
Fall 2006 Adapted from Java Concepts Companion Slides 1

Interfaces and
Polymorphism

Advanced Programming

ICOM 4015

Lecture 10

Reading: Java Concepts Chapter 11

Fall 2006 Adapted from Java Concepts Companion Slides 2

Chapter Goals

• To learn about interfaces

• To be able to convert between class and
interface references

• To understand the concept of polymorphism

• To appreciate how interfaces can be used to
decouple classes

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 3

Chapter Goals

• To learn how to implement helper classes as
inner classes

• To understand how inner classes access
variables from the surrounding scope

• To implement event listeners for timer events

Fall 2006 Adapted from Java Concepts Companion Slides 4

Using Interfaces for Code Reuse

• Use interface types to make code more
reusable

• In Chap. 7, we created a DataSet to find the
average and maximum of a set of values
(numbers)

• What if we want to find the average and
maximum of a set of BankAccount values?

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 5

Using Interfaces for Code Reuse
public class DataSet // Modified for BankAccount objects
{

. . .
public void add(BankAccount x)
{

sum = sum + x.getBalance();
if (count == 0 || maximum.getBalance() < x.getBalance())

maximum = x;
count++;

}

public BankAccount getMaximum()
{

return maximum;
}
private double sum;
private BankAccount maximum;
private int count;

}

Fall 2006 Adapted from Java Concepts Companion Slides 6

Using Interfaces for Code Reuse

• Or suppose we wanted to find the coin with
the highest value among a set of coins. We
would need to modify the DataSet class
again

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 7

Using Interfaces for Code Reuse
public class DataSet // Modified for Coin objects
{

. . .
public void add(Coin x)
{

sum = sum + x.getValue();
if (count == 0 || maximum.getValue() < x.getValue())

maximum = x;
count++;

}

public Coin getMaximum()
{

return maximum;
}
private double sum;
private Coin maximum;
private int count;

}

Fall 2006 Adapted from Java Concepts Companion Slides 8

Using Interfaces for Code Reuse
• The mechanics of analyzing the data is the

same in all cases; details of measurement
differ

• Classes could agree on a method
getMeasure that obtains the measure to be
used in the analysis

• We can implement a single reusable DataSet
class whose add method looks like this:
sum = sum + x.getMeasure();
if (count == 0 || maximum.getMeasure() < x.getMeasure())

maximum = x;
count++;

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 9

Using Interfaces for Code Reuse
• What is the type of the variable x?
x should refer to any class that has a
getMeasure method

• In Java, an interface type is used to specify
required operations

• Interface declaration lists all methods (and
their signatures) that the interface type
requires

public interface Measurable
{

double getMeasure();
}

Fall 2006 Adapted from Java Concepts Companion Slides 10

Interfaces vs. Classes

• An interface type is similar to a class, but
there are several important differences:

• All methods in an interface type are abstract;
they don't have an implementation

• All methods in an interface type are
automatically public

• An interface type does not have instance
fields

Fall 2006 Adapted from Java Concepts Companion Slides 11

Generic dataset for Measureable
Objects
public class DataSet
{

. . .
public void add(Measurable x)
{

sum = sum + x.getMeasure();
if (count == 0 || maximum.getMeasure() < x.getMeasure())

maximum = x;
count++;

}

public Measurable getMaximum()
{

return maximum;
}

private double sum;
private Measurable maximum;
private int count;

}

Fall 2006 Adapted from Java Concepts Companion Slides 12

Implementing an Interface Type
• Use implements keyword to indicate that a

class implements an interface type

• A class can implement more than one
interface type

Class must define all the methods that are required by
all the interfaces it implements

public class BankAccount implements Measurable
{

public double getMeasure()
{

return balance;
}
// Additional methods and fields

}

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 13

Implementing an Interface Type

• Another example:

public class Coin implements Measurable
{

public double getMeasure()
{

return value;
}
. . .

}

Fall 2006 Adapted from Java Concepts Companion Slides 14

UML Diagram of Dataset and
Related Classes

• Interfaces can reduce the coupling between
classes

• UML notation:
Interfaces are tagged with a "stereotype" indicator
«interface»
A dotted arrow with a triangular tip denotes the "is-a"
relationship between a class and an interface
A dotted line with an open v-shaped arrow tip denotes
the "uses" relationship or dependency

• Note that DataSet is decoupled from
BankAccount and Coin

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 15

UML Diagram of Dataset and
Related Classes

Figure 2:
UML Diagram of Dataset Class and the Classes that Implement the
Measurable Interface

Fall 2006 Adapted from Java Concepts Companion Slides 16

Syntax 11.1: Defining an Interface

public interface InterfaceName
{

// method signatures
}

Example:
public interface Measurable
{

double getMeasure();
}

Purpose:
To define an interface and its method signatures. The methods are
automatically public.

Fall 2006 Adapted from Java Concepts Companion Slides 17

Syntax 11.2: Implementing an
Interface

public class ClassName
implements InterfaceName, InterfaceName, ...

{
// methods
// instance variables

}

Example:
public class BankAccount implements Measurable
{

// Other BankAccount methods
public double getMeasure()
{

// Method implementation
}

}

Purpose:
To define a new class that implements the methods of an interface

Fall 2006 Adapted from Java Concepts Companion Slides 18

File DataSetTester.java
01: /**
02: This program tests the DataSet class.
03: */
04: public class DataSetTester
05: {
06: public static void main(String[] args)
07: {
08: DataSet bankData = new DataSet();
09:
10: bankData.add(new BankAccount(0));
11: bankData.add(new BankAccount(10000));
12: bankData.add(new BankAccount(2000));
13:
14: System.out.println("Average balance = "
15: + bankData.getAverage());
16: Measurable max = bankData.getMaximum();
17: System.out.println("Highest balance = "
18: + max.getMeasure()); Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 19

File DataSetTester.java
19:
20: DataSet coinData = new DataSet();
21:
22: coinData.add(new Coin(0.25, "quarter"));
23: coinData.add(new Coin(0.1, "dime"));
24: coinData.add(new Coin(0.05, "nickel"));
25:
26: System.out.println("Average coin value = "
27: + coinData.getAverage());
28: max = coinData.getMaximum();
29: System.out.println("Highest coin value = "
30: + max.getMeasure());
31: }
32: }

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 20

File DataSetTester.java

Average balance = 4000.0
Highest balance = 10000.0
Average coin value = 0.13333333333333333
Highest coin value = 0.25

Output:

Fall 2006 Adapted from Java Concepts Companion Slides 21

Self Check

1. Suppose you want to use the DataSet class
to find the Country object with the largest
population. What condition must the
Country class fulfill?

2. Why can't the add method of the DataSet
class have a parameter of type Object?

Fall 2006 Adapted from Java Concepts Companion Slides 22

Answers

1. It must implement the Measurable
interface, and its getMeasure method must
return the population

2. The Object class doesn't have a
getMeasure method, and the add method
invokes the getMeasure method

Fall 2006 Adapted from Java Concepts Companion Slides 23

Converting Between Class and
Interface Types

• You can convert from a class type to an
interface type, provided the class implements
the interface

• BankAccount account = new BankAccount(10000);
Measurable x = account; // OK

Coin dime = new Coin(0.1, "dime");
Measurable x = dime; // Also OK

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 24

Converting Between Class and
Interface Types

• Cannot convert between unrelated types

Because Rectangle doesn't implement
Measurable

Measurable x = new Rectangle(5, 10, 20, 30); // ERROR

Fall 2006 Adapted from Java Concepts Companion Slides 25

Casts

• Add coin objects to DataSet

• What can you do with it? It's not of type Coin

DataSet coinData = new DataSet();
coinData.add(new Coin(0.25, "quarter"));
coinData.add(new Coin(0.1, "dime"));
. . .
Measurable max = coinData.getMaximum(); // Get the largest coin

String name = max.getName(); // ERROR

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 26

Casts

• You need a cast to convert from an interface
type to a class type

• You know it's a coin, but the compiler
doesn't. Apply a cast:

• If you are wrong and max isn't a coin, the JRE
thows an exception

Coin maxCoin = (Coin) max;
String name = maxCoin.getName();

Fall 2006 Adapted from Java Concepts Companion Slides 27

Casts

• Difference with casting numbers:
When casting number types you agree to the
information loss
When casting object types you agree to that risk of
causing an exception

Fall 2006 Adapted from Java Concepts Companion Slides 28

Self Check

1. Can you use a cast (BankAccount) x to
convert a Measurable variable x to a
BankAccount reference?

2. If both BankAccount and Coin implement
the Measurable interface, can a Coin
reference be converted to a BankAccount
reference?

Fall 2006 Adapted from Java Concepts Companion Slides 29

Answers

1. Only if x actually refers to a BankAccount
object.

2. No–a Coin reference can be converted to a
Measurable reference, but if you attempt to
cast that reference to a BankAccount, an
exception occurs.

Fall 2006 Adapted from Java Concepts Companion Slides 30

Polymorphism

• Interface variable holds reference to object of
a class that implements the interface
Measurable x;

Note that the object to which x refers doesn't
have type Measurable; the type of the object
is some class that implements the
Measurable interface

Continued…

x = new BankAccount(10000);
x = new Coin(0.1, "dime");

Fall 2006 Adapted from Java Concepts Companion Slides 31

Polymorphism

• You can call any of the interface methods:

• Which method is called?

double m = x.getMeasure();

Fall 2006 Adapted from Java Concepts Companion Slides 32

Polymorphism

• Depends on the actual object.

• If x refers to a bank account, calls
BankAccount.getMeasure

• If x refers to a coin, calls Coin.getMeasure

• Polymorphism (many shapes): Behavior can
vary depending on the actual type of an
object

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 33

Polymorphism

• Called late binding: resolved at runtime

• Different from overloading; overloading is
resolved by the compiler (early binding)

Fall 2006 Adapted from Java Concepts Companion Slides 34

Self Check

1. Why is it impossible to construct a
Measurable object?

2. Why can you nevertheless declare a
variable whose type is Measurable?

3. What do overloading and polymorphism
have in common? Where do they differ?

Fall 2006 Adapted from Java Concepts Companion Slides 35

Answers

1. Measurable is an interface. Interfaces have
no fields and no method implementations.

2. That variable never refers to a Measurable
object. It refers to an object of some class–a
class that implements the Measurable
interface.

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 36

Answers

3. Both describe a situation where one method
name can denote multiple methods.
However, overloading is resolved early by
the compiler, by looking at the types of the
parameter variables. Polymorphism is
resolved late, by looking at the type of the
implicit parameter object just before making
the call.

Fall 2006 Adapted from Java Concepts Companion Slides 37

Using Interfaces for Callbacks
• Limitations of Measurable interface:

• Can add Measurable interface only to
classes under your control

• Can measure an object in only one way
E.g., cannot analyze a set of savings
accounts both by bank balance and by
interest rate

• Callback mechanism: allows a class to call
back a specific method when it needs more
information

Fall 2006 Adapted from Java Concepts Companion Slides 38

Using Interfaces for Callbacks
• In previous DataSet implementation,

responsibility of measuring lies with the
added objects themselves

• Alternative: Hand the object to be measured
to a method:

• Object is the "lowest common denominator"
of all classes

public interface Measurer
{

double measure(Object anObject);
}

Fall 2006 Adapted from Java Concepts Companion Slides 39

Using Interfaces for Callbacks

• add method asks measurer (and not the
added object) to do the measuring

public void add(Object x)
{

sum = sum + measurer.measure(x);
if (count == 0 || measurer.measure(maximum) < measurer.measure(x))

maximum = x;
count++;

}

Fall 2006 Adapted from Java Concepts Companion Slides 40

Using Interfaces for Callbacks

• You can define measurers to take on any
kind of measurement

public class RectangleMeasurer implements Measurer
{

public double measure(Object anObject)
{

Rectangle aRectangle = (Rectangle) anObject;
double area = aRectangle.getWidth() * aRectangle.getHeight();
return area;

}
}

Fall 2006 Adapted from Java Concepts Companion Slides 41

Using Interfaces for Callbacks

• Must cast from Object to Rectangle

• Pass measurer to data set constructor:

Rectangle aRectangle = (Rectangle) anObject;

Measurer m = new RectangleMeasurer();
DataSet data = new DataSet(m);
data.add(new Rectangle(5, 10, 20, 30));
data.add(new Rectangle(10, 20, 30, 40));
. . .

Fall 2006 Adapted from Java Concepts Companion Slides 42

UML Diagram of Measurer
Interface and Related Classes

• Note that the Rectangle class is decoupled
from the Measurer interface

Figure 2:
UML Diagram of the DataSet Class and the Measurer Interface

Fall 2006 Adapted from Java Concepts Companion Slides 43

File DataSet.java
01: /**
02: Computes the average of a set of data values.
03: */
04: public class DataSet
05: {
06: /**
07: Constructs an empty data set with a given measurer.
08: @param aMeasurer the measurer that is used to

// measure data values
09: */
10: public DataSet(Measurer aMeasurer)
11: {
12: sum = 0;
13: count = 0;
14: maximum = null;
15: measurer = aMeasurer;
16: }
17: Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 44

File DataSet.java
18: /**
19: Adds a data value to the data set.
20: @param x a data value
21: */
22: public void add(Object x)
23: {
24: sum = sum + measurer.measure(x);
25: if (count == 0
26: || measurer.measure(maximum)

< measurer.measure(x))
27: maximum = x;
28: count++;
29: }
30:
31: /**
32: Gets the average of the added data.
33: @return the average or 0 if no data has been added
34: */

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 45

File DataSet.java
35: public double getAverage()
36: {
37: if (count == 0) return 0;
38: else return sum / count;
39: }
40:
41: /**
42: Gets the largest of the added data.
43: @return the maximum or 0 if no data has been added
44: */
45: public Object getMaximum()
46: {
47: return maximum;
48: }
49: Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 46

File DataSet.java
50: private double sum;
51: private Object maximum;
52: private int count;
53: private Measurer measurer;
54: }

Fall 2006 Adapted from Java Concepts Companion Slides 47

File DataSetTester2.java
01: import java.awt.Rectangle;
02:
03: /**
04: This program demonstrates the use of a Measurer.
05: */
06: public class DataSetTester2
07: {
08: public static void main(String[] args)
09: {
10: Measurer m = new RectangleMeasurer();
11:
12: DataSet data = new DataSet(m);
13:
14: data.add(new Rectangle(5, 10, 20, 30));
15: data.add(new Rectangle(10, 20, 30, 40));
16: data.add(new Rectangle(20, 30, 5, 10));
17: Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 48

File DataSetTester2.java
18: System.out.println("Average area = " + data.getAverage());
19: Rectangle max = (Rectangle) data.getMaximum();
20: System.out.println("Maximum area rectangle = " + max);
21: }
22: }

Fall 2006 Adapted from Java Concepts Companion Slides 49

File Measurer.java
01: /**
02: Describes any class whose objects can measure other objects.
03: */
04: public interface Measurer
05: {
06: /**
07: Computes the measure of an object.
08: @param anObject the object to be measured
09: @return the measure
10: */
11: double measure(Object anObject);
12: }

Fall 2006 Adapted from Java Concepts Companion Slides 50

File RectangleMeasurer.java
01: import java.awt.Rectangle;
02:
03: /**
04: Objects of this class measure rectangles by area.
05: */
06: public class RectangleMeasurer implements Measurer
07: {
08: public double measure(Object anObject)
09: {
10: Rectangle aRectangle = (Rectangle) anObject;
11: double area = aRectangle.getWidth()

* aRectangle.getHeight();
12: return area;
13: }
14: }
15:

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 51

File RectangleMeasurer.java

Average area = 616.6666666666666
Maximum area rectangle = java.awt.Rectangle[x=10,y=20,

// width=30,height=40]

Output:

Fall 2006 Adapted from Java Concepts Companion Slides 52

Self Check
1. Suppose you want to use the DataSet class

of Section 11.1 to find the longest String
from a set of inputs. Why can't this work?

2. How can you use the DataSet class of this
section to find the longest String from a
set of inputs?

3. Why does the measure method of the
Measurer interface have one more
parameter than the getMeasure method of
the Measurable interface?

Fall 2006 Adapted from Java Concepts Companion Slides 53

Answers

1. The String class doesn't implement the
Measurable interface.

2. Implement a class StringMeasurer that
implements the Measurer interface.

3. A measurer measures an object, whereas
getMeasure measures "itself", that is, the
implicit parameter.

Fall 2006 Adapted from Java Concepts Companion Slides 54

Inner Classes

• Trivial class can be defined inside a method

public class DataSetTester3
{

public static void main(String[] args)
{

class RectangleMeasurer implements Measurer
{

. . .
}
Measurer m = new RectangleMeasurer();
DataSet data = new DataSet(m); . . .

}
}

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 55

Inner Classes

• If inner class is defined inside an enclosing
class, but outside its methods, it is available
to all methods of enclosing class

• Compiler turns an inner class into a regular
class file:

DataSetTester1RectangleMeasurer.class

Fall 2006 Adapted from Java Concepts Companion Slides 56

Syntax 11.3: Inner Classes
Declared inside a method

class OuterClassName
{

method signature
{

. . .
class InnerClassName
{

// methods
// fields

}
. . .

}
. . .

}

Declared inside the class

class OuterClassName
{

// methods
// fields
accessSpecifier class

InnerClassName
{

// methods
// fields

}
. . .

}

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 57

Syntax 11.3: Inner Classes
Example:
public class Tester
{

public static void main(String[] args)
{

class RectangleMeasurer implements Measurer
{

. . .
}
. . .

}
}

Purpose:
To define an inner class whose scope is restricted to a single method or
the methods of a single class

Fall 2006 Adapted from Java Concepts Companion Slides 58

File FileTester3.java

01: import java.awt.Rectangle;
02:
03: /**
04: This program demonstrates the use of a Measurer.
05: */
06: public class DataSetTester3
07: {
08: public static void main(String[] args)
09: {
10: class RectangleMeasurer implements Measurer
11: {
12: public double measure(Object anObject)
13: {
14: Rectangle aRectangle = (Rectangle) anObject;
15: double area
16: = aRectangle.getWidth()

* aRectangle.getHeight();
17: return area; Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 59

File FileTester3.java
18: }
19: }
20:
21: Measurer m = new RectangleMeasurer();
22:
23: DataSet data = new DataSet(m);
24:
25: data.add(new Rectangle(5, 10, 20, 30));
26: data.add(new Rectangle(10, 20, 30, 40));
27: data.add(new Rectangle(20, 30, 5, 10));
28:
29: System.out.println("Average area = " + data.getAverage());
30: Rectangle max = (Rectangle) data.getMaximum();
31: System.out.println("Maximum area rectangle = " + max);
32: }
33: }

Fall 2006 Adapted from Java Concepts Companion Slides 60

Self Test

1. Why would you use an inner class instead
of a regular class?

2. How many class files are produced when
you compile the DataSetTester3
program?

Fall 2006 Adapted from Java Concepts Companion Slides 61

Answers

1. Inner classes are convenient for
insignificant classes. Also, their methods
can access variables and fields from the
surrounding scope.

2. Four: one for the outer class, one for the
inner class, and two for the DataSet and
Measurer classes.

Fall 2006 Adapted from Java Concepts Companion Slides 62

Processing Timer Events

• javax.swing.Timer generates equally
spaced timer events

• Useful whenever you want to have an object
updated in regular intervals

• Sends events to action listener
public interface ActionListener
{

void actionPerformed(ActionEvent event);
}

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 63

Processing Timer Events

• Define a class that implements the
ActionListener interface

class MyListener implements ActionListener
{

void actionPerformed(ActionEvent event)
{

// This action will be executed at each timer event
Place listener action here

}
}

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 64

Processing Timer Events

• Add listener to timer

MyListener listener = new MyListener();
Timer t = new Timer(interval, listener);
t.start();

Fall 2006 Adapted from Java Concepts Companion Slides 65

Example: Countdown

• Example: a timer that counts down to zero

Figure 3:
Running the TimeTester Program

Fall 2006 Adapted from Java Concepts Companion Slides 66

File TimeTester.java
01: import java.awt.event.ActionEvent;
02: import java.awt.event.ActionListener;
03: import javax.swing.JOptionPane;
04: import javax.swing.Timer;
05:
06: /**
07: This program tests the Timer class.
08: */
09: public class TimerTester
10: {
11: public static void main(String[] args)
12: {
13: class CountDown implements ActionListener
14: {
15: public CountDown(int initialCount)
16: {
17: count = initialCount;
18: } Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 67

File TimeTester.java

19:
20: public void actionPerformed(ActionEvent event)
21: {
22: if (count >= 0)
23: System.out.println(count);
24: if (count == 0)
25: System.out.println("Liftoff!");
26: count--;
27: }
28:
29: private int count;
30: }
31:
32: CountDown listener = new CountDown(10);
33:
34: final int DELAY = 1000; // Milliseconds between

// timer ticks Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 68

File TimeTester.java
35: Timer t = new Timer(DELAY, listener);
36: t.start();
37:
38: JOptionPane.showMessageDialog(null, "Quit?");
39: System.exit(0);
40: }
41: }

Fall 2006 Adapted from Java Concepts Companion Slides 69

Self Check

1. Why does a timer require a listener object?

2. How many times is the actionPerformed
method called in the preceding program?

Fall 2006 Adapted from Java Concepts Companion Slides 70

Answers

1. The timer needs to call some method
whenever the time interval expires. It calls
the actionPerformed method of the
listener object.

2. It depends. The method is called once per
second. The first eleven times, it prints a
message. The remaining times, it exits
silently. The timer is only terminated when
the user quits the program.

Fall 2006 Adapted from Java Concepts Companion Slides 71

Accessing Surrounding Variables

• Methods of inner classes can access
variables that are defined in surrounding
scope

• Useful when implementing event handlers

• Example: Animation
Ten times per second, we will move a shape
to a different position

Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 72

Accessing Surrounding Variables

class Mover implements ActionListener
{

public void actionPerformed(ActionEvent event)
{

// Move the rectangle
}

}

ActionListener listener = new Mover();
final int DELAY = 100;
// Milliseconds between timer ticks
Timer t = new Timer(DELAY, listener);
t.start();

Fall 2006 Adapted from Java Concepts Companion Slides 73

Accessing Surrounding Variables
• The actionPerformed method can access

variables from the surrounding scope, like this:
public static void main(String[] args)
{

. . .
final Rectangle box = new Rectangle(5, 10, 20, 30);

class Mover implements ActionListener
{

public void actionPerformed(ActionEvent event)
{

// Move the rectangle
box.translate(1, 1);

}
}
. . .

}

Fall 2006 Adapted from Java Concepts Companion Slides 74

Accessing Surrounding Variables

• Local variables that are accessed by an
inner-class method must be declared as final

• Inner class can access fields of surrounding
class that belong to the object that
constructed the inner class object

• An inner class object created inside a static
method can only access static surrounding
fields

Fall 2006 Adapted from Java Concepts Companion Slides 75

File TimeTester2.java
01: import java.awt.Rectangle;
02: import java.awt.event.ActionEvent;
03: import java.awt.event.ActionListener;
04: import javax.swing.JOptionPane;
05: import javax.swing.Timer;
06:
07: /**
08: This program uses a timer to move a rectangle once per second.
09: */
10: public class TimerTester2
11: {
12: public static void main(String[] args)
13: {
14: final Rectangle box = new Rectangle(5, 10, 20, 30);
15:
16: class Mover implements ActionListener
17: { Continued…

Fall 2006 Adapted from Java Concepts Companion Slides 76

File TimeTester2.java
18: public void actionPerformed(ActionEvent event)
19: {
20: box.translate(1, 1);
21: System.out.println(box);
22: }
23: }
24:
25: ActionListener listener = new Mover();
26:
27: final int DELAY = 100; // Milliseconds between timer ticks
28: Timer t = new Timer(DELAY, listener);
29: t.start();
30:
31: JOptionPane.showMessageDialog(null, "Quit?");
32: System.out.println("Last box position: " + box);
33: System.exit(0);
34: }
35: }

Fall 2006 Adapted from Java Concepts Companion Slides 77

File TimeTester2.java

java.awt.Rectangle[x=6,y=11,width=20,height=30]
java.awt.Rectangle[x=7,y=12,width=20,height=30]
java.awt.Rectangle[x=8,y=13,width=20,height=30] . . .
java.awt.Rectangle[x=28,y=33,width=20,height=30]
java.awt.Rectangle[x=29,y=34,width=20,height=30]
Last box position: java.awt.Rectangle[x=29,y=34,width=20,height=30]

Output:

Fall 2006 Adapted from Java Concepts Companion Slides 78

Self Check

1. Why would an inner class method want to
access a variable from a surrounding
scope?

2. If an inner class accesses a local variable
from a surrounding scope, what special
rule applies?

Fall 2006 Adapted from Java Concepts Companion Slides 79

Answers

1. Direct access is simpler than the
alternative–passing the variable as a
parameter to a constructor or method.

2. The local variable must be declared as
final.

Fall 2006 Adapted from Java Concepts Companion Slides 80

Operating Systems

Figure 4:
A Graphical Software Environment for the Linux Operating System

