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Classes and Objects

Advanced Programming

ICOM 4015

Lecture 2

Reading: Java Concepts Chapter 2
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Lecture Goals

• To learn about variables 

• To understand the concepts of classes and 
objects

• To be able to call methods 
• To be able to browse the API documentation 

• To realize the difference between objects and 
object references 
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Types and Variables

• Every value has a type 
• Variable declaration examples:

• Variables 
Store values 
Can be used in place of the objects they store

String greeting = "Hello, World!";
PrintStream printer = System.out;
int luckyNumber = 13;
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Syntax 2.1: Variable Definition 

typeName variableName = value;
or
typeName variableName;

Example:
String greeting = "Hello, Dave!";

Purpose:
To define a new variable of a particular type and optionally supply an initial value
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Identifiers
• Identifier: name of a variable, method, or 

class 

• Rules for identifiers in Java: 
Can be made up of letters, digits, and the underscore 
(_) character 
Cannot start with a digit 
Cannot use other symbols such as ? or % 
Spaces are not permitted inside identifiers 
You cannot use reserved words 
They are case sensitive

Continued…
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Identifiers

• By convention, variable names start with a 
lowercase letter 

• By convention, class names start with an 
uppercase letter 
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Self Check

1. What is the type of the values 0, ’0’ and "0"? 

2. Which of the following are legal identifiers? 

3. Define a variable to hold your name. Use camel 
case in the variable name. 

Greeting1
g
void
101dalmatians
Hello, World
<greeting>
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Answers

1. int, char, and String 

2. Only the first two are legal identifiers

3. String myName = "John Q. Public";
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The Assignment Operator

• Assignment operator: = 

• Not used as a comparison statement about 
equality

• Used to change the value of a variable

int luckyNumber = 13; 
luckyNumber = 12; 

Figure 1:
Assigning a New Value to a 
Variable
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Uninitialized Variables

• Error:

Figure 2:
An Uninitialized Object Variable

int luckyNumber;
System.out.println(luckyNumber);

// ERROR – tryin to use and uninitialized variable
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Syntax 2.2: Assignment 

variableName = value;

Example:
luckyNumber = 12; 

Purpose:
To assign a new value to a previously defined variable. 
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Self Check

1. Is 12 = 12 a valid expression in the Java 
language? 

2. How do you change the value of the 
greeting variable to "Hello, Nina!"? 
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Answers

1. No, the left-hand side of the = operator must 
be a variable 

2.

Note that

is not the right answer–that statement 
defines a new variable 

greeting = "Hello, Nina!";

String greeting = "Hello, Nina!";
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Objects and Classes

• Object: entity that you can manipulate in 
your programs (by calling methods) 

• Each object belongs to a class. For example, 
System.out belongs to the class 
PrintStream

Figure 3:
Representation of the System_out object
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Methods

• Method: Sequence of instructions that 
accesses the data of an object 

• You manipulate objects by calling its 
methods 

• Class: Set of objects with the same behavior 

• Class determines legal methods

Continued…

String greeting = "Hello";
greeting.println() // Error
greeting.length() // OK
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Methods

• Public Interface: Specifies what you can do 
with the objects of a class 



Fall 2006 Slides adapted fom Java Concepts companion slides 17

A Representation of Two String 
Objects

Figure 4:
A Representation of Two String Objects

Memory
representation

Some available
methods
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String Methods

• length: counts the number of characters in 
a string 

Continued…

String greeting = "Hello, World!";
int n = greeting.length(); // sets  
n to 13 
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String Methods

• toUpperCase: creates another String object 
that contains the characters of the original
string, with lowercase letters converted to 
uppercase 

Continued…

String river = "Mississippi";
String bigRiver = river.toUpperCase();  
// sets bigRiver to "MISSISSIPPI"
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String Methods

• When applying a method to an object, make 
sure method is defined in the appropriate 
class 

System.out.length(); // This method call is an error

… since length() is not a valid or defined method that can
be applied to this class of objects…

… in order to be so, it has to be explicitly defined somewhere
as a valid method for such class, but it is not…

… in the other hand, it is a valid method for class String, because 
it has been explicitly included in this class…
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Self Check

1. How can you compute the length of the 
string "Mississippi"? 

2. How can you print out the uppercase 
version of "Hello, World!"? 

3. Is it legal to call river.println()? Why or 
why not? 
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Answers

1.

2.

3. It is not legal. The variable river has type 
String. 
The println method is not a method of the 
String class. 

river.length() or "Mississippi".length()

System.out.println(greeting.toUpperCase());
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Implicit and Explicit Parameters
• Parameter (explicit parameter): Input to a 

method. Not all methods have explicit 
parameters.

• Implicit parameter: The object on which a 
method is invoked

Continued…

System.out.println(greeting) 
greeting.length() // has no explicit parameter

System.out.println(greeting)



Fall 2006 Slides adapted fom Java Concepts companion slides 24

Implicit and Explicit Parameters

Figure 5:
Passing a parameter to the println 
method
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Return Values

• Return value: A result that the method has 
computed for use by the code that called it

Continued…

int n = greeting.length(); // return value stored in n
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Return Values

Figure 6:
Invoking the length Method on a String Object
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Passing Return Values

• You can also use the return value as a 
parameter of another method:

• Not all methods return values. Example: 

Continued…

System.out.println(greeting.length());

println
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Passing Return Values

Figure 7:
Passing the Result of a Method Call to Another Method
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A More Complex Call

• replace method carries out a search-and-
replace operation 

• As Figure 8 shows, this method call has 
one implicit parameter: the string "Mississippi"
two explicit parameters: the strings "issipp" and 
"our"
a return value: the string "Missouri"

Continued…

river.replace("issipp", "our") 
// constructs a new string ("Missouri")
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A More Complex Call

Figure 8:
Calling the replace Method
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Method Definitions

• Method definition specifies types of explicit 
parameters and return value 

• Type of implicit parameter = current class; 
not mentioned in method definition 

Continued…
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Method Definitions

• Example: Class String defines

public int length() 
// return type: int
// no explicit parameter

public String replace(String target, String replacement)
// return type: String; 
// two explicit parameters of type String
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Method Definitions

• If method returns no value, the return type is 
declared as void 

• A method name is overloaded if a class has 
more than one method with the same name 
(but different parameter types) 

public void println(String output) // in class PrintStream

public void println(String output)
public void println(int output)
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Self Check

1. What are the implicit parameters, explicit 
parameters, and return values in the 
method call river.length()? 

2. What is the result of the call 
river.replace("p", "s")?

3. What is the result of the call 
greeting.replace("World", 
"Dave").length()? 

4. How is the toUpperCase method defined 
in the String class? 
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Answers

1. The implicit parameter is river. There is 
no explicit parameter. The return value is 
11 

2. "Missississi" 

3. 12 

4. As public String toUpperCase(),
with no explicit parameter and return type 
String. 
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Number Types

• Integers: short, int, long
13 

• Floating point numbers: float, double
1.3
0.00013 

Continued…
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Number Types

• When a floating-point number is multiplied or 
divided by 10, only the position of the 
decimal point changes; it "floats". This 
representation is related to the "scientific" 
notation 1.3 × 10-4. 

• Numbers are not objects; numbers types are 
primitive types 

1.3E-4 // 1.3 × 10-4 written in Java
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Arithmetic Operations

• Operators: + - *

As in mathematics, the * operator binds more 
strongly than the + operator 

10 + n
n - 1
10 * n // 10 × n 

x + y * 2 // means the sum of x and y * 2
(x + y) * 2 // multiplies the sum of x and y with 2
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Self Check

1. Which number type would you use for 
storing the area of a circle? 

2. Why is the expression 13.println() an 
error? 

3. Write an expression to compute the 
average of the values x and y. 
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Answers

1. double 

2. An int is not an object, and you cannot 
call a method on it 

3. (x + y) * 0.5
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Rectangular Shapes and 
Rectangle Objects

• Objects of type Rectangle describe
rectangular shapes 

Figure 9:
Rectangular Shapes
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Rectangular Shapes and 
Rectangle Objects

• A Rectangle object isn't a rectangular 
shape–it is an object that contains a set of 
numbers that describe the rectangle 

Figure 10:
Rectangular Objects
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Constructing Objects
•

• Detail: 
1. The new operator makes a Rectangle object 
2. It uses the parameters (in this case, 5, 10, 20, 

and 30) to initialize the data of the object 
3. It returns the object 

• Usually the output of the new operator is stored 
in a variable 

Rectangle box = new Rectangle(5, 10, 20, 30);

new Rectangle(5, 10, 20, 30)
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Constructing Objects

• The process of creating a new object is 
called construction

• The four values 5, 10, 20, and 30 are called 
the construction parameters

• Some classes let you construct objects in 
multiple ways 

new Rectangle()
// constructs a rectangle with its top-left corner
// at the origin (0, 0), width 0, and height 0
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Syntax 2.3:  Object Construction

new ClassName(parameters)

Example:
new Rectangle(5, 10, 20, 30)
new Rectangle()

Purpose:
To construct a new object, initialize it with the construction parameters, and 
return a reference to the constructed object
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Self Check

1. How do you construct a square with center 
(100, 100) and side length 20? 

2. What does the following statement print?

System.out.println(new Rectangle().getWidth());
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Answers

1.

2. 0 

new Rectangle(90, 90, 20, 20)
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Accessor and Mutator Methods

• Accessor method: does not change the state  
of its implicit parameter

• Mutator method: changes the state 
of its implicit parameter

double width = box.getWidth();

box.translate(15, 25);
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Accessor and Mutator Methods

Figure 11:
Using the translate Method to Move a 
Rectangle
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Self Check

1. Is the toUpperCase method of the String
class an accessor or a mutator? 

2. Which call to translate is needed to 
move the box rectangle so that its top-left 
corner is the origin (0, 0)? 
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Answers

1. An accessor–it doesn't modify the original 
string but returns a new string with 
uppercase letters 

2. box.translate(-5, -10), provided the 
method is called immediately after storing 
the new rectangle into box 
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Implementing a Test Program

• Provide a new class 

• Supply a main method 

• Inside the main method, construct one or 
more objects 

• Apply methods to the objects 

• Display the results of the method calls 
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Importing Packages

Don't forget to include appropriate packages: 

Java classes are grouped into packages 

Import library classes by specifying the 
package and class name:

You don't need to import classes in the 
java.lang package such as String and 
System

import java.awt.Rectangle;



Fall 2006 Slides adapted fom Java Concepts companion slides 54

Syntax 2.4: Importing a Class from 
a Package 

import packageName.ClassName;

Example:
import java.awt.Rectangle; 

Purpose:
To import a class from a package for use in a program.
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File MoveTester.java
01: import java.awt.Rectangle;
02:
03: public class MoveTester
04: {
05: public static void main(String[] args)
06: {
07: Rectangle box = new Rectangle(5, 10, 20, 30);
08:
09: // Move the rectangle
10: box.translate(15, 25);
11:
12: // Print information about the moved rectangle
13: System.out.println("After moving, the top-left 

corner is:"); 
14: System.out.println(box.getX());
15: System.out.println(box.getY());
16: }
17: }
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Self Check

1. The Random class is defined in the 
java.util package. What do you need to 
do in order to use that class in your 
program? 

2. Why doesn't the MoveTester program 
print the width and height of the rectangle? 
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Answers

1. Add the statement 
import java.util.Random; at the top of 
your program 

2. Because the translate method doesn't 
modify the shape of the rectangle 
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Testing Classes in an Interactive 
Environment 

Figure 12:
Testing a Method Call in 
Bluej
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The API Documentation

• API: Application Programming Interface 

• Lists classes and methods in the Java library 

• http://java.sun.com/j2se/1.5/docs/api/index.html
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The API Documentation of the 
Standard Java Library 

Figure 13:
The API Documentation of the Standard Java Library
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The API Documentation for the 
Rectangle Class

Figure 14:
The API Documentation of the Rectangle Class 
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Javadoc Method Summary 

Figure 15:
The Method Summary for the Rectangle Class
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translate Method Documentation 

Figure 16:
The API Documentation of the translate Method
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Self Check

1. Look at the API documentation of the 
String class. Which method would you 
use to obtain the string "hello, world!"
from the string "Hello, World!"? 

2. In the API documentation of the String 
class, look at the description of the trim
method. What is the result of applying 
trim to the string " Hello, Space ! "? 
(Note the spaces in the string.) 
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Answers

1. toLowerCase 

2. "Hello, Space !"–only the leading and 
trailing spaces are trimmed 
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Object References

• Describe the location of objects 

• The new operator returns a reference to a 
new object

• Multiple object variables can refer to the 
same object
Rectangle box = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box;
box2.translate(15, 25);

Rectangle box = new Rectangle();

Continued…
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Object References

• Primitive type variables ≠ object variables 
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Object Variables and Number 
Variables

Figure 17: 
An Object Variable containing an Object Reference
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Object Variables and Number 
Variables

Figure 17: 
An Object Variable containing an Object Reference
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Object Variables and Number 
Variables

Figure 19: 
A Number Variable Stores a Number
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Copying Numbers
•

Figure 20: 
Copying Numbers

int luckyNumber = 13;
int luckyNumber2 = luckyNumber;
luckyNumber2 = 12;
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Copying Object References
•

Continued…

Rectangle box = new Rectangle(5, 10, 20, 30);
Rectangle box2 = box;
box2.translate(15, 25);
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Copying Object References

Figure 21: 
Copying Object References
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Self Check

1. What is the effect of the assignment 
greeting2 = greeting? 

2. After calling greeting2.toUpperCase(), 
what are the contents of greeting and 
greeting2? 
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Answers

1. Now greeting and greeting2 both refer 
to the same String object. 

2. Both variables still refer to the same string, 
and the string has not been modified. 
Recall that the toUpperCase method 
constructs a new string that contains 
uppercase characters, leaving the original 
string unchanged. 
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Mainframes: When Dinosaurs Ruled 
the Earth

Figure 22: 
A Mainframe Computer


