
Fall 2006 Slides adapted from Java Concepts companion slides 1

Fundamental Data Types

Advanced Programming

ICOM 4015

Lecture 4

Reading: Java Concepts Chapter 4

Fall 2006 Slides adapted from Java Concepts companion slides 2

Lecture Goals

• To understand integer and floating-point
numbers

• To recognize the limitations of the numeric
types

• To become aware of causes for overflow and
roundoff errors

• To understand the proper use of constants
Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 3

Lecture Goals

• To write arithmetic expressions in Java

• To use the String type to define and
manipulate character strings

• To learn how to read program input and
produce formatted output

Fall 2006 Slides adapted from Java Concepts companion slides 4

Number Types

• int: integers, no fractional part

• double: floating-point numbers (double
precision)

1, -4, 0

0.5, -3.11111, 4.3E24, 1E-14

Fall 2006 Slides adapted from Java Concepts companion slides 5

Number Types

• A numeric computation overflows if the
result falls outside the range for the number
type

• Java: 8 primitive types, including four integer
types and two floating point types

int n = 1000000;
System.out.println(n * n); // prints -727379968

Fall 2006 Slides adapted from Java Concepts companion slides 6

Primitive Types

SizeDescriptionType
4 bytesThe integer type, with range

–2,147,483,648 . . . 2,147,483,647
int

1 byteThe type describing a single byte, with range
–128 . . . 127

byte

2 bytesThe short integer type, with range
–32768 . . . 32767

short

8 bytesThe long integer type, with range –
9,223,372,036,854,775,808 . . .
–9,223,372,036,854,775,807

long

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 7

Primitive Types

SizeDescriptionType
8 bytesThe double-precision floating-point type, with a

range of about ±10308 and about 15 significant
decimal digits

double

1 byteThe type with the two truth values false and
true

boolean

2 bytesThe character type, representing code units in the
Unicode encoding scheme

char

4 bytesThe single-precision floating-point type, with a
range of about ±1038 and about 7 significant
decimal digits

float

Fall 2006 Slides adapted from Java Concepts companion slides 8

Number Types: Floating-point Types

• Rounding errors occur when an exact
conversion between numbers is not possible

• Java: Illegal to assign a floating-point
expression to an integer variable

double f = 4.35;
System.out.println(100 * f); // prints 434.99999999999994

double balance = 13.75;
int dollars = balance; // Error

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 9

Number Types: Floating-point Types

• Casts: used to convert a value to a different
type

Cast discards fractional part.

• Math.round converts a floating-point
number to nearest integer

int dollars = (int) balance; // OK

long rounded = Math.round(balance); // if balance is 13.75, then
// rounded is set to 14

Fall 2006 Slides adapted from Java Concepts companion slides 10

Syntax 4.1: Cast

(typeName) expression

Example:
(int) (balance * 100)

Purpose:
To convert an expression to a different type

Fall 2006 Slides adapted from Java Concepts companion slides 11

Self Check

1. Which are the most commonly used number
types in Java?

2. When does the cast (long) x yield a
different result from the call
Math.round(x)?

3. How do you round the double value x to the
nearest int value, assuming that you know
that it is less than 2 · 109?

Fall 2006 Slides adapted from Java Concepts companion slides 12

Answers

• int and double

• When the fractional part of x is ≥ 0.5

• By using a cast: (int) Math.round(x)

Fall 2006 Slides adapted from Java Concepts companion slides 13

Constants: final
• A final variable is a constant

• Once its value has been set, it cannot be
changed

• Named constants make programs easier to
read and maintain

• Convention: use all-uppercase names for
constants

final double QUARTER_VALUE = 0.25;
final double DIME_VALUE = 0.1;
final double NICKEL_VALUE = 0.05;
final double PENNY_VALUE = 0.01;
payment = dollars + quarters * QUARTER_VALUE + dimes * DIME_VALUE

+ nickels * NICKEL_VALUE + pennies * PENNY_VALUE;

Fall 2006 Slides adapted from Java Concepts companion slides 14

Constants: static final
• If constant values are needed in several

methods, declare them together with the
instance fields of a class and tag them as
static and final

• Give static final constants public access
to enable other classes to use them

public class Math
{

. . .
public static final double E = 2.7182818284590452354;
public static final double PI = 3.14159265358979323846;

}

double circumference = Math.PI * diameter;

Fall 2006 Slides adapted from Java Concepts companion slides 15

Syntax 4.2: Constant Definition

In a method:
final typeName variableName = expression ;

In a class:
accessSpecifier static final typeName variableName = expression;

Example:
final double NICKEL_VALUE = 0.05;
public static final double LITERS_PER_GALLON = 3.785;

Purpose:
To define a constant in a method or a class

Fall 2006 Slides adapted from Java Concepts companion slides 16

File CashRegister.java

01: /**
02: A cash register totals up sales and computes change due.
03: */
04: public class CashRegister
05: {
06: /**
07: Constructs a cash register with no money in it.
08: */
09: public CashRegister()
10: {
11: purchase = 0;
12: payment = 0;
13: }
14:

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 17

File CashRegister.java

Continued…

15: /**
16: Records the purchase price of an item.
17: @param amount the price of the purchased item
18: */
19: public void recordPurchase(double amount)
20: {
21: purchase = purchase + amount;
22: }
23:
24: /**
25: Enters the payment received from the customer.
26: @param dollars the number of dollars in the payment
27: @param quarters the number of quarters in the payment
28: @param dimes the number of dimes in the payment
29: @param nickels the number of nickels in the payment
30: @param pennies the number of pennies in the payment
31: */

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 18

File CashRegister.java

Continued…

32: public void enterPayment(int dollars, int quarters,
33: int dimes, int nickels, int pennies)
34: {
35: payment = dollars + quarters * QUARTER_VALUE

+ dimes * DIME_VALUE
36: + nickels * NICKEL_VALUE + pennies

* PENNY_VALUE;
37: }
38:
39: /**
40: Computes the change due and resets the machine for

the next customer.
41: @return the change due to the customer
42: */

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 19

File CashRegister.java

Continued…

43: public double giveChange()
44: {
45: double change = payment - purchase;
46: purchase = 0;
47: payment = 0;
48: return change;
49: }
50:
51: public static final double QUARTER_VALUE = 0.25;
52: public static final double DIME_VALUE = 0.1;
53: public static final double NICKEL_VALUE = 0.05;
54: public static final double PENNY_VALUE = 0.01;
56: private double purchase;
57: private double payment;
58: }

Fall 2006 Slides adapted from Java Concepts companion slides 20

File CashRegisterTester.java
01: /**
02: This class tests the CashRegister class.
03: */
04: public class CashRegisterTester
05: {
06: public static void main(String[] args)
07: {
08: CashRegister register = new CashRegister();
09:
10: register.recordPurchase(0.75);
11: register.recordPurchase(1.50);
12: register.enterPayment(2, 0, 5, 0, 0);
13: System.out.print("Change=");
14: System.out.println(register.giveChange());
15:

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 21

File CashRegisterTester.java

16: register.recordPurchase(2.25);
17: register.recordPurchase(19.25);
18: register.enterPayment(23, 2, 0, 0, 0);
19: System.out.print("Change=");
20: System.out.println(register.giveChange());
21: }
22: }

Output
Change=0.25
Change=2.0

Fall 2006 Slides adapted from Java Concepts companion slides 22

Self Check

1. What is the difference between the following
two statements?

and

2. What is wrong with the following
statement?

final double CM_PER_INCH = 2.54;

public static final double CM_PER_INCH = 2.54;

double circumference = 3.14 * diameter;

Fall 2006 Slides adapted from Java Concepts companion slides 23

Answers

1. The first definition is used inside a method,
the second inside a class

2. (1) You should use a named constant, not
the "magic number" 3.14
(2) 3.14 is not an accurate representation of
π

Fall 2006 Slides adapted from Java Concepts companion slides 24

Assignment, Increment, and
Decrement

• Assignment is not the same as mathematical
equality:
items = items + 1;

• items++ is the same as items = items + 1

• items-- subtracts 1 from items

Fall 2006 Slides adapted from Java Concepts companion slides 25

Assignment, Increment and
Decrement

Figure 1:
Incrementing a Variable

Fall 2006 Slides adapted from Java Concepts companion slides 26

Self Check

1. What is the meaning of the following
statement?

1. What is the value of n after the following
sequence of statements?
n--;
n++;
n--;

balance = balance + amount;

Fall 2006 Slides adapted from Java Concepts companion slides 27

Answers

1. The statement adds the amount value to the
balance variable

2. One less than it was before

Fall 2006 Slides adapted from Java Concepts companion slides 28

Arithmetic Operations

• / is the division operator

• If both arguments are integers, the result is
an integer. The remainder is discarded

• 7.0 / 4 yields 1.75
7 / 4 yields 1

• Get the remainder with % (pronounced
"modulo")
7 % 4 is 3

Fall 2006 Slides adapted from Java Concepts companion slides 29

Arithmetic Operations

final int PENNIES_PER_NICKEL = 5;
final int PENNIES_PER_DIME = 10;
final int PENNIES_PER_QUARTER = 25;
final int PENNIES_PER_DOLLAR = 100;
// Compute total value in pennies
int total = dollars * PENNIES_PER_DOLLAR + quarters

* PENNIES_PER_QUARTER
+ nickels * PENNIES_PER_NICKEL + dimes * PENNIES_PER_DIME

+ pennies;
// Use integer division to convert to dollars, cents
int dollars = total / PENNIES_PER_DOLLAR;
int cents = total % PENNIES_PER_DOLLAR;

Fall 2006 Slides adapted from Java Concepts companion slides 30

The Math class

• Math class: contains methods like sqrt and
pow

• To compute xn, you write Math.pow(x, n)

• However, to compute x2 it is significantly
more efficient simply to compute x * x

• To take the square root of a number, use the
Math.sqrt; for example, Math.sqrt(x)

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 31

The Math class

• In Java,

can be represented as
(-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a)

Fall 2006 Slides adapted from Java Concepts companion slides 32

Mathematical Methods in Java

square rootMath.sqrt(x)

power xyMath.pow(x, y)

exMath.exp(x)

minimum, maximumMath.min(x, y), Math.max(x, y)

closest integer to xMath.round(x)

sine, cosine, tangent (x in radian) Math.sin(x), Math.cos(x),
Math.tan(x)

natural logMath.log(x)

Fall 2006 Slides adapted from Java Concepts companion slides 33

Analyzing an Expression

Figure 3:
Analyzing an Expression

Fall 2006 Slides adapted from Java Concepts companion slides 34

Self Check

1. What is the value of 1729 / 100?
Of 1729 % 100?

2. Why doesn't the following statement
compute the average of s1, s2, and s3?

3. What is the value of

in mathematical notation?

double average = s1 + s2 + s3 / 3; // Error

Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2))

Fall 2006 Slides adapted from Java Concepts companion slides 35

Answers

1. 17 and 29

2. Only s3 is divided by 3. To get the correct
result, use parentheses. Moreover, if s1,
s2, and s3 are integers, you must divide
by 3.0 to avoid integer division:

3.

(s1 + s2 + s3) / 3.0

Fall 2006 Slides adapted from Java Concepts companion slides 36

Calling Static Methods

• A static method does not operate on an
object

• Static methods are defined inside classes

• Naming convention: Classes start with an
uppercase letter; objects start with a
lowercase letter

double x = 4;
double root = x.sqrt(); // Error

Math
System.out

Fall 2006 Slides adapted from Java Concepts companion slides 37

Syntax 4.3: Static Method Call

ClassName. methodName(parameters)

Example:
Math.sqrt(4)

Purpose:
To invoke a static method (a method that does not operate on an object)
and supply its parameters

Fall 2006 Slides adapted from Java Concepts companion slides 38

Self Check

1. Why can't you call x.pow(y) to compute xy?

2. Is the call System.out.println(4) a static
method call?

Fall 2006 Slides adapted from Java Concepts companion slides 39

Answers

1. x is a number, not an object, and you
cannot invoke methods on numbers

2. No–the println method is called on the
object System.out

Fall 2006 Slides adapted from Java Concepts companion slides 40

Strings

• A string is a sequence of characters

• Strings are objects of the String class

• String constants:

• String variables:

• String length:

• Empty string:

"Hello, World!"

String message = "Hello, World!";

int n = message.length();

""

Fall 2006 Slides adapted from Java Concepts companion slides 41

Concatenation

• Use the + operator:

• If one of the arguments of the + operator is a
string, the other is converted to a string

String name = "Dave";
String message = "Hello, " + name;

// message is "Hello, Dave"

String a = "Agent";
int n = 7;
String bond = a + n; // bond is Agent7

Fall 2006 Slides adapted from Java Concepts companion slides 42

Concatenation in Print Statements

• Useful to reduce the number of
System.out.print instructions

versus

System.out.print("The total is ");
System.out.println(total);

System.out.println("The total is " + total);

Fall 2006 Slides adapted from Java Concepts companion slides 43

Converting between Strings and
Numbers

• Convert to number:

• Convert to string:

int n = Integer.parseInt(str);
double x = Double.parseDouble(str);

String str = "" + n;
str = Integer.toString(n);

Fall 2006 Slides adapted from Java Concepts companion slides 44

Substrings
•

• Supply start and “past the end” position

• First position is at 0

Continued…
Figure 3:
String Positions

String greeting = "Hello, World!";
String sub = greeting.substring(0, 5); // sub is "Hello"

Fall 2006 Slides adapted from Java Concepts companion slides 45

Substrings

Figure 4:
Extracting a Substring

• Substring length is “past the end” - start

Fall 2006 Slides adapted from Java Concepts companion slides 46

Self Check

1. Assuming the String variable s holds the
value "Agent", what is the effect of the
assignment s = s + s.length()?

2. Assuming the String variable river
holds the value "Mississippi", what is
the value of river.substring(1, 2)? Of
river.substring(2, river.length()
- 3)?

Fall 2006 Slides adapted from Java Concepts companion slides 47

Answers

1. s is set to the string Agent5

2. The strings "i" and "ssissi"

Fall 2006 Slides adapted from Java Concepts companion slides 48

International Alphabets

Figure 5:
A German Keyboard

Fall 2006 Slides adapted from Java Concepts companion slides 49

International Alphabets

Figure 6:
The Thai Alphabet

Fall 2006 Slides adapted from Java Concepts companion slides 50

International Alphabets

Figure 7:
A Menu with Chinese Characters

Fall 2006 Slides adapted from Java Concepts companion slides 51

Reading Input
• System.in has minimal set of features–it can

only read one byte at a time

• In Java 5.0, Scanner class was added to read
keyboard input in a convenient manner

•

• nextDouble reads a double

• nextLine reads a line (until user hits Enter)

• nextWord reads a word (until any white space)

Scanner in = new Scanner(System.in);
System.out.print("Enter quantity: ");
int quantity = in.nextInt();

Fall 2006 Slides adapted from Java Concepts companion slides 52

File InputTester.java
01: import java.util.Scanner;
02:
03: /**
04: This class tests console input.
05: */
06: public class InputTester
07: {
08: public static void main(String[] args)
09: {
10: Scanner in = new Scanner(System.in);
11:
12: CashRegister register = new CashRegister();
13:
14: System.out.print("Enter price: ");
15: double price = in.nextDouble();
16: register.recordPurchase(price);
17:

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 53

File InputTester.java
18: System.out.print("Enter dollars: ");
19: int dollars = in.nextInt();
20: System.out.print("Enter quarters: ");
21: int quarters = in.nextInt();
22: System.out.print("Enter dimes: ");
23: int dimes = in.nextInt();
24: System.out.print("Enter nickels: ");
25: int nickels = in.nextInt();
26: System.out.print("Enter pennies: ");
27: int pennies = in.nextInt();
28: register.enterPayment(dollars, quarters, dimes,

nickels, pennies);
29:
30: System.out.print("Your change is ");
31: System.out.println(register.giveChange());
32: }
33: }

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 54

File InputTester.java

Enter price: 7.55
Enter dollars: 10
Enter quarters: 2
Enter dimes: 1
Enter nickels: 0
Enter pennies: 0
Your change is 3.05

Output

Fall 2006 Slides adapted from Java Concepts companion slides 55

Reading Input from a Dialog Box

Figure 8:
An Input Dialog Box

Fall 2006 Slides adapted from Java Concepts companion slides 56

Reading Input From a Dialog Box

•

• Convert strings to numbers if necessary:

• Conversion throws an exception if user
doesn't supply a number–see chapter 15

• Add System.exit(0) to the main method of
any program that uses JOptionPane

String input = JOptionPane.showInputDialog(prompt)

int count = Integer.parseInt(input);

Fall 2006 Slides adapted from Java Concepts companion slides 57

Self Check

1. Why can't input be read directly from
System.in?

2. Suppose in is a Scanner object that reads
from System.in, and your program calls
String name = in.next();
What is the value of name if the user enters
John Q. Public?

Fall 2006 Slides adapted from Java Concepts companion slides 58

Answers

1. The class only has a method to read a
single byte. It would be very tedious to
form characters, strings, and numbers
from those bytes.

2. The value is "John". The next method
reads the next word.

