Classes and Objects

Advanced Programming
ICOM 4015
Lecture 2

Reading: Java Concepts Chapter 2

Fall 2006 Slides adapted fom Java Concepts companion slides

Lecture Goals

To learn about variables

To understand the concepts of classes and
objects

To be able to call methods

To be able to browse the APl documentation

To realize the difference between objects and
object references

Fall 2006 Slides adapted fom Java Concepts companion slides

Types and Variables

 Every value has a type
e Variable declaration examples:

String greeting = "Hello, World!";
PrintStream printer = System.out;
int luckyNumber = 13;

 Variables
= Store values

= Can be used in place of the objects they store

Fall 2006 Slides adapted fom Java Concepts companion slides

Syntax 2.1: Variable Definition

typeName variableName = value;
o]
typeName variableName;

String greeting = ""Hello, Dave!';

To define a new variable of a particular type and optionally supply an initial value

Fall 2006 Slides adapted fom Java Concepts companion slides

Identifiers

* |dentifier: name of a variable, method, or
class

e Rules for identifiers in Java:

= Can be made up of letters, digits, and the underscore
() character

Cannot start with a digit

Cannot use other symbols such as ? or %
Spaces are not permitted inside identifiers
You cannot use reserved words

They are case sensitive

Fall 2006 Slides adapted fom Java Concepts companion slides Continued... 5

Identifiers

By convention, variable names start with a
lowercase letter

« By convention, class names start with an
uppercase letter

Fall 2006 Slides adapted fom Java Concepts companion slides

Self Check

1. What is the type of the values O, ’0” and "'0"'?

2. Which of the following are legal identifiers?

Greetingl

g

void
101dalmatians
Hello, World
<greeting>

3. Define a variable to hold your name. Use camel
case In the variable name.

Fall 2006 Slides adapted fom Java Concepts companion slides

Answers

1. 1nt, char, and String

2. Only the first two are legal identifiers

Fall 2006 Slides adapted fom Java Concepts companion slides

The Assignment Operator

e Assignment operator: =

 Not used as a comparison statement about
equality

 Used to change the value of a variable

int luckyNumber = 13;
luckyNumber = 12;

o luckyNumber = 13

Figure 1: |
Assigning a New Value to a luckyNumber = 12

FalVapiable Slides adapted fom Java C e ———

Uninitialized Variables

e Error:

int luckyNumber;
System.out.printin(luckyNumber);
// ERROR — tryin to use and uninitialized variable

luckyNumber =

Figure 2:
An Uninitialized Object Variable

Fall 2006 Slides adapted fom Java Concepts companion slides

Syntax 2.2: Assignment

variableName = value;

luckyNumber = 12;

To assign a new value to a previously defined variable.

Fall 2006 Slides adapted fom Java Concepts companion slides

Self Check

. Is 12 = 12 a valid expression in the Java
language?

. How do you change the value of the
greeting variable to "'"Hello, Nina!''?

Fall 2006 Slides adapted fom Java Concepts companion slides

Answers

1. No, the left-hand side of the = operator must
be a variable

greeting = ""Hello, Ninal";

Note that

String greeting = "Hello, Nina!";

Is not the right answer—that statement
defines a new variable

Fall 2006 Slides adapted fom Java Concepts companion slides

Objects and Classes

 Object: entity that you can manipulate in
your programs (by calling methods)

« Each object belongs to a class. For example,
System.out belongs to the class

PrintStream
PrintStream

dﬂtn =

printin E.
Y &
Figure 3: RELGER -

Regirsentation of thesysden foutoljeckp s

Methods

Method: Sequence of instructions that
accesses the data of an object

You manipulate objects by calling its
methods

Class: Set of objects with the same behavior

Class determines legal methods

String greeting = "Hello";
greeting.printin() // Error
greeting.length() // OK

_ R Continued...
Fall 2006 Slides adapted fom Java Concepts companion slides 15

Methods

* Public Interface: Specifies what you can do
with the objects of a class

Fall 2006 Slides adapted fom Java Concepts companion slides

A Representation of Two String
Objects

Memory
representation

S

o o
length | length | Some available

methods

2 (0,

toUpperCase - toUpperCaselu

Figure 4:
A Representation of Two String Objects

Fall 2006 Slides adapted fom Java Concepts companion slides

String Methods

 length: counts the number of characters in
a string

String greeting = "Hello, World!";
int n = greeting.length(); // sets
n to 13

_ . Continued...
Fall 2006 Slides adapted fom Java Concepts companion slides 18

String Methods

 toUpperCase: creates another String object
that contains the characters of the original
string, with lowercase letters converted to
uppercase

String river = "Mississippi';
String bigRiver = river.toUpperCase();
// sets bigRiver to "MISSISSIPPI

_ R Continued...
Fall 2006 Slides adapted fom Java Concepts companion slides 19

String Methods

« When applying a method to an object, make
sure method is defined in the appropriate
class

System.out.length(); // This method call is an error

.. since length() is not a valid or defined method that can

be applied to this class of objects...
.. In order to be so, it has to be explicitly defined somewhere
as a valid method for such class, but it is not...

.. In the other hand, it is a valid method for class String, because

it has been exp‘i itly included in this class... .
Fall 2006 Slides“adapted fom Java Concepts companion slides

Self Check

. How can you compute the length of the
string ""Mississippl™'?

. How can you print out the uppercase
version of ""Hello, World!"?

. Is it legal to call river.printin()? Why or
why not?

Fall 2006 Slides adapted fom Java Concepts companion slides

Answers

river._length() or "Mississippi'.length()

2. | System.out.println(greeting.toUpperCase());

3. Itis not legal. The variable river has type

String.
The println method is not a method of the

String class.

Fall 2006 Slides adapted fom Java Concepts companion slides

Implicit and Explicit Parameters

 Parameter (explicit parameter): Input to a
method. Not all methods have explicit
parameters.

System.out.printin(greeting)
greeting.length() // has no explicit parameter

 Implicit parameter: The object on which a
method is invoked

System.out.printin(greeting)

Fall 2006 Slides adapted fom Java Concepts companion slides Continued...

Implicit and Explicit Parameters

PrintStrean

"Hello, World" —-=a—— ;ahpr"int]nﬂ

: 5
print .

Figure 5:
Passing a parameter to the printin

methad Slides adapted fom Java Concepts companion slides

Return Values

 Return value: A result that the method has
computed for use by the code that called it

Int n = greeting.length(); // return value stored iIn n

_ R Continued...
Fall 2006 Slides adapted fom Java Concepts companion slides 25

Return Values

o
(no parameter) e S -IEngth .

=5

toUpperCase -

Figure 6:
Invoking the length Method on a String Object

Fall 2006 Slides adapted fom Java Concepts companion slides

Passing Return Values

e You can also use the return value as a
parameter of another method:

System.out.println(greeting.length());

 Not all methods return values. Example:

println

_ R Continued...
Fall 2006 Slides adapted fom Java Concepts companion slides 27

Passing Return Values

String PrintStream
o : o
(no parameter) = length —— - |} - L printin.
Q o]
toUpperCase . print .

Figure 7:

Passing the Result of a Method Call to Another Method

Fall 2006 Slides adapted fom Java Concepts companion slides

A More Complex Call

 replace method carries out a search-and-
replace operation

river.replace("issipp’, "our')
// constructs a new string ("'Missouri')

 As Figure 8 shows, this method call has
= one implicit parameter: the string **‘Mississippi"”

= two explicit parameters: the strings ""1ssipp"" and
llourll

= a return value: the string ""Missouri*

Fall 2006 Slides adapted fom Java Concepts companion slides Continued?29

A More Complex Call

length ﬁ,
o

. tolpperCase .
1SS1PP -~ PP

[
> replace . e ——» Missouri”

Figure 8:
Calling the replace Method

Fall 2006 Slides adapted fom Java Concepts companion slides

Method Definitions

 Method definition specifies types of explicit
parameters and return value

o Type of implicit parameter = current class;
not mentioned in method definition

_ R Continued...
Fall 2006 Slides adapted fom Java Concepts companion slides 31

Method Definitions

Example: Class String defines

public int length()
// return type: iInt
// no explicit parameter
public String replace(String target, String replacement)
// return type: String;
// two explicit parameters of type String

Fall 2006 Slides adapted fom Java Concepts companion slides

Method Definitions

* If method returns no value, the return type is
declared as void

public void printIn(String output) // i1n class PrintStream

« A method name is overloaded if a class has
more than one method with the same name
(but different parameter types)

public void printIn(String output)
public void printin(int output)

Fall 2006 Slides adapted fom Java Concepts companion slides

Self Check

4.

What are the implicit parameters, explicit

parameters, and return values in the
method call river.length()?

What is the result of the call
river.replace('p", ''s")?

What is the result of the call
greeting.replace(""World",

""Dave'").length()?

How is the toUpperCase method defined

Fall 2006| n the SidFS lclfal@d erlmz\cepts companion slides

Answers

The implicit parameter is river. There is

no explicit parameter. The return value is
11

""Missississi'™

12

As public String toUpperCase(),

with no explicit parameter and return type
String.

Fall 2006 Slides adapted fom Java Concepts companion slides

Number Types

Integers: short, Int, long
13

Floating point numbers: float, double
1.3
0.00013

_ . Continued...
Fall 2006 Slides adapted fom Java Concepts companion slides 36

Number Types

« When a floating-point number is multiplied or
divided by 10, only the position of the
decimal point changes; it "floats". This

representation is related to the "scientific"
notation 1.3 x 10-4.

1.3E-4 // 1.3 X 10'4 written in Java

« Numbers are not objects; numbers types are
primitive types

Fall 2006 Slides adapted fom Java Concepts companion slides 37

Arithmetic Operations

e Operators: + - *

As in mathematics, the * operator binds more
strongly than the + operator

X +y * 2 // means the sum of X and y * 2
x +y) *2 // multiplies the sum of x and y with 2

Fall 2006 Slides adapted fom Java Concepts companion slides

Self Check

Which number type would you use for
storing the area of a circle?

Why is the expression 13.printIn() an
error?

Write an expression to compute the
average of the values x and y.

Fall 2006 Slides adapted fom Java Concepts companion slides

Answers

1. double

2. An Int is not an object, and you cannot
call a method on it

(x +y) * 0.5

Fall 2006 Slides adapted fom Java Concepts companion slides

Rectangular Shapes and
Rectangle Objects

 Objects of type Rectangle describe
rectangular shapes

Figure 9:
rdRegdangular Shapgs; ;i

Rectangular Shapes and
Rectangle Objects

« A Rectangle object isn't a rectangular

shape—it is an object that contains a set of
numbers that describe the rectangle

Rectangle Rectangle Rectangle

X X

g

b 4

Figure 10:

ectangular Objects o
FalﬁZOOG 9 jS|(I: es adapted fom Java Concepts companion slides

Constructing Objects

o new Rectangle(5, 10, 20, 30)

 Detail:
1. The new operator makes a Rectangle object

2. It uses the parameters (in this case, 5, 10, 20,
and 30) to initialize the data of the object

3. It returns the object

 Usually the output of the new operator is stored
in a variable

Rectangle box = new Rectangle(5, 10, 20, 30);

Constructing Objects

 The process of creating a new object is
called construction

e The four values 5, 10, 20, and 30 are called
the construction parameters

« Some classes let you construct objects in
multiple ways

new Rectangle()
// constructs a rectangle with i1ts top-left corner

// at the origin (0, 0), width O, and height O

Fall 2006 Slides adapted fom Java Concepts companion slides

Syntax 2.3: Object Construction

new ClassName(parameters)

new Rectangle(5, 10, 20, 30)
new Rectangle()

To construct a new object, initialize it with the construction parameters, and
return a reference to the constructed object

Fall 2006 Slides adapted fom Java Concepts companion slides

Self Check

1. How do you construct a square with center
(100, 100) and side length 207

2. What does the following statement print?

System.out.println(new Rectangle().getWidth());

Fall 2006 Slides adapted fom Java Concepts companion slides

Answers

new Rectangle(90, 90, 20, 20)

0

Fall 2006 Slides adapted fom Java Concepts companion slides

Accessor and Mutator Methods

« Accessor method: does not change the state
of its implicit parameter

double width = box.getWidth();
e state

of its implicit parameter

box.translate(15, 25);

Fall 2006 Slides adapted fom Java Concepts companion slides

Accessor and Mutator Methods

Figure 11:
Using the translate Method to Move a
Rﬁfélt%(ﬁ)@e Slides adapted fom Java Conceptd

Self Check

Is the toUpperCase method of the String
class an accessor or a mutator?

Which call to translate is needed to
move the box rectangle so that its top-left

corner is the origin (0, 0)?

Fall 2006 Slides adapted fom Java Concepts companion slides

Answers

An accessor-it doesn't modify the original
string but returns a new string with
uppercase letters

box.translate(-5, -10), provided the

method is called immediately after storing
the new rectangle into box

Fall 2006 Slides adapted fom Java Concepts companion slides

Implementing a Test Program

e Provide a new class

Supply a main method

Inside the main method, construct one or
more objects

Apply methods to the objects

Display the results of the method calls

Fall 2006 Slides adapted fom Java Concepts companion slides

Importing Packages

Don't forget to include appropriate packages:
= Java classes are grouped into packages

» I[mport library classes by specifying the
package and class name:

import java.awt.Rectangle;

= You don't need to import classes in the
Java. lang package such as String and

System

Fall 2006 Slides adapted fom Java Concepts companion slides

Syntax 2.4: Importing a Class from
a Package

import packageName.ClassName;

import java.awt.Rectangle;

To import a class from a package for use in a program.

Fall 2006 Slides adapted fom Java Concepts companion slides

File MoveTester. java

02:
03:
04: {
05:
06:
07:
08:
09:
10:
11:
12:
13:

14:
15:
16:
17: %

}

O1l: mmport java.awt.Rectangle;

MoveTester
main(String[] args)
Rectangle box = Rectangle(5, 10, 20, 30);

// Move the rectangle
box.translate();

// Print information about the moved rectangle
System.out.printIn(’'After moving, the top-left
corner i1s:'");
System.out.printin(box.getX());
System.out.printin(box.getY());

air £2UJUU

ONMUTS AuUapitTu TUTIT yava CUTTUTULS LUTTTPDATuUTT STTUTO

Self Check

1. The Random class is defined in the
Java.util package. What do you need to

do in order to use that class in your
program?

2. Why doesn't the MoveTester program
print the width and height of the rectangle?

Fall 2006 Slides adapted fom Java Concepts companion slides

Answers

Add the statement
import java.util_Random; atthe top of
your program

Because the translate method doesn't
modify the shape of the rectangle

Fall 2006 Slides adapted fom Java Concepts companion slides

Testing Classes In an Interactive

Environment

0

BlueJ: Rectangle

Project Edit Tools View Help
New Class
—> =
/| BlueJ: Method Call [%
—
Compile void translatednt, int)
box.translate (15 v , im
25 *) int
ok | cancel

box:
Rectangle

Figure 12:

TestirllI a Method Call |i'Q ; Creating object... Done
Blugf 006 Slides a '777:7777'7'777'77:777?:7:’7-7T:””Cf”":’**:”:’:’-

The APl Documentation

 API: Application Programming Interface
 Lists classes and methods in the Java library

e http://java.sun.com/j2se/1.5/docs/api/index.html

Fall 2006 Slides adapted fom Java Concepts companion slides

The APl Documentation of the

Standard Java Library

Filg Edif ‘View O

Java™ 2 Platform
Std. Ed. v1.5.0

Pakages

Tk

B Overview {dava ? Palfsan 55 v1.5.0) - Mazills

et bl §

O, @ W Q |

—

[4]

Al Classes

L)

=T

Ir

Tools Window

Haip

w Mo appras e 1. S a0 Cwapyindes. fim|

l [¥]

B Package Class Use Trnn Deprecated Index Help Java™ 2 Platform
PREV MEXT Sid Ed vl 50

EBAMHE S NI LAMAE 5

Java™ 2 Platform, Standard Edition, v 1.5.0 Beta 2
API Specification

This document is the APl specification for the Java 2 Platform, Standard Edition, version
1.50.

Sew=

I'J'r.\ujpll-ut

Java 2 Platform Packages

Provides the clasyes necessary to creaj
applet and the classes an applet uses W
communicate with its applet contest.

java.applet

Containg all of the classes for creating
interfaces and for painting graphics an

images.
Provides classes for color spaces.
Provides interfnces and clasves for trals

P_|

j'.ﬂ- AWl

java.awi color

].u..i. st ot rancler

T

Figure 13:

TheaARI0D ocumentatsomn ofthe Standard clamaslciatiaryon slides

60

The APl Documentation for the

Rectangle Class

Ir

F

ey a-.-—i-“-.

'L_ - m_._._.;__nj:

| AR

Aur pracupya il 1

™ Reclangse {lava 7 Plattsom SF v1.5.0) - Mesills w

Filp Edit Viey GDo Boplengris Tools Window Help
-"‘-":I__: o J ar [1A oo’ et i 1. 5 G s P i ol i |
[&]
£l Overview Pachgn [HIJUse Tree anraclhd Indnu Help Java™ 2 Platform
H| erev ciass mesT cis AME S ERAME Sud Ed v1.5.0
SUNBASRY T |: | T |'= } ETAL | = i
af s st = | javaawl
i T | Class Rectangle

L java .awt . Rectangle

All [mpll‘mmt!ﬂ Imverfares:
shiape, Serializable, Cloneabie
Direct Known Subclasses:

public "]:I."" m&ctnnqlu
axtends 0

imp]l ament

sctangle specifies an aren in a coordinate space that is enclosed by the rectang1e
object’s top-left point (x, y) in the coordinate space, its width, and (ts height

g v Pyralaren et e dag - o

g [l

I Jl]

[4]

Figure 14:

TheARIP ocumentatinn ofthe Reetanabactd@assmpanion slides

Javadoc Method Summary

B Ractangh (lava ? Platisem SE v1.50) - Mazilla

Eila Edl Ve Do Boclmaris Tools Wirdee Halp

J ’ | J aF | wr TS ol et) T 50 OO C SN et |
~ W

e
=

Method Summary

void

B udd(int newx,. int newy)
Adds a point, specified by the integer arguments news and newvy, to this

Fectangle

3
Claddi}

{nt pt
Adds the specified roint to this Ractangle

| 1 rj
Adds a Rectangls 10 this Fectangls.

ntains{int =, int y)
Checls whether or not this Rect angle contains the point at the specified
location (x, y).
ntains(int X, int ¥, int W, int H)
Checks whether this Rectangl s entirely contains the Fectangle at the
specified location (X ¥) with the specified dimensions [W, H).

wontaing(1 P)

Checks whether or not this Rect ang1s contains the specified Point,

boplean

boolean sontains(Re i ¥

Checks whether or not this Rect angle entirely containg the specified
Ractangla.

ek wtareact 1on (| t r)

Returns a new L olject representing the iIntersection of this
Pl oo ikt tlai o maeillad moaas sy a0
B hermeagrpadad | & i s palraais P bangie b = = d\

b
-

Figure 15:
Thedlethvod Summaryifertheiiaetang benCd@ssompanion slides

translate Method Documentation

B Rectasghe {ava 7 Platferm SF v1.5.0) - Mezilia
E.Ia Ers.l Wi G i—c::n.-nars 3 In.'lh-'. Wirdmw Help
\-:{;. o J o [% Miesrmomersppas)axt S roocasapvindes nim|

| c -
translaie
! ine v)
A 6 C Translates this Rectangle the indicated distance, to the right along the x coordinate
] I S | iy, and downward along the y coordinate axis.

.

B Parameters:

= - the distance to move thif Rect angle along the x mds
i P y - the distance 1o move this Rectangl« along the y axds
| 1 T i | Sex Alsaz
— ;),
| gei Size m
Fead public Dimensi gekiized}
Road i
edd B Gets the size of this Rectang L s, represented by the returned pimens ion
s This method is included for completeness, to parallel the ger21z = method of
Conponent.
Returnms:
AP i mas Flase tlan sloa ad skl . E‘

Figure 16:
TheARIP ocumentatinn ofthe &tvanshakacMethaganion siides

Self Check

Look at the APl documentation of the
String class. Which method would you

use to obtain the string ""hello, world!"
from the string ""Hello, World!"?

In the APl documentation of the String
class, look at the description of the trim

method. What is the result of applying
trimto the string "' Hello, Space ! "?

(Note the spaces in the string.)

Fall 2006 Slides adapted fom Java Concepts companion slides

Answers

1. tolLowerCase

2. '"Hello, Space !"-only the leading and
trailing spaces are trimmed

Fall 2006 Slides adapted fom Java Concepts companion slides

Object References

 Describe the location of objects

 The new operator returns a reference to a
new object

Rectangle box = new Rectangle();

 Multiple object variables can refer to the
same object

Rectangle box = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box;
box2.translate(15, 25);

Fall 2006 Slides adapted fom Java Concepts companion slides _ KRR
Continued...

Object References

 Primitive type variables # object variables

Fall 2006 Slides adapted fom Java Concepts companion slides

Object Variables and Number
Variables

Rectangle

X
y

Figure 17:
Ap,Ohijgct Variable gpptaining an Qhiect ReterncBon sides

Object Variables and Number
Variables

Rectangle

X
y

Figure 17:
Ap,Ohijgct Variable gpptaining an Qhiect ReterncBon sides

Object Variables and Number
Variables

luckyNumber = |3

Figure 19:
A Number Variable Stores a Number

Fall 2006 Slides adapted fom Java Concepts companion slides

Copying Numbers

int luckyNumber = 13;
int luckyNumber2 = luckyNumber;
fluckyNumber2 = 12;

o TuckyNumber =

0 TuckyNumber
luckyNumber2

0 TuckyNumber

Figure 20: TuckyNumber?2
Copying Numbers

Fall 2006 Slides adapted fom Java Concepts companion slides

Copying Object References

® | Rectangle box = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box;
box2.translate(15, 25);

Fall 2006 Slides adapted fom Java Concepts companion slides Continued...

Copying Object References

box

hox2

Figure 21:
Cepying Object Refeirengested fom Java

Self Check

What is the effect of the assignment
greeting2 = greeting?

After calling greeting2.toUpperCase(),
what are the contents of greeting and
greeting2?

Fall 2006 Slides adapted fom Java Concepts companion slides

Answers

Now greeting and greeting2 both refer
to the same String object.

Both variables still refer to the same string,
and the string has not been modified.
Recall that the toUpperCase method
constructs a new string that contains
uppercase characters, leaving the original
string unchanged.

Fall 2006 Slides adapted fom Java Concepts companion slides

Mainframes: When Dinosaurs Ruled
the Earth

Figure 22:
FA Mainframe Comipatterapted fd

