapter Goals

• To learn about inheritance
• To understand how to inherit and override

superclass methods
• To be able to invoke superclass constructors
• To learn about protected and package

access control
• To understand the common superclass
Object and to override its toString and
equals methods

Fall 2006 Adapted from Java Concepts Companion Slides 3

An Introduction to Inheritance

• Inheritance: extend classes by adding
methods and fields

• Example: Savings account = bank account
with interest

Continued…

class SavingsAccount extends BankAccount
{

new methods
new instance fields

}

Fall 2006 Adapted from Java Concepts Companion Slides 4

An Introduction to Inheritance
• SavingsAccount automatically inherits all

methods and instance fields of BankAccount

• Extended class = superclass (BankAccount),
extending class = subclass (Savings)

Continued…

SavingsAccount collegeFund = new SavingsAccount(10);

// Savings account with 10% interest

collegeFund.deposit(500);

// OK to use BankAccount method with SavingsAccount object

Fall 2006 Adapted from Java Concepts Companion Slides 5

An Introduction to Inheritance

• Inheriting from class ≠ implementing
interface: subclass inherits behavior and
state

• One advantage of inheritance is code reuse

Fall 2006 Adapted from Java Concepts Companion Slides 6

An Inheritance Diagram

• Every class extends the Object
class either directly or indirectly

Figure 1:
An Inheritance Diagram

Fall 2006 Adapted from Java Concepts Companion Slides 7

An Introduction to Inheritance
• In subclass, specify added instance fields,

added methods, and changed or overridden
methods
public class SavingsAccount extends BankAccount
{

public SavingsAccount(double rate)
{

interestRate = rate;
}
public void addInterest()
{

double interest = getBalance() * interestRate / 100;
deposit(interest);

}

private double interestRate;
}

Fall 2006 Adapted from Java Concepts Companion Slides 8

An Introduction to Inheritance

• Encapsulation: addInterest calls
getBalance rather than updating the
balance field of the superclass (field is
private)

• Note that addInterest calls getBalance
without specifying an implicit parameter (the
calls apply to the same object)

Fall 2006 Adapted from Java Concepts Companion Slides 9

Layout of a Subclass Object
• SavingsAccount object inherits the

balance instance field from BankAccount,
and gains one additional instance field:
interestRate:

Figure 2:
Layout of a Subclass Object

Fall 2006 Adapted from Java Concepts Companion Slides 10

Syntax 13.1: Inheritance

class SubclassName extends SuperclassName
{

methods
instance fields

} Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 11

Syntax 13.1: Inheritance
Example:
public class SavingsAccount extends BankAccount
{

public SavingsAccount(double rate)
{

interestRate = rate;
}

public void addInterest()
{

double interest = getBalance() * interestRate / 100;
deposit(interest);

}
private double interestRate;

}

Purpose:
To define a new class that inherits from an existing class, and define the
methods and instance fields that are added in the new class.

Fall 2006 Adapted from Java Concepts Companion Slides 12

Self Check

1. Which instance fields does an object of
class SavingsAccount have?

2. Name four methods that you can apply to
SavingsAccount objects

3. If the class Manager extends the class
Employee, which class is the superclass
and which is the subclass?

Fall 2006 Adapted from Java Concepts Companion Slides 13

Answers

1. Two instance fields: balance and
interestRate.

2. deposit, withdraw, getBalance, and
addInterest.

3. Manager is the subclass; Employee is the
superclass.

Fall 2006 Adapted from Java Concepts Companion Slides 14

Inheritance Hierarchies
• Sets of classes can form complex inheritance

hierarchies

• Example:

Figure 3:
A Part of the Hierarchy of Ancient Reptiles

Fall 2006 Adapted from Java Concepts Companion Slides 15

Inheritance Hierarchies Example:
Swing hierarchy

Figure 4:
A Part of the Hierarchy
of Swing User
Interface Components

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 16

Inheritance Hierarchies Example:
Swing hierarchy

• Superclass JComponent has methods
getWidth, getHeight

• AbstractButton class has methods to
set/get button text and icon

Fall 2006 Adapted from Java Concepts Companion Slides 17

A Simpler Hierarchy:
Hierarchy of Bank Accounts

• Consider a bank that offers its customers
the following account types:
1. Checking account: no interest; small number of free

transactions per month, additional transactions are
charged a small fee

2. Savings account: earns interest that compounds
monthly

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 18

A Simpler Hierarchy:
Hierarchy of Bank Accounts

Figure 5:
Inheritance Hierarchy for Bank Account Classes

Continued…

• Inheritance
hierarchy:

Fall 2006 Adapted from Java Concepts Companion Slides 19

A Simpler Hierarchy:
Hierarchy of Bank Accounts

• Superclass JComponent has methods
getWidth, getHeight

• AbstractButton class has methods to
set/get button text and icon

Fall 2006 Adapted from Java Concepts Companion Slides 20

A Simpler Hierarchy:
Hierarchy of Bank Accounts

• All bank accounts support the getBalance
method

• All bank accounts support the deposit and
withdraw methods, but the
implementations differ

• Checking account needs a method
deductFees; savings account needs a
method addInterest

Fall 2006 Adapted from Java Concepts Companion Slides 21

Self Check

1. What is the purpose of the
JTextComponent class in Figure 4?

2. Which instance field will we need to add to
the CheckingAccount class?

Fall 2006 Adapted from Java Concepts Companion Slides 22

Answers

1. To express the common behavior of text
fields and text components.

2. We need a counter that counts the number
of withdrawals and deposits.

Fall 2006 Adapted from Java Concepts Companion Slides 23

Inheriting Methods
• Override method:

Supply a different implementation of a method that
exists in the superclass
Must have same signature (same name and same
parameter types)
If method is applied to an object of the subclass type,
the overriding method is executed

• Inherit method:
Don't supply a new implementation of a method that
exists in superclass
Superclass method can be applied to the subclass
objects

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 24

Inheriting Methods

• Add method:
Supply a new method that doesn't exist in the
superclass
New method can be applied only to subclass objects

Fall 2006 Adapted from Java Concepts Companion Slides 25

Inheriting Instance Fields

• Can't override fields

• Inherit field: All fields from the superclass
are automatically inherited

• Add field: Supply a new field that doesn't
exist in the superclass

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 26

Inheriting Instance Fields

• What if you define a new field with the same
name as a superclass field?

Each object would have two instance fields of the
same name
Fields can hold different values
Legal but extremely undesirable

Fall 2006 Adapted from Java Concepts Companion Slides 27

Implementing the
CheckingAccount Class

• Overrides deposit and withdraw to increment
the transaction count:

Continued…

public class CheckingAccount extends BankAccount
{

public void deposit(double amount) {. . .}
public void withdraw(double amount) {. . .}
public void deductFees() {. . .} // new method
private int transactionCount; // new instance field

}

Fall 2006 Adapted from Java Concepts Companion Slides 28

Implementing the
CheckingAccount Class

• Each CheckingAccount object has two
instance fields:

balance (inherited from BankAccount)
transactionCount (new to CheckingAccount)

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 29

Implementing the
CheckingAccount Class

• You can apply four methods to
CheckingAccount objects:

getBalance() (inherited from BankAccount)
deposit(double amount) (overrides BankAccount
method)
withdraw(double amount) (overrides BankAccount
method)
deductFees() (new to CheckingAccount)

Fall 2006 Adapted from Java Concepts Companion Slides 30

Inherited Fields Are Private

• Consider deposit method of CheckingAccount

• Can't just add amount to balance

• balance is a private field of the superclass

public void deposit(double amount)
{

transactionCount++;
// now add amount to balance
. . .

}

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 31

Inherited Fields Are Private

• A subclass has no access to private fields of its
superclass

• Subclass must use public interface

Fall 2006 Adapted from Java Concepts Companion Slides 32

Invoking a Super Class Method

• Can't just call
deposit(amount)
in deposit method of CheckingAccount

• That is the same as
this.deposit(amount)

• Calls the same method (infinite recursion)

• Instead, invoke superclass method
super.deposit(amount)

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 33

Invoking a Super Class Method

• Now calls deposit method of BankAccount
class

• Complete method:

public void deposit(double amount)
{

transactionCount++;
// Now add amount to balance super.deposit(amount);

}

Fall 2006 Adapted from Java Concepts Companion Slides 34

Syntax 13.2: Calling a Superclass
Method

super.methodName(parameters)

Example:
public void deposit(double amount)
{

transactionCount++;
super.deposit(amount);

}

Purpose:
To call a method of the superclass instead of the method of the current class

Fall 2006 Adapted from Java Concepts Companion Slides 35

Implementing Remaining Methods

public class CheckingAccount extends BankAccount
{

. . .
public void withdraw(double amount)
{

transactionCount++;
// Now subtract amount from balance
super.withdraw(amount);

} Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 36

Implementing Remaining Methods

public void deductFees()
{

if (transactionCount > FREE_TRANSACTIONS)
{

double fees = TRANSACTION_FEE
* (transactionCount - FREE_TRANSACTIONS);

super.withdraw(fees);
}
transactionCount = 0;

}
. . .
private static final int FREE_TRANSACTIONS = 3;
private static final double TRANSACTION_FEE = 2.0;

}

Fall 2006 Adapted from Java Concepts Companion Slides 37

Self Check

1. Why does the withdraw method of the
CheckingAccount class call
super.withdraw?

2. Why does the deductFees method set the
transaction count to zero?

Fall 2006 Adapted from Java Concepts Companion Slides 38

Answers

1. It needs to reduce the balance, and it
cannot access the balance field directly.

2. So that the count can reflect the number of
transactions for the following month.

Fall 2006 Adapted from Java Concepts Companion Slides 39

Common Error: Shadowing
Instance Fields
• A subclass has no access to the private

instance fields of the superclass

• Beginner's error: "solve" this problem by
adding another instance field with same name:

Continued…

public class CheckingAccount extends BankAccount
{

public void deposit(double amount)
{

transactionCount++;
balance = balance + amount;

}
. . .

private double balance; // Don't
}

Fall 2006 Adapted from Java Concepts Companion Slides 40

Common Error: Shadowing
Instance Fields

• Now the deposit method compiles, but it
doesn't update the correct balance!

Figure 6:
Shadowing Instance Fields

Fall 2006 Adapted from Java Concepts Companion Slides 41

Subclass Construction

• super followed by a parenthesis indicates a
call to the superclass constructor

Continued…

public class CheckingAccount extends BankAccount
{

public CheckingAccount(double initialBalance)
{

// Construct superclass
super(initialBalance);
// Initialize transaction count
transactionCount = 0;

}
. . .

}

Fall 2006 Adapted from Java Concepts Companion Slides 42

Subclass Construction

• Must be the first statement in subclass
constructor

• If subclass constructor doesn't call
superclass constructor, default superclass
constructor is used

Default constructor: constructor with no parameters
If all constructors of the superclass require
parameters, then the compiler reports an error

Fall 2006 Adapted from Java Concepts Companion Slides 43

Syntax 13.1: Calling a Superclass
Constructor

ClassName(parameters)
{

super(parameters);
. . .

}

Example:
public CheckingAccount(double initialBalance)
{

super(initialBalance);
transactionCount = 0;

}

Purpose:
To invoke a constructor of the superclass. Note that this statement must
be the first statement of the subclass constructor.

Fall 2006 Adapted from Java Concepts Companion Slides 44

Self Check

1. Why didn't the SavingsAccount
constructor in Section 13.1 call its
superclass constructor?

2. When you invoke a superclass method with
the super keyword, does the call have to be
the first statement of the subclass method?

Fall 2006 Adapted from Java Concepts Companion Slides 45

Answers

1. It was content to use the default constructor
of the superclass, which sets the balance to
zero.

2. No–this is a requirement only for
constructors. For example, the
SavingsAccount.deposit method first
increments the transaction count, then calls
the superclass method.

Fall 2006 Adapted from Java Concepts Companion Slides 46

Converting Between Subclass
and Superclass Types

• Ok to convert subclass reference to
superclass reference

SavingsAccount collegeFund = new SavingsAccount(10);
BankAccount anAccount = collegeFund;
Object anObject = collegeFund;

Fall 2006 Adapted from Java Concepts Companion Slides 47

Converting Between Subclass
and Superclass Types
• The three object references stored in
collegeFund, anAccount, and anObject all refer
to the same object of type SavingsAccount

Figure 7:
Variables of Different Types
Refer to the Same Object

Fall 2006 Adapted from Java Concepts Companion Slides 48

Converting Between Subclass
and Superclass Types

• Superclass references don't know the full
story:

• When you convert between a subclass object
to its superclass type:

The value of the reference stays the same–it is the
memory location of the object
But, less information is known about the object

Continued…

anAccount.deposit(1000); // OK
anAccount.addInterest();
// No--not a method of the class to which anAccount belongs

Fall 2006 Adapted from Java Concepts Companion Slides 49

Converting Between Subclass
and Superclass Types

• Why would anyone want to know less about
an object?

Reuse code that knows about the superclass but not
the subclass:

• Can be used to transfer money from any type
of BankAccount

public void transfer(double amount, BankAccount other)
{

withdraw(amount);
other.deposit(amount);

}

Fall 2006 Adapted from Java Concepts Companion Slides 50

Converting Between Subclass
and Superclass Types

• Occasionally you need to convert from a
superclass reference to a subclass reference

• This cast is dangerous: if you are wrong, an
exception is thrown

Continued…

BankAccount anAccount = (BankAccount) anObject;

Fall 2006 Adapted from Java Concepts Companion Slides 51

Converting Between Subclass
and Superclass Types

• Solution: use the instanceof operator

• instanceof: tests whether an object
belongs to a particular type

if (anObject instanceof BankAccount)
{

BankAccount anAccount = (BankAccount) anObject;
. . .

}

Fall 2006 Adapted from Java Concepts Companion Slides 52

Syntax 13.4: The InstanceOf
Operator

object instanceof TypeName

Example:
if (anObject instanceof BankAccount)
{

BankAccount anAccount = (BankAccount) anObject;
. . .

}

Purpose:
To return true if the object is an instance of TypeName (or one of its
subtypes), and false otherwise

Fall 2006 Adapted from Java Concepts Companion Slides 53

Self Test

1. Why did the second parameter of the
transfer method have to be of type
BankAccount and not, for example,
SavingsAccount?

2. Why can't we change the second
parameter of the transfer method to the
type Object?

Fall 2006 Adapted from Java Concepts Companion Slides 54

Answers

1. We want to use the method for all kinds of
bank accounts. Had we used a parameter of
type SavingsAccount, we couldn't have
called the method with a CheckingAccount
object.

2. We cannot invoke the deposit method on a
variable of type Object.

Fall 2006 Adapted from Java Concepts Companion Slides 55

Polymorphism

• In Java, type of a variable doesn't completely
determine type of object to which it refers

• Method calls are determined by type of
actual object, not type of object reference

Continued…

BankAccount aBankAccount = new SavingsAccount(1000);
// aBankAccount holds a reference to a SavingsAccount

BankAccount anAccount = new CheckingAccount();
anAccount.deposit(1000);

// Calls "deposit" from CheckingAccount

Fall 2006 Adapted from Java Concepts Companion Slides 56

Polymorphism

• Compiler needs to check that only legal
methods are invoked

Object anObject = new BankAccount();
anObject.deposit(1000); // Wrong!

Fall 2006 Adapted from Java Concepts Companion Slides 57

Polymorphism

• Polymorphism: ability to refer to objects of
multiple types with varying behavior

• Polymorphism at work:

• Depending on types of amount and other,
different versions of withdraw and deposit
are called

public void transfer(double amount, BankAccount other)
{

withdraw(amount); // Shortcut for this.withdraw(amount)
other.deposit(amount);

}

Fall 2006 Adapted from Java Concepts Companion Slides 58

File AccountTester.java
01: /**
02: This program tests the BankAccount class and
03: its subclasses.
04: */
05: public class AccountTester
06: {
07: public static void main(String[] args)
08: {
09: SavingsAccount momsSavings
10: = new SavingsAccount(0.5);
11:
12: CheckingAccount harrysChecking
13: = new CheckingAccount(100);
14:
15: momsSavings.deposit(10000);
16:

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 59

File AccountTester.java

17: momsSavings.transfer(2000, harrysChecking);
18: harrysChecking.withdraw(1500);
19: harrysChecking.withdraw(80);
20:
21: momsSavings.transfer(1000, harrysChecking);
22: harrysChecking.withdraw(400);
23:
24: // Simulate end of month
25: momsSavings.addInterest();
26: harrysChecking.deductFees();
27:
28: System.out.println("Mom's savings balance = $“
29: + momsSavings.getBalance());
30:
31: System.out.println("Harry's checking balance = $“
32: + harrysChecking.getBalance());
33: }
34: }

Fall 2006 Adapted from Java Concepts Companion Slides 60

File BankAccount.java

01: /**
02: A bank account has a balance that can be changed by
03: deposits and withdrawals.
04: */
05: public class BankAccount
06: {
07: /**
08: Constructs a bank account with a zero balance.
09: */
10: public BankAccount()
11: {
12: balance = 0;
13: }
14:
15: /**
16: Constructs a bank account with a given balance.
17: @param initialBalance the initial balance
18: */ Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 61

File BankAccount.java

19: public BankAccount(double initialBalance)
20: {
21: balance = initialBalance;
22: }
23:
24: /**
25: Deposits money into the bank account.
26: @param amount the amount to deposit
27: */
28: public void deposit(double amount)
29: {
30: balance = balance + amount;
31: }
32:
33: /**
34: Withdraws money from the bank account.
35: @param amount the amount to withdraw
36: */ Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 62

File BankAccount.java
37: public void withdraw(double amount)
38: {
39: balance = balance - amount;
40: }
41:
42: /**
43: Gets the current balance of the bank account.
44: @return the current balance
45: */
46: public double getBalance()
47: {
48: return balance;
49: }
50:
51: /**
52: Transfers money from the bank account to another account
53: @param amount the amount to transfer
54: @param other the other account
55: */

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 63

File BankAccount.java
56: public void transfer(double amount, BankAccount other)
57: {
58: withdraw(amount);
59: other.deposit(amount);
60: }
61:
62: private double balance;
63: }

Fall 2006 Adapted from Java Concepts Companion Slides 64

File CheckingAccount.java
01: /**
02: A checking account that charges transaction fees.
03: */
04: public class CheckingAccount extends BankAccount
05: {
06: /**
07: Constructs a checking account with a given balance.
08: @param initialBalance the initial balance
09: */
10: public CheckingAccount(double initialBalance)
11: {
12: // Construct superclass
13: super(initialBalance);
14:
15: // Initialize transaction count
16: transactionCount = 0;
17: }
18: Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 65

File CheckingAccount.java
19: public void deposit(double amount)
20: {
21: transactionCount++;
22: // Now add amount to balance
23: super.deposit(amount);
24: }
25:
26: public void withdraw(double amount)
27: {
28: transactionCount++;
29: // Now subtract amount from balance
30: super.withdraw(amount);
31: }
32:
33: /**
34: Deducts the accumulated fees and resets the
35: transaction count.
36: */ Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 66

File CheckingAccount.java
37: public void deductFees()
38: {
39: if (transactionCount > FREE_TRANSACTIONS)
40: {
41: double fees = TRANSACTION_FEE *
42: (transactionCount - FREE_TRANSACTIONS);
43: super.withdraw(fees);
44: }
45: transactionCount = 0;
46: }
47:
48: private int transactionCount;
49:
50: private static final int FREE_TRANSACTIONS = 3;
51: private static final double TRANSACTION_FEE = 2.0;
52: }

Fall 2006 Adapted from Java Concepts Companion Slides 67

File SavingsAccount.java

01: /**
02: An account that earns interest at a fixed rate.
03: */
04: public class SavingsAccount extends BankAccount
05: {
06: /**
07: Constructs a bank account with a given interest rate.
08: @param rate the interest rate
09: */
10: public SavingsAccount(double rate)
11: {
12: interestRate = rate;
13: }
14:
15: /**
16: Adds the earned interest to the account balance.
17: */ Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 68

File SavingsAccount.java
18: public void addInterest()
19: {
20: double interest = getBalance() * interestRate / 100;
21: deposit(interest);
22: }
23:
24: private double interestRate;
25: }

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 69

File SavingsAccount.java

Mom's savings balance = $7035.0
Harry's checking balance = $1116.0

Output:

Fall 2006 Adapted from Java Concepts Companion Slides 70

Self Check

1. If a is a variable of type BankAccount that
holds a non-null reference, what do you
know about the object to which a refers?

2. If a refers to a checking account, what is
the effect of calling a.transfer(1000,
a)?

Fall 2006 Adapted from Java Concepts Companion Slides 71

Answers

1. The object is an instance of BankAccount
or one of its subclasses.

2. The balance of a is unchanged, and the
transaction count is incremented twice.

Fall 2006 Adapted from Java Concepts Companion Slides 72

Access Control
• Java has four levels of controlling access to

fields, methods, and classes:
public access

• Can be accessed by methods of all classes
private access

• Can be accessed only by the methods of their own
class

protected access
• See Advanced Topic 13.3

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 73

Access Control
• Java has four levels of controlling access to

fields, methods, and classes:
package access

• The default, when no access modifier is given
• Can be accessed by all classes in the same

package
• Good default for classes, but extremely

unfortunate for fields

Fall 2006 Adapted from Java Concepts Companion Slides 74

Recommended Access Levels

• Instance and static fields: Always private.
Exceptions:

public static final constants are useful and safe
Some objects, such as System.out, need to be
accessible to all programs (public)
Occasionally, classes in a package must collaborate
very closely (give some fields package access); inner
classes are usually better

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 75

Recommended Access Levels

• Methods: public or private

• Classes and interfaces: public or package
Better alternative to package access: inner classes

• In general, inner classes should not be public
(some exceptions exist, e.g., Ellipse2D.Double)

• Beware of accidental package access
(forgetting public or private)

Fall 2006 Adapted from Java Concepts Companion Slides 76

Self Check

1. What is a common reason for defining
package-visible instance fields?

2. If a class with a public constructor has
package access, who can construct
objects of it?

Fall 2006 Adapted from Java Concepts Companion Slides 77

Answers

1. Accidentally forgetting the private
modifier.

2. Any methods of classes in the same
package.

Fall 2006 Adapted from Java Concepts Companion Slides 78

Object: The Cosmic Superclass

• All classes defined without an explicit
extends clause automatically extend Object

Figure 8:
The Object Class is the Superclass of Every Java Class

Fall 2006 Adapted from Java Concepts Companion Slides 79

Object: The Cosmic Superclass

• Most useful methods:
String toString()
boolean equals(Object otherObject)
Object clone()

• Good idea to override these methods in
your classes

Fall 2006 Adapted from Java Concepts Companion Slides 80

Overriding the twostring Method

• Returns a string representation of the object

• Useful for debugging:

Continued…

Rectangle box = new Rectangle(5, 10, 20, 30);
String s = box.toString();
// Sets s to "java.awt.Rectangle[x=5,y=10,width=20,height=30]"

Fall 2006 Adapted from Java Concepts Companion Slides 81

Overriding the twostring Method

• toString is called whenever you concatenate
a string with an object:

• Object.toString prints class name and the
hash code of the object

"box=" + box;
// Result: "box=java.awt.Rectangle[x=5,y=10,width=20,height=30]"

BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString();
// Sets s to something like "BankAccount@d24606bf"

Fall 2006 Adapted from Java Concepts Companion Slides 82

Overriding the twostring Method

• To provide a nicer representation of an
object, override toString:

• This works better:

public String toString()
{

return "BankAccount[balance=" + balance + "]";
}

BankAccount momsSavings = new BankAccount(5000);
String s = momsSavings.toString();
// Sets s to "BankAccount[balance=5000]"

Fall 2006 Adapted from Java Concepts Companion Slides 83

Overriding the equals Method
• equals tests for equal contents

Figure 9:
Two References to
Equal Objects

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 84

Overriding the equals Method

• == tests for equal location

Figure 10:
Two References to the Same Object

Fall 2006 Adapted from Java Concepts Companion Slides 85

Overriding the equals Method
• Define the equals method to test whether

two objects have equal state

• When redefining equals method, you cannot
change object signature; use a cast instead:

Continued…

public class Coin
{

. . .
public boolean equals(Object otherObject)
{

Coin other = (Coin) otherObject;
return name.equals(other.name) && value == other.value;

}
. . .

}

Fall 2006 Adapted from Java Concepts Companion Slides 86

Overriding the equals Method

• You should also override the hashCode
method so that equal objects have the same
hash code

Fall 2006 Adapted from Java Concepts Companion Slides 87

Self Check

1. Should the call x.equals(x) always return
true?

2. Can you implement equals in terms of
toString? Should you?

Fall 2006 Adapted from Java Concepts Companion Slides 88

Answers

1. It certainly should–unless, of course, x is
null.

2. If toString returns a string that describes
all instance fields, you can simply call
toString on the implicit and explicit
parameters, and compare the results.
However, comparing the fields is more
efficient than converting them into strings.

Fall 2006 Adapted from Java Concepts Companion Slides 89

Overriding the clone Method

• Copying an object reference gives two
references to same object

Continued…

BankAccount account2 = account;

Fall 2006 Adapted from Java Concepts Companion Slides 90

Overriding the clone Method

Continued…

Object 11:
Cloning Objects

• Sometimes, need to make a copy of the object

Fall 2006 Adapted from Java Concepts Companion Slides 91

Overriding the clone Method

• Define clone method to make new object
(see Advanced Topic 13.6)

• Use clone:

• Must cast return value because return type is
Object

BankAccount clonedAccount = (BankAccount) account.clone();

Fall 2006 Adapted from Java Concepts Companion Slides 92

The Object.clone Method

• Creates shallow copies

Figure 12:
The Object.clone Method Makes a Shallow Copy

Fall 2006 Adapted from Java Concepts Companion Slides 93

The Object.clone Method

• Does not systematically clone all subobjects

• Must be used with caution

• It is declared as protected; prevents from
accidentally calling x.clone() if the class to
which x belongs hasn't redefined clone to
be public

• You should override the clone method with
care (see Advanced Topic 13.6)

Fall 2006 Adapted from Java Concepts Companion Slides 94

Scripting Languages

