Arrays and Array Lists

Advanced Programming
ICOM 4015
Lecture /

Reading: Java Concepts Chapter 8

Fall 2006 Slides adapted from Java Concepts companion slides

Lecture Goals

« To become familiar with using arrays and
array lists

To learn about wrapper classes, auto-boxing
and the generalized for loop

To study common array algorithms
To learn how to use two-dimensional arrays

To understand when to choose array lists and
arrays in your programs

To implement partially filled arrays

Fall 2006 Slides adapted from Java Concepts companion slides

Arrays

 Array: Sequence of values of the same type

 Construct array:

new double[10]

e Storein variable of type double[]

double[] data = new double[10];

Continued...

Fall 2006 Slides adapted from Java Concepts companion slides

Arrays

« When array Is created, all values are
initialized depending on array type:
= Numbers: O
= Boolean: false
* Object References: null

Fall 2006 Slides adapted from Java Concepts companion slides

data = double[]

Figure 1:
An Array Reference and an Array

Fall 2006 Slides adapted from Java Concepts companion slides

Arrays

« Use [] to access an element

data]2] = 29.95;

ol double[]

[0]
[1]
[2]
(3]
[4]
[5]
[6]
Figure 2: (7]

Storing a Value in an Array [8]
[9]

Fall 2006 Slides adapted f

Arrays

e Using the value stored.:

System.out.printin("'The value of this data item is " + data[4]);

 Get array length as data. length. (Not a
method!)

 Index values range from O to length - 1

Continued...

Fall 2006 Slides adapted from Java Concepts companion slides

Arrays

 Accessing a nonexistent element results in a
pounds error

double[] data = new double[10];
data[10] = 29.95; // ERROR

e Limitation: Arrays have fixed length

Fall 2006 Slides adapted from Java Concepts companion slides

Syntax 8.1: Array Construction

new typeName[length]

Example:
new double[10]

Purpose:
To construct an array with a given number of elements

Fall 2006 Slides adapted from Java Concepts companion slides

Syntax 8.2: Array Element Access

arrayReference[index]

Example:
data[2]

Purpose:
To access an element in an array

Fall 2006 Slides adapted from Java Concepts companion slides

Self Check

1. What elements does the data array contain
after the following statements?

double[] data = new double[10];
for (int 1 = 0; 1 < data.length; 1++) datafi] =1 * 1;

Fall 2006 Slides adapted from Java Concepts companion slides

Self Check

2. What do the following program segments
print? Or, if there is an error, describe the
error and specify whether it is detected at
compile-time or at run-time.

double[] a = new double[10];
System.out.printin(a[0]);
double[] b = new double[10];
System.out.printin(b[10]);
double[] c;
System.out.printin(c[0]);

Fall 2006 Slides adapted from Java Concepts companion slides

ANnswers

1. 0,1,4,09, 16, 25, 36, 49, 64, 81, but not 100

2.

1. O
2. arun-time error: array index out of bounds

3. a compile-time error: c is not initialized

Fall 2006 Slides adapted from Java Concepts companion slides

Array Lists

« The ArrayList class manages a seguence
of objects

« Can grow and shrink as needed

e ArrayList class supplies methods for many

common tasks, such as inserting and
removing elements

Continued...

Fall 2006 Slides adapted from Java Concepts companion slides 14

Array Lists

« The ArrayList class is a generic class:
ArrayLi1st<T> collects objects of type T:

ArrayList<BankAccount> accounts = new ArrayList<BankAccount>();
accounts.add(new BankAccount(1001));
accounts.add(new BankAccount(1015));
accounts.add(new BankAccount(1022));

e size method yields number of elements

Fall 2006 Slides adapted from Java Concepts companion slides

Retrieving Array List Elements

Use get method

ndex starts at O

BankAccount anAccount = accounts.get(2);
// gets the third element of the array list

Bounds error if index Is out of range

Continued...

Fall 2006 Slides adapted from Java Concepts companion slides 16

Retrieving Array List Elements

e Most common bounds error:

INt 1 = accounts.size();
anAccount = accounts.get(i1); // Error
// legal i1ndex values are 0. . .1-1

Fall 2006 Slides adapted from Java Concepts companion slides

Adding Elements

e set overwrites an existing value

BankAccount anAccount = new BankAccount(1729);
accounts.set(2, anAccount);

e add adds a new value before the index

accounts.add(i, a)

Continued...

Fall 2006 Slides adapted from Java Concepts companion slides 18

Adding Elements

Figure 3:
Adding an Element in the
Middle of an Array List

Fall 2006 Slides adapted from Java Concepts companion slides

Removing Elements

e remove removes an element at an index

Accounts.remove(l)

Continued...

Fall 2006 Slides adapted from Java Concepts companion slides 20

Removing Elements

Figure 4.
Removing an Element in
the Middle of an Array List

Fall 2006 Slides adapted from Java Concepts companion slides

File: ArrayListTester. java

O1l: mmport java.util_ArrayList;

()24

03: /**

04: This program tests the ArrayList class.
05: */

06: public class ArrayListTester

07: {

08: public static void main(String[] args)
09: {

10: ArrayList<BankAccount> accounts

11: = new ArrayList<BankAccount>();
12: accounts.add(new BankAccount(1001));
13: accounts.add(new BankAccount(1015));
14: accounts.add(new BankAccount(1729));
15: accounts.add(l, new BankAccount(1008));
16: accounts.remove(0);

Continued...
Fall 2006 Slides adapted from Java Concepts companion slides 22

File: ArrayListTester. java

17:

18: System.out.printIn('size=" + accounts.size());
19: BankAccount first = accounts.get(0);

20: System.out.printIn(’"first account number="

21: + First.getAccountNumber());

22: BankAccount last = accounts.get(accounts.size()
23: System.out.printIn('last account number="

24 : + last.getAccountNumber());

25: }

26: }

ain £2UU9u OIMMUTS auapyiTtu 1muritT Java CUTICTULS LUTTTPATrnmurT Siiutco

File: BankAccount. java

01: /**

(0)22 A bank account has a balance that can be changed by
03: deposits and withdrawals.

04: */

05: public class BankAccount

06: {
07: /**

08: Constructs a bank account with a zero balance

09: @param anAccountNumber the account number for this account
10: */

11: public BankAccount(int anAccountNumber)

12: {

13: accountNumber = anAccountNumber;

14: balance = 0O;

15:

16: Continued...

Fall 2006 Slides adapted from Java Concepts companion slides

File: BankAccount. java

17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27
28:
29:
30:
31:
32:
33:
34:
35:

/**
Constructs a bank account with a given balance
@param anAccountNumber the account number for this account
@param initialBalance the 1nitial balance
*/
public BankAccount(int anAccountNumber, double 1nitialBalance)
{
accountNumber = anAccountNumber;
balance = initialBalance;

}

/**
Gets the account number of this bank account.
@return the account number

*/

public 1Int getAccountNumber()

{

return accountNumber;
s Continued...

File: BankAccount. java

36:

37: /**

38: Deposits money into the bank account.
39: @param amount the amount to deposit
40: */

41 : public void deposit(double amount)

42: {

43: double newBalance = balance + amount;
44 : balance = newBalance;

45: }

46:

47 : /**

48: Withdraws money from the bank account.
49: @param amount the amount to withdraw
50: */

51: public void withdraw(double amount)

S52: {

53: double newBalance = balance - amount; Continued...
54: balance = newBalance;

File: BankAccount. java

55: }

56:

57: /**

58: Gets the current balance of the bank account.
59: @return the current balance
60: */

61: public double getBalance()

62: {

63: return balance;

64: }

65:

66: private int accountNumber;

67: private double balance;

68: }

Output
) PA=X]

first account number=1008 ompanion slides
last account number=1729

Self Check

How do you construct an array of 10
strings? An array list of strings?

What is the content of names after the
following statements?

ArrayList<String> names = new ArrayList<String>();
names.add("'A");

names.add(0, "B");

names.add("'C");

names.remove(l);

Fall 2006 Slides adapted from Java Concepts companion slides

ANnswers

new String[10];
new ArrayList<String>();

2. names contains the strings "B" and "C" at
positions 0 and 1

Fall 2006 Slides adapted from Java Concepts companion slides

Wrappers

 You cannot insert primitive types directly
Into array lists

e To treat primitive type values as objects, you
must use wrapper classes:

ArrayList<Double> data = new ArrayList<Double>();
data.add(29.95);

double x = data.get(0);

Continued...
Fall 2006 Slides adapted from Java Concepts companion slides 30

Wrappers

Double

value = 29.95

Figure 5:
An Object of a Wrapper Class

Fall 2006 Slides adapted from Java Concepts companion slides

Wrappers

« There are wrapper classes for all eight

prlmltlve types Primitive Type Wrapper Class

byte Byte
boolean Boolean
char Character
double Double
float Float

int Integer

long Long

Fall 2006 Slides adapted fro

Auto-boxing

e Auto-boxing: Starting with Java 5.0,
conversion between primitive types and the
corresponding wrapper classes is automatic.

Double d = 29.95; // auto-boxing; same as Double d =
new Double(29.95);

double x = d; // auto-unboxing; same as double x =
d.doubleValue();

Continued...

Fall 2006 Slides adapted from Java Concepts companion slides 33

Auto-boxing

 Auto-boxing even works inside arithmetic
expressions

Double e = d + 1;

Means:
auto-unbox d into a double
add 1
auto-box the result into a new Double
store a reference to the newly created wrapper object
In e

Fall 2006 Slides adapted from Java Concepts companion slides 34

Self Check

1. What is the difference between the types
double and Double?

2. Suppose datais an ArrayList<Double> of

size > 0. How do you increment the element
with index 0?

Fall 2006 Slides adapted from Java Concepts companion slides

ANnswers

1. double is one of the eight primitive types.
Double is a class type.

2. data.set(0, data.get(0) + 1);

Fall 2006 Slides adapted from Java Concepts companion slides

The Generalized for Loop

e Traverses all elements of a collection:

double[] data = . . _;

double sum = 0O;

for (double e - data) // You should read this loop as
"for each e 1In data"

1
}

sum = sum + e;

Continued...
Fall 2006 Slides adapted from Java Concepts companion slides 37

The Generalized for Loop

e Traditional alternative:

double[] data = . . _;
double sum = O;
for (int i = 0; i < data.length; i++)
{
double e = data[i];
sum = sum + e;

}

Fall 2006 Slides adapted from Java Concepts companion slides

The Generalized for Loop

 Works for ArrayLiIsts too:

ArrayList<BankAccount> accounts = . . . ;
double sum = O;
for (BankAccount a : accounts)

1
¥

sum = sum + a.getBalance();

Fall 2006 Slides adapted from Java Concepts companion slides

The Generalized for Loop

 Equivalent to the following ordinary for
loop:

double sum 0;
for (int 1 O; 1 < accounts.size(); 1++)
{

BankAccount a = accounts.get(i);

sum = sum + a.getBalance();

}

Fall 2006 Slides adapted from Java Concepts companion slides

Syntax 8.3: The "for each"” Loop

for (Type variable : collection)
statement

Example:
for (double e : data)

sum = sum + e;

Purpose:
To execute aloop for each element in the collection. In each iteration,

the variable is assigned the next element of the collection. Then the
statement is executed.

Fall 2006 Slides adapted from Java Concepts companion slides

Self Check

1. Write a"for each" loop that prints all
elements in the array data

2. Why is the "for each" loop not an

appropriate shortcut for the following
ordinary for loop?

for (int 1 = 0; 1 < data.length; i1++) datafi] =1 * 1;

Fall 2006 Slides adapted from Java Concepts companion slides

ANnswers

1. for (double x : data) System.out.printin(x);

2. The loop writes a value into data[1]. The

"for each" loop does not have the index
variable 1.

Fall 2006 Slides adapted from Java Concepts companion slides

Simple Array Algorithms:
Counting Matches

e Check all elements and count the matches
until you reach the end of the array list.

public class Bank

{

public 1nt count(double atlLeast)
{
Int matches = 0O;
for (BankAccount a : accounts)
{
iIT (a.getBalance() >= atlLeast) matches++;
// Found a match
s

return matches;

}

private ArrayList<BankAccount> accounts;

}

Simple Array Algorithms:
Finding a Value

 Check all elements until you have found a
match.

public class Bank

{

public BankAccount find(int accountNumber)

{

for (BankAccount a : accounts)

{

IT (a.getAccountNumber() == accountNumber) // Found a match
return a;

}

return null; // No match 1In the entire array list

}

Simple Array Algorithms:
Finding the Maximum or Minimum

* |nitialize a candidate with the starting
element

« Compare candidate with remaining elements

 Update it if you find a larger or smaller value

Continued...
Fall 2006 Slides adapted from Java Concepts companion slides 46

Simple Array Algorithms:
Finding the Maximum or Minimum

« Example:

BankAccount largestYet = accounts.get(0);
for (int 1 = 1; 1 < accounts.size(); i++)
{
BankAccount a = accounts.get(i);
1T (a.getBalance() > largestYet.getBalance())
largestYet = a;

}

return largestYet;

Fall 2006 Slides adapted from Java Concepts companion slides

Simple Array Algorithms:
Finding the Maximum or Minimum

 Works only if there is at least one element In
the array list

o If list is empty, return null

iIT (accounts.size() == 0) return null;
BankAccount largestYet = accounts.get(0);

Fall 2006 Slides adapted from Java Concepts companion slides

File Bank. jJava

O1:
02:
03:
(07
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

import java.util_ArrayList;

/**

This bank contains a collection of bank accounts.
*/
public class Bank

{
/**
Constructs a bank with no bank accounts.
*/
public Bank()
{

}

/**

accounts = new ArrayList<BankAccount>();

Adds an account to this bank.
@param a the account to add

4 Continued...

File Bank. Java

20: public void addAccount(BankAccount a)
21: {

22: accounts.add(a);

23: }

24 :

25: /**

26: Gets the sum of the balances of all accounts In this bank.
27 @return the sum of the balances
28: */

29: public double getTotalBalance()

30: {

31: double total = O;

32: for (BankAccount a : accounts)

33: {

34: total = total + a.getBalance();
35: }

36: return total;

37:

38- Continued...

File Bank. jJava

39: /**

40: Counts the number of bank accounts whose balance i1s at
41 : least a given value.

42: @param atlLeast the balance required to count an account
43: @return the number of accounts having least the given
// balance

44 */

45: count(atLeast)

46:

47 - matches = 0;

48: (BankAccount a : accounts)

49:

50: (a.getBalance() >= atlLeast) matches++; // Found
//

51:

52: matches;

S3: Continued...
54:

Fall 2006 Slides adapted from Java Concepts companion slides 51

File Bank. jJava

55:
56:
57:
58:
59:
60:
61:
62:
63:
64 :
65:

66:
67:
68:
69:
70:

/**
Finds a bank account with a given number.
@param accountNumber the number to find
@return the account with the given number, or null
IT there 1s no such account
*/
public BankAccount find(int accountNumber)

{

for (BankAccount a : accounts)

{

1T (a.getAccountNumber() == accountNumber)
// Found a match
return a;

}

return null; // No match In the entire array list

Continued...

File Bank. jJava

71:
(2:
73:
74:
75:
76:
77-
/8-
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90: }

/**
Gets the bank account with the largest balance.
@return the account with the largest balance, or
null 1T the bank has no accounts
*/
public BankAccount getMaximum()
{
1T (accounts.size() == 0) return null;
BankAccount largestYet = accounts.get());
for (int i = 1; i < accounts.size(); i++)
{
BankAccount a = accounts.get(i);
iIT (a.getBalance() > largestYet.getBalance())
largestYet = a;

}

return largestYet;

}

private ArrayList<BankAccount> accounts;

File BankTester. java

O1l: /**
02: This program tests the Bank class.
03: */
O4: public class BankTester
05: {
06: public static void main(String[] args)
07: {
08: Bank firstBankOfJava = new Bank();
09: FTirstBankOfJava.addAccount(new BankAccount(1001, 20000));
10: FTirstBankOfJava.addAccount(new BankAccount(1015, 10000));
11: firstBankOfJava.addAccount(new BankAccount(1729, 15000));
12:
13: double threshold = 15000;
14: int ¢ = firstBankOfJava.count(threshold);
15: System.out.printin(c + " accounts with balance >= "
+ threshold);

Fall 2006 Slides adapted from Java Concepts companion slides Continued...

File BankTester. java

16:

17: int accountNumber = ;

18: BankAccount a = firstBankOfJava.find(accountNumber);

19: it (a == null)

20: System.out.printIn(’’'No account with number
+ accountNumber);

21: else
22: System.out.printin(""Account with number
+ accountNumber
23: + "' has balance " + a.getBalance());
24
25: BankAccount max = FirstBankOfJava.getMaximum() ;
26: System.out.printIn(""Account with number *
27: + max.getAccountNumber()
28: + " has the largest balance.');
29: }
30: }
e zoUo ST AUapTCU TOTT oV CUTTCEPTS COTMPArOTT STUTS 5o

Continued...

File BankTester. java

Output

2 accounts with balance >= 15000.0
Account with number 1015 has balance 10000.0
Account with number 1001 has the largest balance.

Fall 2006 Slides adapted from Java Concepts companion slides

Self Check

What does the find method do if there are

two bank accounts with a matching
account number?

Would it be possible to use a "for each”
loop In the getMaximum method?

Fall 2006 Slides adapted from Java Concepts companion slides

ANnswers

1. It returns the first match that it finds

2. Yes, but the first comparison would always
fail

Fall 2006 Slides adapted from Java Concepts companion slides

Two-Dimensional Arrays

« When constructing a two-dimensional array,
you specify how many rows and columns
you need:

final Int ROWS = 3;
final int COLUMNS = 3;
String[][] board = new String[ROWS][COLUMNS];

 You access elements with an index pair
cIRNIND

Iboard[i][j] = "x";

A Tic-Tac-Toe Board

Figure 6:
A Tic-Tac-Toe Board

Fall 2006 Slides adapted from Java Concepts companion slides

Traversing Two-Dimensional Arrays

e |Itis common to use two nested loops when
filling or searching:

for (int 1 = 0; 1 < ROWS; 1++)
for (int jJ = 0; J < COLUMNS; j++)
board[i][j] = " ";

Fall 2006 Slides adapted from Java Concepts companion slides

File TaicTacToe. java

01
0)
03

05

06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:

Y faied
. A 3 x 3 tic-tac-toe board.
- */

O4: public class TicTacToe

- {
- /**
Constructs an empty board.
*/
public TicTacToe()
{
board = new String[ROWS][COLUMNS];
// Fill with spaces
for (int 1 = 0; 1 < ROWS; 1++)
for (int jJ = 0; J < COLUMNS; j++)
board[1][}J] = " '';

Continued...

Fall 2006 Slides adapted from Java Concepts companion slides

62

File TaicTacToe. java

18: /**

19: Sets a field 1n the board. The field must be unoccupied
20: @param 1 the row i1ndex

21: @param j the column index

22: @param player the player ('x'" or "0')

23: */

24 : public void set(int 1, Int j, String player)

25: {

26: 1T (board[1]][]]-equals(’ ™))

27: board[1][j] = player;

28: }

29:

30: /**

31: Creates a string representation of the board, such as
32: |x o]

33:

34: |

35: @return the string representation

36 - */ Continued...

File TaicTacToe. java

37: public String toString()

38: {

39: ;

40: ; 1 < ROWS; 1++)

41:

42:

43: ; COLUMNS; j++)
44 : 11l;

45: o 3

46:

47 - return r;

48: }

49:

50: private String[][] board;

51: private static final 1Int ROWS = 3;
52: private static final 1nt COLUMNS = 3;
53: }

Fall 2006 Slides adapted from Java Concepts companion slides

File TaicTacToeTester. java

O1l: mmport java.util.Scanner;

02:

03: /**

04: This program tests the TicTacToe class by prompting the
05: user to set positions on the board and printing out the
06: result.

07: */

08: public class TicTacToeTester

09: {

10: public static void main(String[] args)

11: {

2 Scanner In = new Scanner(System.in);

13: String player = ""'x";

14: TicTacToe game = new TicTacToe();

15: boolean done = false;

16: while (!done)

17: { Continued...

File TaicTacToeTester. java

18: System.out.print(game.toString());

19: System.out.print(

20: "Row for ' + player + " (-1 to exit): "
21: int row = 1In.nextint();

22: iIT (row < 0) done = true;

23: else

24 : {

25: System.out.print("Column for " + player + ": ');
26: int column = In.nextInt();

27: game.set(row, column, player);

28: 1T (player.equals('x™))

29: player = "0";

30: else

31: player = "'x";

32:

33:

34: .
35: } Continued...

Output

I
I
I
Row for x (-1 to exit):

Column for x:

| |
| x|
I
Row for o (-1 to exit):
Column for o:

o |

| x|

| |

Row for x (-1 to exit):

epts companion slides

Self Check

How do you declare and initialize a 4-by-4
array of integers?

How do you count the number of spaces Iin
the tic-tac-toe board?

Fall 2006 Slides adapted from Java Concepts companion slides

ANnswers

int[][] array =

new Int[4][4];

InNt count =

for (int 1 ;
for (int j =

1T (board[

0;
= 0; < ROWS; 1++)
< COLUMNS J++)

") count++;

i
o)
i

>)
10

Fall 2006

Slides adapted from Java Concepts companion slides

Copying Arrays:
Copying Array References

« Copying an array variable yields a second
reference to the same array

double[] data = new double[10];
// Till array . . .
double[] prices = data;

Continued...

Fall 2006 Slides adapted from Java Concepts companion slides 70

Copying Arrays:
Copying Array References

Figure 7:

data =

prices =

Two References to the Same Array

Fall 2006

Slides adapted from Java Concepts companion slides

double[]

Copying Arrays:
Cloning Arrays

« Use clone to make true copy

double[] prices = (double[]) data.clone();

Continued...

Fall 2006 Slides adapted from Java Concepts companion slides 72

Copying Arrays:
Cloning Arrays

o double[] prices = o double[]

Figure 8:
Cloning an Array

Fall 2006 Slides adapted from Java Concepts companion slides

Copying Arrays:
Copying Array Elements

System.arraycopy(from, fromStart, to, toStart, count);

Continued...

Fall 2006 Slides adapted from Java Concepts companion slides 74

Copying Arrays:
Copying Array Elements

S -

[fromStart]

Figure 9:
The System.arraycopy Method

Fall 2006 Slides adapted from Java Concepts companion slides

Adding an Element to an Array

System.arraycopy(data, 1, data, 1 + 1, data.length - 1 - 1);
data[1] = X;

Continued...

Fall 2006 Slides adapted from Java Concepts companion slides 76

Adding an Element to an Array

~data.length - i - 1

Figure 10:
Inserting a New Element Into an Array
Fall 2006 Slides adapted from Java Concepts companion slides

Removing an Element from an Array

System.arraycopy(data, 1 + 1, data, 1, data.length - 1 - 1);

Continued...

Fall 2006 Slides adapted from Java Concepts companion slides 78

Removing an Element from an Array

— double[]

> data.length - i - 1

Figure 11
Removing an Element from an

AE%MO% Slides adapted from Java Concepts companion slides

Growing an Array

 |f the array is full and you need more space,
you can grow the array:

1.

2.

3.

Fall 2006

Create a new, larger array.

double[] newData = new double[2 * data.length];

Copy all elements into the new array

System.arraycopy(data, 0, newData, O, data.length);

Store the reference to the new array in the array
variable

data = newData;

Growing an Array

Fi?ure 12: _
Brafifig an Array''des adapte

Self Check

How do you add or remove elements in the
middle of an array list?

Why do we double the length of the array
when it has run out of space rather than

Increasing it by one element?

Fall 2006 Slides adapted from Java Concepts companion slides

ANnswers

Use the 1nsert and remove methods.

Allocating a new array and copying the
elements is time-consuming. You wouldn't
want to go through the process every time

you add an element.

Fall 2006 Slides adapted from Java Concepts companion slides

Make Parallel Arrays into Arrays
of Objects

// Don"t do this
int[] accountNumbers;
double[] balances;

accountNumbers = : balances =

Figure 13:

Avoid Parallel Arrays
Fall 2006 Slides adapted from Java Concepts companion slides

Make Parallel Arrays into Arrays
of Objects

 Avoid parallel arrays by changing them into
arrays of objects:

BankAccount[] = accounts;

accounts = ¥ BankACCOUnt[]

BankAccount

accountNumber =
balance =

Figure 14:
Reorganizing Parallel Arrays into Arrays of Objects
Fall 2006 Slides adapted from Java Concepts companion slides

Partially Filled Arrays

Array length = maximum number of elements
In array

Usually, array is partially filled

Need companion variable to keep track of
current size

Uniform naming convention:

final int DATA_LENGTH = 100;

double|[] data = new double[DATA LENGTH];
int dataSize = O;

Fall 2006 Slides adapted from Java Concepts companion slides Continuedss.

Partially Filled Arrays

« Update dataSize as array is filled:

dataJdataSize] = x;
dataSize++;

Fall 2006 Slides adapted from Java Concepts companion slides

Partially Filled Arrays

data

dataSize

-

dataSize <

double[]

>data. length

Figure 15:

A F%ﬁ”éﬁ@ély Filled A:F;ﬁ@éé adapted from Java Concepts companion slides

An Early Internet Worm

Return address Return address [

Line butfes Overrun buffer

(512 bytes) (536 bytes) FNIRlicions

ED{E c

Figure 16:
A "Buffer Overrun" Attack
Fall 2006 Slides adapted from Java Concepts companion slides

