
Fall 2006 Slides adapted from Java Concepts companion slides 1

Implementing Classes

Advanced Programming

ICOM 4015

Lecture 3

Reading: Java Concepts Chapter 3

Fall 2006 Slides adapted from Java Concepts companion slides 2

Chapter Goals
• To become familiar with the process of

implementing classes

• To be able to implement simple methods

• To understand the purpose and use of
constructors

• To understand how to access instance fields
and local variables

• To appreciate the importance of
documentation comments

Fall 2006 Slides adapted from Java Concepts companion slides 3

Black Boxes

• A black box magically does its thing

• Hides its inner workings

• Encapsulation: the hiding of unimportant
details

• What is the right concept for each particular
black box?

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 4

Black Boxes

• Concepts are discovered through abstraction

• Abstraction: taking away inessential
features, until only the essence of the
concept remains

• In object-oriented programming the black
boxes from which a program is manufactured
are called objects

Fall 2006 Slides adapted from Java Concepts companion slides 5

Levels of Abstraction:
A Real-Life Example

Figure 1:
Levels of Abstraction in
Automobile Design

• Black boxes in a car:
transmission,
electronic control
module, etc.

Fall 2006 Slides adapted from Java Concepts companion slides 6

Levels of Abstraction:
A Real- Life Example

• Users of a car do not need to understand
how black boxes work

• Interaction of a black box with outside world
is well-defined

Drivers interact with car using pedals, buttons, etc.
Mechanic can test that engine control module sends
the right firing signals to the spark plugs
For engine control module manufacturers, transistors
and capacitors are black boxes magically produced
by an electronics component manufacturer

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 7

Levels of Abstraction:
A Real- Life Example

• Encapsulation leads to efficiency:
Mechanic deals only with car components (e.g.
electronic control module), not with sensors and
transistors
Driver worries only about interaction with car (e.g.
putting gas in the tank), not about motor or electronic
control module

Fall 2006 Slides adapted from Java Concepts companion slides 8

Levels of Abstraction:
Software Design

Figure 2:
Levels of Abstraction in
Software Design

Fall 2006 Slides adapted from Java Concepts companion slides 9

Levels of Abstraction:
Software Design

• Old times: computer programs manipulated
primitive types such as numbers and
characters

• Manipulating too many of these primitive
quantities is too much for programmers and
leads to errors

• Solution: Encapsulate routine computations
to software black boxes

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 10

Levels of Abstraction:
Software Design

• Abstraction used to invent higher-level data
types

• In object-oriented programming, objects are
black boxes

• Encapsulation: Programmer using an object
knows about its behavior, but not about its
internal structure

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 11

Levels of Abstraction:
Software Design

• In software design, you can design good and
bad abstractions with equal facility;
understanding what makes good design is an
important part of the education of a software
engineer

• First, define behavior of a class; then,
implement it

Fall 2006 Slides adapted from Java Concepts companion slides 12

Self Check

1. In Chapters 1 and 2, you used System.out
as a black box to cause output to appear on
the screen. Who designed and implemented
System.out?

2. Suppose you are working in a company that
produces personal finance software. You
are asked to design and implement a class
for representing bank accounts. Who will be
the users of your class?

Fall 2006 Slides adapted from Java Concepts companion slides 13

Answers

1. The programmers who designed and
implemented the Java library

2. Other programmers who work on the
personal finance application

Fall 2006 Slides adapted from Java Concepts companion slides 14

Designing the Public Interface of
a Class

• Behavior of bank account (abstraction):
deposit money
withdraw money
get balance

Fall 2006 Slides adapted from Java Concepts companion slides 15

Designing the Public Interface of
a Class: Methods

• Methods of BankAccount class:

• We want to support method calls such as the
following:

harrysChecking.deposit(2000);
harrysChecking.withdraw(500);
System.out.println(harrysChecking.getBalance());

deposit
withdraw
getBalance

Fall 2006 Slides adapted from Java Concepts companion slides 16

Designing the Public Interface of
a Class: Method Definition

• access specifier (such as public)

• return type (such as String or void)

• method name (such as deposit)

• list of parameters (double amount for
deposit)

• method body in { }

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 17

Designing the Public Interface of
a Class: Method Definition

public void deposit(double amount) { . . . }
public void withdraw(double amount) { . . . }
public double getBalance() { . . . }

Examples

Fall 2006 Slides adapted from Java Concepts companion slides 18

Syntax 3.1: Method Definition

accessSpecifier returnType methodName(parameterType
parameterName, . . .)
{

method body
}

Example:
public void deposit(double amount)
{

. . .
}

Purpose:
To define the behavior of a method

Fall 2006 Slides adapted from Java Concepts companion slides 19

Designing the Public Interface of
a Class: Constructor Definition

• A constructor initializes the instance
variables

• Constructor name = class name

public BankAccount()
{

// body--filled in later
}

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 20

Designing the Public Interface of
a Class: Constructor Definition

• Constructor body is executed when new
object is created

• Statements in constructor body will set the
internal data of the object that is being
constructed

• All constructors of a class have the same
name

• Compiler can tell constructors apart because
they take different parameters

Fall 2006 Slides adapted from Java Concepts companion slides 21

Syntax 3.2: Constructor Definition

accessSpecifier ClassName(parameterType parameterName, . . .)
{

constructor body
}

Example:
public BankAccount(double initialBalance)
{

. . .
}

Purpose:
To define the behavior of a constructor

Fall 2006 Slides adapted from Java Concepts companion slides 22

BankAccount Public Interface
• The public constructors and methods of a

class form the public interface of the class.

public class BankAccount
{

// Constructors
public BankAccount()
{

// body--filled in later
}
public BankAccount(double initialBalance)
{

// body--filled in later
}

// Methods
public void deposit(double amount) Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 23

BankAccount Public Interface

{
// body--filled in later

}

public void withdraw(double amount)
{

// body--filled in later
}
public double getBalance()
{

// body--filled in later
}
// private fields--filled in later

}

Fall 2006 Slides adapted from Java Concepts companion slides 24

Syntax 3.3: Class Definition
accessSpecifier class ClassName
{

constructors
methods
fields

}

Example:
public class BankAccount
{

public BankAccount(double initialBalance) { . . . }
public void deposit(double amount) { . . . }
. . .

}

Purpose:
To define a class, its public interface, and its implementation details

Fall 2006 Slides adapted from Java Concepts companion slides 25

Self Check

1. How can you use the methods of the public
interface to empty the harrysChecking
bank account?

2. Suppose you want a more powerful bank
account abstraction that keeps track of an
account number in addition to the balance.
How would you change the public interface
to accommodate this enhancement?

Fall 2006 Slides adapted from Java Concepts companion slides 26

Answers

1.

2. Add an accountNumber parameter to the
constructors, and add a getAccountNumber
method. There is no need for a
setAccountNumber method–the account
number never changes after construction.

harrysChecking.withdraw(harrysChecking.getBalance())

Fall 2006 Slides adapted from Java Concepts companion slides 27

Commenting on the Public Interface
/**

Withdraws money from the bank account.
@param amlount the amount to withdraw

*/
public void withdraw(double amount)
{

// implementation filled in later
}

/**
Gets the current balance of the bank account.
@return the current balance

*/
public double getBalance()
{

// implementation filled in later
}

Fall 2006 Slides adapted from Java Concepts companion slides 28

Class Comment

/**
A bank account has a balance that can
be changed by deposits and withdrawals.

*/
public class BankAccount
{

. . .
}

• Provide documentation comments for
every class
every method
every parameter
every return value.

Fall 2006 Slides adapted from Java Concepts companion slides 29

Javadoc Method Summary

Figure 3:
A Method Summary Generated by javadoc

Fall 2006 Slides adapted from Java Concepts companion slides 30

Javadoc Method Detail

Figure 4:
Method Detail Generated by javadoc

Fall 2006 Slides adapted from Java Concepts companion slides 31

Self Check

1. Why is the following documentation comment
questionable?

/**
Each account has an account number.
@return the account number of this account.

*/
int getAccountNumber()

Fall 2006 Slides adapted from Java Concepts companion slides 32

Answers

1. The first sentence of the method descrip-
tion should describe the method–it is
displayed in isolation in the summary table

/**
Constructs a new bank account with a given initial balance.
@param accountNumber the account number for this account
@param initialBalance the initial balance for this account

*/

1. T

Fall 2006 Slides adapted from Java Concepts companion slides 33

Instance Fields

• An object stores its data in instance fields

• Field: a technical term for a storage location
inside a block of memory

• Instance of a class: an object of the class

• The class declaration specifies the instance
fields:
public class BankAccount
{

. . .
private double balance;

}

Fall 2006 Slides adapted from Java Concepts companion slides 34

Instance Fields

• An instance field declaration consists of the
following parts:

access specifier (such as private)
type of variable (such as double)
name of variable (such as balance)

• Each object of a class has its own set of
instance fields

• You should declare all instance fields as
private

Fall 2006 Slides adapted from Java Concepts companion slides 35

Instance Fields

Figure 5:
Instance Fields

Fall 2006 Slides adapted from Java Concepts companion slides 36

Syntax 3.4: Instance Field
Declaration

accessSpecifier class ClassName
{

. . .
accessSpecifier fieldType fieldName;
. . .

}

Example:
public class BankAccount
{

. . .
private double balance;
. . .

}

Purpose:
To define a field that is present in every object of a class

Fall 2006 Slides adapted from Java Concepts companion slides 37

Accessing Instance Fields

• The deposit method of the BankAccount
class can access the private instance field:

Continued…

public void deposit(double amount)
{

double newBalance = balance + amount;
balance = newBalance;

}

Fall 2006 Slides adapted from Java Concepts companion slides 38

Accessing Instance Fields

• Other methods cannot:

• Encapsulation = Hiding data and providing
access through methods

public class BankRobber
{

public static void main(String[] args)
{
BankAccount momsSavings = new BankAccount(1000);
. . .
momsSavings.balance = -1000; // ERROR

}
}

Fall 2006 Slides adapted from Java Concepts companion slides 39

Self Check

1. Suppose we modify the BankAccount class
so that each bank account has an account
number. How does this change affect the
instance fields?

2. What are the instance fields of the
Rectangle class?

Fall 2006 Slides adapted from Java Concepts companion slides 40

Answers

1. An instance field

needs to be added to the class

2. private int x;
private int y;
private int width;
private int height;

private int accountNumber;

Fall 2006 Slides adapted from Java Concepts companion slides 41

Implementing Constructors

• Constructors contain instructions to initialize
the instance fields of an object

public BankAccount()
{

balance = 0;
}
public BankAccount(double initialBalance)
{

balance = initialBalance;
}

Fall 2006 Slides adapted from Java Concepts companion slides 42

Constructor Call Example
•

Create a new object of type BankAccount
Call the second constructor (since a construction
parameter is supplied)
Set the parameter variable initialBalance to 1000
Set the balance instance field of the newly created
object to initialBalance
Return an object reference, that is, the memory location
of the object, as the value of the new expression
Store that object reference in the harrysChecking
variable

BankAccount harrysChecking = new BankAccount(1000);

Fall 2006 Slides adapted from Java Concepts companion slides 43

Implementing Methods

• Some methods do not return a value

• Some methods return an output value

public void withdraw(double amount)
{

double newBalance = balance - amount;
balance = newBalance;

}

public double getBalance()
{

return balance;
}

Fall 2006 Slides adapted from Java Concepts companion slides 44

Method Call Example

•

Set the parameter variable amount to 500
Fetch the balance field of the object whose location
is stored in harrysChecking
Add the value of amount to balance and store the
result in the variable newBalance
Store the value of newBalance in the balance
instance field, overwriting the old value

harrysChecking.deposit(500);

Fall 2006 Slides adapted from Java Concepts companion slides 45

Syntax 3.5: The return Statement

return expression;
or
return;

Example:
return balance;

Purpose:
To specify the value that a method returns, and exit the method immediately.
The return value becomes the value of the method call expression.

Fall 2006 Slides adapted from Java Concepts companion slides 46

File BankAccount.java
01: /**
02: A bank account has a balance that can be changed by
03: deposits and withdrawals.
04: */
05: public class BankAccount
06: {
07: /**
08: Constructs a bank account with a zero balance.
09: */
10: public BankAccount()
11: {
12: balance = 0;
13: }
14:
15: /**
16: Constructs a bank account with a given balance.
17: @param initialBalance the initial balance
18: */

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 47

File BankAccount.java
19: public BankAccount(double initialBalance)
20: {
21: balance = initialBalance;
22: }
23:
24: /**
25: Deposits money into the bank account.
26: @param amount the amount to deposit
27: */
28: public void deposit(double amount)
29: {
30: double newBalance = balance + amount;
31: balance = newBalance;
32: }
33:
34: /**
35: Withdraws money from the bank account.
36: @param amount the amount to withdraw

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 48

File BankAccount.java
37: */
38: public void withdraw(double amount)
39: {
40: double newBalance = balance - amount;
41: balance = newBalance;
42: }
43:
44: /**
45: Gets the current balance of the bank account.
46: @return the current balance
47: */
48: public double getBalance()
49: {
50: return balance;
51: }
52:
53: private double balance;
54: }

Fall 2006 Slides adapted from Java Concepts companion slides 49

Self Check

1. How is the getWidth method of the
Rectangle class implemented?

2. How is the translate method of the
Rectangle class implemented?

Fall 2006 Slides adapted from Java Concepts companion slides 50

Answers

1.

1. There is more than one correct answer.
One possible implementation is as follows:

public int getWidth()
{

return width;
}

public void translate(int dx, int dy)
{

int newx = x + dx;
x = newx;
int newy = y + dy;
y = newy;

}

Fall 2006 Slides adapted from Java Concepts companion slides 51

Testing a Class with JUnit

• Import Junit TestCase and Assert classes

• Wite a testing subclass of TestCase

• Create testing objects in setUp() method

• Cleanup code in tearDown() method

• Write one method for each test

• Run testing class as Junit from Eclipse

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 52

Testing a Class with JUnit

Continued…

import junit.framework.Assert;
import junit.framework.TestCase;

public class BankAccountTest extends TestCase {
private BankAccount account1;
private BankAccount account2;
protected void setUp(){

account1 = new BankAccount();
account2 = new BankAccount(0);

}
protected void tearDown(){

// No cleanup needed
}

Fall 2006 Slides adapted from Java Concepts companion slides 53

Testing a Class with JUnit

Continued…

public void testConstructors() {
Assert.assertTrue((0.0 == account1.getBalance())
Assert.assertTrue(account1.getBalance() ==

account2.getBalance());
}
public void testDeposit() {

account1.deposit(100.00);
Assert.assertTrue(account1.getBalance() == 100.00);

}

// ... More tests here
}

Fall 2006 Slides adapted from Java Concepts companion slides 54

Systematic Testing Principles

• Test incrementally
• Test each module independently
• Test from simple to complex modules
• Know what output to expect
• Verify boudary cases
• Verify conservation properties of methods
• Incrementally build a test suite
• Re-run test suite after every code change

Fall 2006 Slides adapted from Java Concepts companion slides 55

Categories of Variables

• Categories of variables
Instance fields (balance in BankAccount)
Local variables (newBalance in deposit method)
Parameter variables (amount in deposit method)

• An instance field belongs to an object

• The fields stay alive until no method uses the
object any longer

Fall 2006 Slides adapted from Java Concepts companion slides 56

Categories of Variables

• In Java, the garbage collector periodically
reclaims objects when they are no longer
used

• Local and parameter variables belong to a
method

• Instance fields are initialized to a default
value, but you must initialize local variables

Fall 2006 Slides adapted from Java Concepts companion slides 57

Lifetime of Variables

harrysChecking.deposit(500);
double newBalance = balance + amount;
balance = newBalance;

Continued…

Objects live until no longer “referred to”

Local and parameter variables die when method
ends

Instance fields live until object dies

Fall 2006 Slides adapted from Java Concepts companion slides 58

Lifetime of Variables

Figure 7:
Lifetime of Variables Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 59

Lifetime of Variables

Figure 7:
Lifetime of Variables

Fall 2006 Slides adapted from Java Concepts companion slides 60

Self Check

1. What do local variables and parameter
variables have in common? In which
essential aspect do they differ?

Fall 2006 Slides adapted from Java Concepts companion slides 61

Answers

1. Variables of both categories belong to
methods–they come alive when the method
is called, and they die when the method
exits. They differ in their initialization.
Parameter variables are initialized with the
call values; local variables must be
explicitly initialized.

Continued…

Fall 2006 Slides adapted from Java Concepts companion slides 62

Implicit and Explicit Method
Parameters

• The implicit parameter of a method is the
target object on which the method is invoked

• The this reference denotes the implicit
parameter

Fall 2006 Slides adapted from Java Concepts companion slides 63

Implicit and Explicit Method
Parameters

• Use of an instance field name in a method
denotes the instance field of the implicit
parameter

public void withdraw(double amount)
{

double newBalance = balance - amount;
balance = newBalance;

}

Fall 2006 Slides adapted from Java Concepts companion slides 64

Implicit and Explicit Method
Parameters

• balance is the balance of the target object
to the left of the dot:

means

double newBalance = momsSavings.balance - amount;
momsSavings.balance = newBalance;

momsSavings.withdraw(500)

Fall 2006 Slides adapted from Java Concepts companion slides 65

Implicit Parameters and this

• Every method has one implicit parameter

• The implicit parameter is always called this

• Exception: Static methods do not have an
implicit parameter (more on Chapter 9)

double newBalance = balance + amount;
// actually means
double newBalance = this.balance + amount;

Fall 2006 Slides adapted from Java Concepts companion slides 66

Implicit Parameters and this

• When you refer to an instance field in a
method, the compiler automatically applies it
to the this parameter

momsSavings.deposit(500);

Fall 2006 Slides adapted from Java Concepts companion slides 67

Implicit Parameters and this

Figure 8:
The Implicit Parameter of a Method Call

Fall 2006 Slides adapted from Java Concepts companion slides 68

Self Check
1. How many implicit and explicit parameters

does the withdraw method of the
BankAccount class have, and what are
their names and types?

2. In the deposit method, what is the
meaning of this.amount? Or, if the
expression has no meaning, why not?

3. How many implicit and explicit parameters
does the main method of the
BankAccountTester class have, and what
are they called?

Fall 2006 Slides adapted from Java Concepts companion slides 69

Answers

1. One implicit parameter, called this, of
type BankAccount, and one explicit
parameter, called amount, of type double.

2. It is not a legal expression. this is of type
BankAccount and the BankAccount class
has no field named amount.

3. No implicit parameter–the method is
static–and one explicit parameter, called
args.

Fall 2006 Slides adapted from Java Concepts companion slides 70

Electronic Voting Machines

Figure 9:
Punch Card Ballot

Fall 2006 Slides adapted from Java Concepts companion slides 71

Electronic Voting Machines

Figure 10:
Touch Screen Voting Machine

