
Fall 2006 Slides adapted fom Java Concepts companion slides 1

Classes and Objects

Advanced Programming

ICOM 4015

Lecture 2

Reading: Java Concepts Chapter 2



Fall 2006 Slides adapted fom Java Concepts companion slides 2

Lecture Goals

• To learn about variables 

• To understand the concepts of classes and 
objects

• To be able to call methods 
• To be able to browse the API documentation 

• To realize the difference between objects and 
object references 



Fall 2006 Slides adapted fom Java Concepts companion slides 3

Types and Variables

• Every value has a type 
• Variable declaration examples:

• Variables 
Store values 
Can be used in place of the objects they store

String greeting = "Hello, World!";
PrintStream printer = System.out;
int luckyNumber = 13;



Fall 2006 Slides adapted fom Java Concepts companion slides 4

Syntax 2.1: Variable Definition 

typeName variableName = value;
or
typeName variableName;

Example:
String greeting = "Hello, Dave!";

Purpose:
To define a new variable of a particular type and optionally supply an initial value



Fall 2006 Slides adapted fom Java Concepts companion slides 5

Identifiers
• Identifier: name of a variable, method, or 

class 

• Rules for identifiers in Java: 
Can be made up of letters, digits, and the underscore 
(_) character 
Cannot start with a digit 
Cannot use other symbols such as ? or % 
Spaces are not permitted inside identifiers 
You cannot use reserved words 
They are case sensitive

Continued…



Fall 2006 Slides adapted fom Java Concepts companion slides 6

Identifiers

• By convention, variable names start with a 
lowercase letter 

• By convention, class names start with an 
uppercase letter 



Fall 2006 Slides adapted fom Java Concepts companion slides 7

Self Check

1. What is the type of the values 0, ’0’ and "0"? 

2. Which of the following are legal identifiers? 

3. Define a variable to hold your name. Use camel 
case in the variable name. 

Greeting1
g
void
101dalmatians
Hello, World
<greeting>



Fall 2006 Slides adapted fom Java Concepts companion slides 8

Answers

1. int, char, and String 

2. Only the first two are legal identifiers

3. String myName = "John Q. Public";



Fall 2006 Slides adapted fom Java Concepts companion slides 9

The Assignment Operator

• Assignment operator: = 

• Not used as a comparison statement about 
equality

• Used to change the value of a variable

int luckyNumber = 13; 
luckyNumber = 12; 

Figure 1:
Assigning a New Value to a 
Variable



Fall 2006 Slides adapted fom Java Concepts companion slides 10

Uninitialized Variables

• Error:

Figure 2:
An Uninitialized Object Variable

int luckyNumber;
System.out.println(luckyNumber);

// ERROR – tryin to use and uninitialized variable



Fall 2006 Slides adapted fom Java Concepts companion slides 11

Syntax 2.2: Assignment 

variableName = value;

Example:
luckyNumber = 12; 

Purpose:
To assign a new value to a previously defined variable. 



Fall 2006 Slides adapted fom Java Concepts companion slides 12

Self Check

1. Is 12 = 12 a valid expression in the Java 
language? 

2. How do you change the value of the 
greeting variable to "Hello, Nina!"? 



Fall 2006 Slides adapted fom Java Concepts companion slides 13

Answers

1. No, the left-hand side of the = operator must 
be a variable 

2.

Note that

is not the right answer–that statement 
defines a new variable 

greeting = "Hello, Nina!";

String greeting = "Hello, Nina!";



Fall 2006 Slides adapted fom Java Concepts companion slides 14

Objects and Classes

• Object: entity that you can manipulate in 
your programs (by calling methods) 

• Each object belongs to a class. For example, 
System.out belongs to the class 
PrintStream

Figure 3:
Representation of the System_out object



Fall 2006 Slides adapted fom Java Concepts companion slides 15

Methods

• Method: Sequence of instructions that 
accesses the data of an object 

• You manipulate objects by calling its 
methods 

• Class: Set of objects with the same behavior 

• Class determines legal methods

Continued…

String greeting = "Hello";
greeting.println() // Error
greeting.length() // OK



Fall 2006 Slides adapted fom Java Concepts companion slides 16

Methods

• Public Interface: Specifies what you can do 
with the objects of a class 



Fall 2006 Slides adapted fom Java Concepts companion slides 17

A Representation of Two String 
Objects

Figure 4:
A Representation of Two String Objects

Memory
representation

Some available
methods



Fall 2006 Slides adapted fom Java Concepts companion slides 18

String Methods

• length: counts the number of characters in 
a string 

Continued…

String greeting = "Hello, World!";
int n = greeting.length(); // sets  
n to 13 



Fall 2006 Slides adapted fom Java Concepts companion slides 19

String Methods

• toUpperCase: creates another String object 
that contains the characters of the original
string, with lowercase letters converted to 
uppercase 

Continued…

String river = "Mississippi";
String bigRiver = river.toUpperCase();  
// sets bigRiver to "MISSISSIPPI"



Fall 2006 Slides adapted fom Java Concepts companion slides 20

String Methods

• When applying a method to an object, make 
sure method is defined in the appropriate 
class 

System.out.length(); // This method call is an error

… since length() is not a valid or defined method that can
be applied to this class of objects…

… in order to be so, it has to be explicitly defined somewhere
as a valid method for such class, but it is not…

… in the other hand, it is a valid method for class String, because 
it has been explicitly included in this class…



Fall 2006 Slides adapted fom Java Concepts companion slides 21

Self Check

1. How can you compute the length of the 
string "Mississippi"? 

2. How can you print out the uppercase 
version of "Hello, World!"? 

3. Is it legal to call river.println()? Why or 
why not? 



Fall 2006 Slides adapted fom Java Concepts companion slides 22

Answers

1.

2.

3. It is not legal. The variable river has type 
String. 
The println method is not a method of the 
String class. 

river.length() or "Mississippi".length()

System.out.println(greeting.toUpperCase());



Fall 2006 Slides adapted fom Java Concepts companion slides 23

Implicit and Explicit Parameters
• Parameter (explicit parameter): Input to a 

method. Not all methods have explicit 
parameters.

• Implicit parameter: The object on which a 
method is invoked

Continued…

System.out.println(greeting) 
greeting.length() // has no explicit parameter

System.out.println(greeting)



Fall 2006 Slides adapted fom Java Concepts companion slides 24

Implicit and Explicit Parameters

Figure 5:
Passing a parameter to the println 
method



Fall 2006 Slides adapted fom Java Concepts companion slides 25

Return Values

• Return value: A result that the method has 
computed for use by the code that called it

Continued…

int n = greeting.length(); // return value stored in n



Fall 2006 Slides adapted fom Java Concepts companion slides 26

Return Values

Figure 6:
Invoking the length Method on a String Object



Fall 2006 Slides adapted fom Java Concepts companion slides 27

Passing Return Values

• You can also use the return value as a 
parameter of another method:

• Not all methods return values. Example: 

Continued…

System.out.println(greeting.length());

println



Fall 2006 Slides adapted fom Java Concepts companion slides 28

Passing Return Values

Figure 7:
Passing the Result of a Method Call to Another Method



Fall 2006 Slides adapted fom Java Concepts companion slides 29

A More Complex Call

• replace method carries out a search-and-
replace operation 

• As Figure 8 shows, this method call has 
one implicit parameter: the string "Mississippi"
two explicit parameters: the strings "issipp" and 
"our"
a return value: the string "Missouri"

Continued…

river.replace("issipp", "our") 
// constructs a new string ("Missouri")



Fall 2006 Slides adapted fom Java Concepts companion slides 30

A More Complex Call

Figure 8:
Calling the replace Method



Fall 2006 Slides adapted fom Java Concepts companion slides 31

Method Definitions

• Method definition specifies types of explicit 
parameters and return value 

• Type of implicit parameter = current class; 
not mentioned in method definition 

Continued…



Fall 2006 Slides adapted fom Java Concepts companion slides 32

Method Definitions

• Example: Class String defines

public int length() 
// return type: int
// no explicit parameter

public String replace(String target, String replacement)
// return type: String; 
// two explicit parameters of type String



Fall 2006 Slides adapted fom Java Concepts companion slides 33

Method Definitions

• If method returns no value, the return type is 
declared as void 

• A method name is overloaded if a class has 
more than one method with the same name 
(but different parameter types) 

public void println(String output) // in class PrintStream

public void println(String output)
public void println(int output)



Fall 2006 Slides adapted fom Java Concepts companion slides 34

Self Check

1. What are the implicit parameters, explicit 
parameters, and return values in the 
method call river.length()? 

2. What is the result of the call 
river.replace("p", "s")?

3. What is the result of the call 
greeting.replace("World", 
"Dave").length()? 

4. How is the toUpperCase method defined 
in the String class? 



Fall 2006 Slides adapted fom Java Concepts companion slides 35

Answers

1. The implicit parameter is river. There is 
no explicit parameter. The return value is 
11 

2. "Missississi" 

3. 12 

4. As public String toUpperCase(),
with no explicit parameter and return type 
String. 



Fall 2006 Slides adapted fom Java Concepts companion slides 36

Number Types

• Integers: short, int, long
13 

• Floating point numbers: float, double
1.3
0.00013 

Continued…



Fall 2006 Slides adapted fom Java Concepts companion slides 37

Number Types

• When a floating-point number is multiplied or 
divided by 10, only the position of the 
decimal point changes; it "floats". This 
representation is related to the "scientific" 
notation 1.3 × 10-4. 

• Numbers are not objects; numbers types are 
primitive types 

1.3E-4 // 1.3 × 10-4 written in Java



Fall 2006 Slides adapted fom Java Concepts companion slides 38

Arithmetic Operations

• Operators: + - *

As in mathematics, the * operator binds more 
strongly than the + operator 

10 + n
n - 1
10 * n // 10 × n 

x + y * 2 // means the sum of x and y * 2
(x + y) * 2 // multiplies the sum of x and y with 2



Fall 2006 Slides adapted fom Java Concepts companion slides 39

Self Check

1. Which number type would you use for 
storing the area of a circle? 

2. Why is the expression 13.println() an 
error? 

3. Write an expression to compute the 
average of the values x and y. 



Fall 2006 Slides adapted fom Java Concepts companion slides 40

Answers

1. double 

2. An int is not an object, and you cannot 
call a method on it 

3. (x + y) * 0.5



Fall 2006 Slides adapted fom Java Concepts companion slides 41

Rectangular Shapes and 
Rectangle Objects

• Objects of type Rectangle describe
rectangular shapes 

Figure 9:
Rectangular Shapes



Fall 2006 Slides adapted fom Java Concepts companion slides 42

Rectangular Shapes and 
Rectangle Objects

• A Rectangle object isn't a rectangular 
shape–it is an object that contains a set of 
numbers that describe the rectangle 

Figure 10:
Rectangular Objects



Fall 2006 Slides adapted fom Java Concepts companion slides 43

Constructing Objects
•

• Detail: 
1. The new operator makes a Rectangle object 
2. It uses the parameters (in this case, 5, 10, 20, 

and 30) to initialize the data of the object 
3. It returns the object 

• Usually the output of the new operator is stored 
in a variable 

Rectangle box = new Rectangle(5, 10, 20, 30);

new Rectangle(5, 10, 20, 30)



Fall 2006 Slides adapted fom Java Concepts companion slides 44

Constructing Objects

• The process of creating a new object is 
called construction

• The four values 5, 10, 20, and 30 are called 
the construction parameters

• Some classes let you construct objects in 
multiple ways 

new Rectangle()
// constructs a rectangle with its top-left corner
// at the origin (0, 0), width 0, and height 0



Fall 2006 Slides adapted fom Java Concepts companion slides 45

Syntax 2.3:  Object Construction

new ClassName(parameters)

Example:
new Rectangle(5, 10, 20, 30)
new Rectangle()

Purpose:
To construct a new object, initialize it with the construction parameters, and 
return a reference to the constructed object



Fall 2006 Slides adapted fom Java Concepts companion slides 46

Self Check

1. How do you construct a square with center 
(100, 100) and side length 20? 

2. What does the following statement print?

System.out.println(new Rectangle().getWidth());



Fall 2006 Slides adapted fom Java Concepts companion slides 47

Answers

1.

2. 0 

new Rectangle(90, 90, 20, 20)



Fall 2006 Slides adapted fom Java Concepts companion slides 48

Accessor and Mutator Methods

• Accessor method: does not change the state  
of its implicit parameter

• Mutator method: changes the state 
of its implicit parameter

double width = box.getWidth();

box.translate(15, 25);



Fall 2006 Slides adapted fom Java Concepts companion slides 49

Accessor and Mutator Methods

Figure 11:
Using the translate Method to Move a 
Rectangle



Fall 2006 Slides adapted fom Java Concepts companion slides 50

Self Check

1. Is the toUpperCase method of the String
class an accessor or a mutator? 

2. Which call to translate is needed to 
move the box rectangle so that its top-left 
corner is the origin (0, 0)? 



Fall 2006 Slides adapted fom Java Concepts companion slides 51

Answers

1. An accessor–it doesn't modify the original 
string but returns a new string with 
uppercase letters 

2. box.translate(-5, -10), provided the 
method is called immediately after storing 
the new rectangle into box 



Fall 2006 Slides adapted fom Java Concepts companion slides 52

Implementing a Test Program

• Provide a new class 

• Supply a main method 

• Inside the main method, construct one or 
more objects 

• Apply methods to the objects 

• Display the results of the method calls 



Fall 2006 Slides adapted fom Java Concepts companion slides 53

Importing Packages

Don't forget to include appropriate packages: 

Java classes are grouped into packages 

Import library classes by specifying the 
package and class name:

You don't need to import classes in the 
java.lang package such as String and 
System

import java.awt.Rectangle;



Fall 2006 Slides adapted fom Java Concepts companion slides 54

Syntax 2.4: Importing a Class from 
a Package 

import packageName.ClassName;

Example:
import java.awt.Rectangle; 

Purpose:
To import a class from a package for use in a program.



Fall 2006 Slides adapted fom Java Concepts companion slides 55

File MoveTester.java
01: import java.awt.Rectangle;
02:
03: public class MoveTester
04: {
05: public static void main(String[] args)
06: {
07: Rectangle box = new Rectangle(5, 10, 20, 30);
08:
09: // Move the rectangle
10: box.translate(15, 25);
11:
12: // Print information about the moved rectangle
13: System.out.println("After moving, the top-left 

corner is:"); 
14: System.out.println(box.getX());
15: System.out.println(box.getY());
16: }
17: }



Fall 2006 Slides adapted fom Java Concepts companion slides 56

Self Check

1. The Random class is defined in the 
java.util package. What do you need to 
do in order to use that class in your 
program? 

2. Why doesn't the MoveTester program 
print the width and height of the rectangle? 



Fall 2006 Slides adapted fom Java Concepts companion slides 57

Answers

1. Add the statement 
import java.util.Random; at the top of 
your program 

2. Because the translate method doesn't 
modify the shape of the rectangle 



Fall 2006 Slides adapted fom Java Concepts companion slides 58

Testing Classes in an Interactive 
Environment 

Figure 12:
Testing a Method Call in 
Bluej



Fall 2006 Slides adapted fom Java Concepts companion slides 59

The API Documentation

• API: Application Programming Interface 

• Lists classes and methods in the Java library 

• http://java.sun.com/j2se/1.5/docs/api/index.html



Fall 2006 Slides adapted fom Java Concepts companion slides 60

The API Documentation of the 
Standard Java Library 

Figure 13:
The API Documentation of the Standard Java Library



Fall 2006 Slides adapted fom Java Concepts companion slides 61

The API Documentation for the 
Rectangle Class

Figure 14:
The API Documentation of the Rectangle Class 



Fall 2006 Slides adapted fom Java Concepts companion slides 62

Javadoc Method Summary 

Figure 15:
The Method Summary for the Rectangle Class



Fall 2006 Slides adapted fom Java Concepts companion slides 63

translate Method Documentation 

Figure 16:
The API Documentation of the translate Method



Fall 2006 Slides adapted fom Java Concepts companion slides 64

Self Check

1. Look at the API documentation of the 
String class. Which method would you 
use to obtain the string "hello, world!"
from the string "Hello, World!"? 

2. In the API documentation of the String 
class, look at the description of the trim
method. What is the result of applying 
trim to the string " Hello, Space ! "? 
(Note the spaces in the string.) 



Fall 2006 Slides adapted fom Java Concepts companion slides 65

Answers

1. toLowerCase 

2. "Hello, Space !"–only the leading and 
trailing spaces are trimmed 



Fall 2006 Slides adapted fom Java Concepts companion slides 66

Object References

• Describe the location of objects 

• The new operator returns a reference to a 
new object

• Multiple object variables can refer to the 
same object
Rectangle box = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box;
box2.translate(15, 25);

Rectangle box = new Rectangle();

Continued…



Fall 2006 Slides adapted fom Java Concepts companion slides 67

Object References

• Primitive type variables ≠ object variables 



Fall 2006 Slides adapted fom Java Concepts companion slides 68

Object Variables and Number 
Variables

Figure 17: 
An Object Variable containing an Object Reference



Fall 2006 Slides adapted fom Java Concepts companion slides 69

Object Variables and Number 
Variables

Figure 17: 
An Object Variable containing an Object Reference



Fall 2006 Slides adapted fom Java Concepts companion slides 70

Object Variables and Number 
Variables

Figure 19: 
A Number Variable Stores a Number



Fall 2006 Slides adapted fom Java Concepts companion slides 71

Copying Numbers
•

Figure 20: 
Copying Numbers

int luckyNumber = 13;
int luckyNumber2 = luckyNumber;
luckyNumber2 = 12;



Fall 2006 Slides adapted fom Java Concepts companion slides 72

Copying Object References
•

Continued…

Rectangle box = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box;
box2.translate(15, 25);



Fall 2006 Slides adapted fom Java Concepts companion slides 73

Copying Object References

Figure 21: 
Copying Object References



Fall 2006 Slides adapted fom Java Concepts companion slides 74

Self Check

1. What is the effect of the assignment 
greeting2 = greeting? 

2. After calling greeting2.toUpperCase(), 
what are the contents of greeting and 
greeting2? 



Fall 2006 Slides adapted fom Java Concepts companion slides 75

Answers

1. Now greeting and greeting2 both refer 
to the same String object. 

2. Both variables still refer to the same string, 
and the string has not been modified. 
Recall that the toUpperCase method 
constructs a new string that contains 
uppercase characters, leaving the original 
string unchanged. 



Fall 2006 Slides adapted fom Java Concepts companion slides 76

Mainframes: When Dinosaurs Ruled 
the Earth

Figure 22: 
A Mainframe Computer


