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Semantic Analysis
Typechecking in COOL

Lecture 7
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Outline

• The role of semantic analysis in a compiler
– A laundry list of tasks

• Scope

• Types
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The Compiler So Far

• Lexical analysis
– Detects inputs with illegal tokens

• Parsing
– Detects inputs with ill-formed parse trees

• Semantic analysis
– Last “front end” phase
– Catches more errors
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What’s Wrong?

• Example 1
let y: Int in x + 3

• Example 2
let y: String ← “abc” in y + 3
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Why a Separate Semantic Analysis?

• Parsing cannot catch some errors

• Some language constructs are not context-
free
– Example: All used variables must have been 

declared (i.e. scoping)
– Example: A method must be invoked with arguments 

of proper type (i.e. typing)
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What Does Semantic Analysis Do?

• Checks of many kinds . . . coolc checks:
1. All identifiers are declared
2. Types 
3. Inheritance relationships
4. Classes defined only once
5. Methods in a class defined only once
6. Reserved identifiers are not misused
And others . . .

• The requirements depend on the language
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Scope

• Matching identifier declarations with uses
– Important semantic analysis step in most languages
– Including COOL!
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Scope (Cont.)

• The scope of an identifier is the portion of a 
program in which that identifier is accessible

• The same identifier may refer to different 
things in different parts of the program
– Different scopes for same name don’t overlap

• An identifier may have restricted scope
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Static vs. Dynamic Scope

• Most languages have static scope
– Scope depends only on the program text, not run-

time behavior
– Cool has static scope

• A few languages are dynamically scoped
– Lisp, SNOBOL
– Lisp has changed to mostly static scoping
– Scope depends on execution of the program
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Static Scoping Example

let x: Int <- 0 in
{

x;
let x: Int <- 1 in

x;
x;

}
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Static Scoping Example (Cont.)

let x: Int <- 0 in
{

x;
let x: Int <- 1 in

x;
x;

}
Uses of x refer to closest enclosing definition
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Dynamic Scope

• A dynamically-scoped variable refers to the 
closest enclosing binding in the execution of 
the program

• Example
Class foo {

a : Int ← 4;
g(y : Int) : Int {y + a};
f() : Int { let a ← 5 in g(2) }

– When invoking f() the result will be 6
• More about dynamic scope later in the course



Prof. Necula  CS 164  Lectures 10-13 13

Scope in Cool

• Cool identifier bindings are introduced by
– Class declarations (introduce class names)
– Method definitions (introduce method names)
– Let expressions (introduce object id’s)
– Formal parameters (introduce object id’s)
– Attribute definitions in a class (introduce object 

id’s)
– Case expressions (introduce object id’s)
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Implementing the Most-Closely Nested Rule

• Much of semantic analysis can be expressed as 
a recursive descent of an AST
– Process an AST node n
– Process the children of n
– Finish processing the AST node n
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Implementing . . . (Cont.)

• Example: the scope of let bindings is one 
subtree

let x: Int ← 0 in e

• x can be used in subtree e
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Symbol Tables

• Consider again: let x: Int ← 0 in e
• Idea:

– Before processing e, add definition of x to current 
definitions, overriding any other definition of x

– After processing e, remove definition of x and 
restore old definition of x

• A symbol table is a data structure that tracks 
the current bindings of identifiers 
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Scope in Cool (Cont.)

• Not all kinds of identifiers follow the most-
closely nested rule

• For example, class definitions in Cool
– Cannot be nested
– Are globally visible throughout the program

• In other words, a class name can be used 
before it is defined
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Example: Use Before Definition

Class Foo {
. . . let y: Bar in . . .

};

Class Bar {
. . . 

};
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More Scope in Cool

Attribute names are global within the class in 
which they are defined

Class Foo {
f(): Int { a };
a: Int ← 0;

}
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More Scope (Cont.)

• Method and attribute names have complex 
rules

• A method need not be defined in the class in 
which it is used, but in some parent class

• Methods may also be redefined (overridden)
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Class Definitions

• Class names can be used before being defined
• We can’t check this property

– using a symbol table
– or even in one pass

• Solution
– Pass 1: Gather all class names
– Pass 2: Do the checking

• Semantic analysis requires multiple passes
– Probably more than two
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Types

• What is a type?
– The notion varies from language to language

• Consensus
– A set of values
– A set of operations on those values

• Classes are one instantiation of the modern 
notion of type
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Why Do We Need Type Systems?

Consider the assembly language fragment

addi  $r1, $r2, $r3

What are the types of $r1, $r2, $r3?
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Types and Operations

• Certain operations are legal for values of each 
type

– It doesn’t make sense to add a function pointer and 
an integer in C

– It does make sense to add two integers

– But both have the same assembly language 
implementation!
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Type Systems

• A language’s type system specifies which 
operations are valid for which types

• The goal of type checking is to ensure that 
operations are used with the correct types
– Enforces intended interpretation of values, 

because nothing else will!

• Type systems provide a concise formalization 
of the semantic checking rules
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What Can Types do For Us?

• Can detect certain kinds of errors
• Memory errors:

– Reading from an invalid pointer, etc.
• Violation of abstraction boundaries:

class FileSystem {
open(x : String) : File {

…
}

…
}

class Client {
f(fs : FileSystem) { 

File fdesc <- fs.open(“foo”)
…

} -- f cannot see inside fdesc !
}
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Type Checking Overview

• Three kinds of languages:

– Statically typed: All or almost all checking of types 
is done as part of compilation (C, Java, Cool)

– Dynamically typed: Almost all checking of types is 
done as part of program execution (Scheme)

– Untyped: No type checking (machine code)



Prof. Necula  CS 164  Lectures 10-13 28

The Type Wars

• Competing views on static vs. dynamic typing
• Static typing proponents say:

– Static checking catches many programming errors 
at compile time

– Avoids overhead of runtime type checks
• Dynamic typing proponents say:

– Static type systems are restrictive
– Rapid prototyping easier in a dynamic type system
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The Type Wars (Cont.)

• In practice, most code is written in statically 
typed languages with an “escape” mechanism
– Unsafe casts in C, Java

• It’s debatable whether this compromise 
represents the best or worst of both worlds



Prof. Necula  CS 164  Lectures 10-13 30

Type Checking in Cool
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Outline

• Type concepts in COOL

• Notation for type rules
– Logical rules of inference

• COOL type rules

• General properties of type systems
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Cool Types

• The types are:
– Class names
– SELF_TYPE
– Note: there are no base types (as in Java int, …)

• The user declares types for all identifiers

• The compiler infers types for expressions
– Infers a type for every expression
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Type Checking and Type Inference

• Type Checking is the process of verifying fully 
typed programs

• Type Inference is the process of filling in 
missing type information

• The two are different, but are often used 
interchangeably
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Rules of Inference

• We have seen two examples of formal notation 
specifying parts of a compiler
– Regular expressions (for the lexer)
– Context-free grammars (for the parser)

• The appropriate formalism for type checking 
is logical rules of inference
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Why Rules of Inference?

• Inference rules have the form
If Hypothesis is true, then Conclusion is true

• Type checking computes via reasoning
If E1 and E2 have certain types, then E3 has a 

certain type

• Rules of inference are a compact notation for 
“If-Then” statements
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From English to an Inference Rule

• The notation is easy to read (with practice)

• Start with a simplified system and gradually 
add features

• Building blocks
– Symbol ∧ is “and”
– Symbol ⇒ is “if-then”
– x:T is “x has type T”
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From English to an Inference Rule (2)

If e1 has type Int and e2 has type Int,           
then e1 + e2 has type Int

(e1 has type Int ∧ e2 has type Int) ⇒
e1 + e2 has type Int

(e1: Int ∧ e2: Int)  ⇒ e1 + e2: Int
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From English to an Inference Rule (3)

The statement 
(e1: Int ∧ e2: Int)  ⇒ e1 + e2: Int

is a special case of 
( Hypothesis1 ∧ . . . ∧ Hypothesisn ) ⇒ Conclusion

This is an inference rule
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Notation for Inference Rules

• By tradition inference rules are written

• Cool type rules have hypotheses and 
conclusions of the form:

` e : T
• ` means “it is provable that . . .”

` Conclusion
` Hypothesis1 …    ` Hypothesisn
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Two Rules

` i : Int
i is an integer

[Int]

` e1 + e2 : Int

` e1 : Int
` e2 : Int [Add]
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Two Rules (Cont.)

• These rules give templates describing how to 
type integers and + expressions

• By filling in the templates, we can produce 
complete typings for expressions
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Example: 1 + 2

` 1 : Int
1 is an integer 2 is an integer

` 1 + 2 : Int
` 2 : Int
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Soundness

• A type system is sound if
– Whenever    ` e : T
– Then e evaluates to a value of type T

• We only want sound rules
– But  some sound rules are better than others:

` i : Object
i is an integer
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Type Checking Proofs

• Type checking proves facts e : T
– Proof is on the structure of the AST
– Proof has the shape of the AST
– One type rule is used for each kind of AST node

• In the type rule used for a node e:
– Hypotheses are the proofs of types of e’s

subexpressions
– Conclusion is the proof of type of e

• Types are computed in a bottom-up pass over 
the AST
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Rules for Constants

` false : Bool [Bool]

` s : String
s is a string constant [String]
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Rule for New

new T produces an object of type T
– Ignore SELF_TYPE for now . . .

` new T : T [New]
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Two More Rules

` not e : Bool
` e : Bool

[Not]

` while e1 loop e2 pool : Object

` e1 : Bool
` e2 : T [Loop]
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Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while    loop   pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int : Int

: Int

: Int

: Object
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Typing Derivations

• The typing reasoning can be expressed as a 
tree:

` 2 * 3 : Int
` 2 : Int ` 3 : Int

` not false : Bool
` false : Bool ` 1 : Int

` while not false loop 1 + 2 * 3 : Object
` 1 + 2 * 3: Int

• The root of the tree is the whole expression
• Each node is an instance of a typing rule
• Leaves are the rules with no hypotheses
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A Problem

• What is the type of a variable reference?

• The local, structural rule does not carry 
enough information to give x a type.

` x : ?
x is an identifier

[Var]
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A Solution: Put more information in the rules!

• A type environment gives types for free
variables
– A type environment is a function from 

ObjectIdentifiers to Types
– A variable is free in an expression if:

• It occurs in the expression
• It is declared outside the expression

– E.g. in the expression “x”, the variable “x” is free
– E.g. in “let x : Int in x + y” only “y” is free
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Type Environments

Let O be a function from ObjectIdentifiers to 
Types

The sentence O ` e : T

is read: Under the assumption that variables 
have the types given by O, it is provable that 
the expression e has the type T



Prof. Necula  CS 164  Lectures 10-13 53

Modified Rules

The type environment is added to the earlier 
rules:

O ` i : Int
i is an integer

[Int]

O ` e1 + e2 : Int

O ` e1 : Int
O ` e2 : Int [Add]
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New Rules

And we can write new rules:

O ` x : T
O(x) = T

[Var]
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Now

• More (complicated) typing rules

• Connections between typing rules and safety 
of execution
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Let

O[T0/x] means O modified to return T0 on 
argument x and behave as O on all other 
arguments:

O[T0/x] (x) = T0

O[T0/x] (y) = O(y)

O ` let x : T0 in e1 : T1

O[T0/x] ` e1 : T1
[Let-No-Init]
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Let. Example.

• Consider the Cool expression
let x : T0 in  (let y : T1 in Ex, y) + (let x : T2 in Fx, y)

(where Ex, y and Fx, y are some Cool expression that 
contain occurrences of “x” and “y”)

• Scope
– of “y” is Ex, y

– of outer “x” is Ex, y

– of inner “x” is Fx, y

• This is captured precisely in the typing rule.
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Let. Example.

let x : T0 in

let y : T1 in

+

let x : T2 in

E(x, y)

F(x, y)

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

: int

AST
Type env.
Types

: int

: int

: int

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] ` 
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Notes

• The type environment gives types to the free 
identifiers in the current scope

• The type environment is passed down the AST 
from the root towards the leaves

• Types are computed up the AST from the 
leaves towards the root
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Let with Initialization

Now consider let with initialization:

This rule is weak.  Why?

O ` let x : T0 ← e0 in e1 : T1

O ` e0 : T0

O[T0/x] ` e1 : T1
[Let-Init]
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Let with Initialization

• Consider the example:

class C inherits P { … }
…
let x : P ← new C in …
…

• The previous let rule does not allow this code
– We say that the rule is too weak
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Subtyping

• Define a relation X · Y on classes to say that:
– An object of type X could be used when one of 

type Y is acceptable, or equivalently
– X conforms with Y
– In Cool this means that X is a subtype of Y

• Define a relation ≤ on classes
X ≤ X
X ≤ Y if X inherits from Y
X ≤ Z if X ≤ Y and Y ≤ Z
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Let with Initialization (Again)

• Both rules for let are correct
• But more programs type check with the latter

O ` let x : T0 ← e0 in e1 : T1

O ` e0 : T
T · T0

O[T0/x] ` e1 : T1 [Let-Init]
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Let with Subtyping. Notes.

• There is a tension between 
– Flexible rules that do not constrain programming

– Restrictive rules that ensure safety of execution



Prof. Necula  CS 164  Lectures 10-13 65

Expressiveness of Static Type Systems

• A static type system enables a compiler to 
detect many common programming errors

• The cost is that some correct programs are 
disallowed
– Some argue for dynamic type checking instead
– Others argue for more expressive static type 

checking

• But more expressive type systems are also 
more complex
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Dynamic And Static Types

• The dynamic type of an object is the class C
that is used in the “new C” expression that 
creates the object
– A run-time notion
– Even languages that are not statically typed have 

the notion of dynamic type
• The static type of an expression is a notation 

that captures all possible dynamic types the 
expression could take
– A compile-time notion
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Dynamic and Static Types. (Cont.)

• In early type systems the set of static types 
correspond directly with the dynamic types

• Soundness theorem: for all expressions E
dynamic_type(E) = static_type(E)

(in all executions, E evaluates to values of the type 
inferred by the compiler)

• This gets more complicated in advanced type 
systems



Prof. Necula  CS 164  Lectures 10-13 68

Dynamic and Static Types in COOL

• A variable of static type A can hold values of 
static type B, if B ≤ A

class A { … }
class B inherits A {…}
class Main {

A x ← new A;
…
x ← new B;
…

}

x has static 
type A

Here, x’s value has 
dynamic type A

Here, x’s value has 
dynamic type B
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Dynamic and Static Types

Soundness theorem for the Cool type system:
∀ E.   dynamic_type(E)  ≤ static_type(E)

Why is this Ok?
– All operations that can be used on an object of 

type C can also be used on an object of type C’ ≤ C
• Such as fetching the value of an attribute
• Or invoking a method on the object

– Subclasses can only add attributes or methods
– Methods can be redefined but with same type !
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Let. Examples.

• Consider the following Cool class definitions

Class A { a() : int { 0 }; }
Class B inherits A { b() : int { 1 }; }

• An instance of B has methods “a” and “b”
• An instance of A has method “a”

– A type error occurs if we try to invoke method “b” 
on an instance of A
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Example of Wrong Let Rule (1)

• Now consider a hypothetical let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T                T · T0               O ` e1 : T1

• The following good program does not typecheck
let x : Int Ã 0 in x + 1

• Why?
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Example of Wrong Let Rule (2)

• Now consider a hypothetical let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T                T0 · T O[T0/x] ` e1 : T1

• The following bad program is well typed
let x : B Ã new A in x.b()

• Why is this program bad?
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Example of Wrong Let Rule (3)

• Now consider a hypothetical let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T                T · T0               O[T/x] ` e1 : T1

• The following good program is not well typed
let x : A Ã new B in {… x Ã new A; x.a(); }

• Why is this program not well typed?
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Morale.

• The typing rules use very concise notation
• They are very carefully constructed
• Virtually any change in a rule either:

– Makes the type system unsound 
(bad programs are accepted as well typed)

– Or, makes the type system less usable
(perfectly good programs are rejected)

• But some good programs will be rejected anyway 
– The notion of a good program is undecidable
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Assignment

More uses of subtyping:

[Assign]O ` id Ã e1 : T1

O(id) = T0

O ` e1 : T1

T1 · T0
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Initialized Attributes

• Let OC(x) = T for all attributes x:T in class C

• Attribute initialization is similar to let, except 
for the scope of names

[Attr-Init]
OC ` id : T0 Ã e1 ;

OC(id) = T0

OC ` e1 : T1

T1 · T0
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If-Then-Else

• Consider:
if e0 then e1 else e2 fi

• The result can be either e1 or e2

• The type is either e1’s type or e2’s type

• The best we can do is the smallest supertype
larger than the type of e1 and e2
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If-Then-Else example

• Consider the class hierarchy

• … and the expression
if … then new A else new B fi

• Its type should allow for the dynamic type to 
be both A or B
– Smallest supertype is P

P

A B
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Least Upper Bounds

• lub(X,Y), the least upper bound of X and Y, is 
Z if
– X ≤ Z ∧ Y ≤ Z

Z is an upper bound

– X ≤ Z’ ∧ Y ≤ Z’ ⇒ Z ≤ Z’
Z is least among upper bounds

• In COOL, the least upper bound of two types 
is their least common ancestor in the 
inheritance tree
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If-Then-Else Revisited

[If-Then-Else]
O ` if e0 then e1 else e2 fi : lub(T1, T2)

O ` e0 : Bool
O ` e1 : T1

O ` e2 : T2
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Case

• The rule for case expressions takes a lub over 
all branches

[Case]

O ` case e0 of x1:T1 ) e1; …; xn : Tn ) en; esac : lub(T1’,…,Tn’)

O ` e0 : T0

O[T1/x1] ` e1 : T1’
…

O[Tn/xn] ` en : Tn’
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Outline

• Type checking method dispatch

• Type checking with SELF_TYPE in COOL



Prof. Necula  CS 164  Lectures 10-13 83

Method Dispatch

• There is a problem with type checking method 
calls:

• We need information about the formal 
parameters and return type of f

[Dispatch]

O ` e0.f(e1,…,en) : ?

O ` e0 : T0

O ` e1 : T1

…
O ` en : Tn
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Notes on Dispatch

• In Cool, method and object identifiers live in 
different name spaces
– A method foo and an object foo can coexist in the 

same scope
• In the type rules, this is reflected by a 

separate mapping M for method signatures
M(C,f) = (T1,. . .Tn,Tn+1)

means in class C there is a method f
f(x1:T1,. . .,xn:Tn): Tn+1
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An Extended Typing Judgment

• Now we have two environments O and M

• The form of the typing judgment is
O, M ` e : T

read as: “with the assumption that the object 
identifiers have types as given by O and the 
method identifiers have signatures as given by 
M, the expression e has type T” 
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The Method Environment

• The method environment must be added to all 
rules

• In most cases, M is passed down but not 
actually used
– Example of a rule that does not use M:

– Only the dispatch rules uses M

[Add]

O, M ` e1 + e2 : Int

O, M ` e1 : T1

O, M ` e2 : T2
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The Dispatch Rule Revisited

[Dispatch]

O, M ` e0.f(e1,…,en) : Tn+1’

O, M ` e0 : T0

O, M ` e1 : T1

…
O, M ` en : Tn

M(T0, f) = (T1’,…,Tn’, Tn+1’)
Ti · Ti’     (for 1 · i · n)
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Static Dispatch

• Static dispatch is a variation on normal 
dispatch

• The method is found in the class explicitly 
named by the programmer

• The inferred type of the dispatch expression 
must conform to the specified type
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Static Dispatch (Cont.)

[StaticDispatch]

O, M ` e0@T.f(e1,…,en) : Tn+1’

O, M ` e0 : T0

O, M ` e1 : T1

…
O, M ` en : Tn

T0 · T
M(T, f) = (T1’,…,Tn’, Tn+1’)

Ti · Ti’     (for 1 · i · n)



Prof. Necula  CS 164  Lectures 10-13 90

Handling the SELF_TYPE
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Flexibility vs. Soundness

• Recall that type systems have two conflicting 
goals:
– Give flexibility to the programmer

– Prevent valid programs to “go wrong”
• Milner, 1981: “Well-typed programs do not go wrong”

• An active line of research is in the area of 
inventing more flexible type systems while 
preserving soundness
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Dynamic And Static Types. Review.

• The dynamic type of an object is the class C
that is used in the “new C” expression that 
created it
– A run-time notion
– Even languages that are not statically typed have 

the notion of dynamic type
• The static type of an expression is a notation 

that captures all possible dynamic types the 
expression could take
– A compile-time notion
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Dynamic and Static Types. Review

Soundness theorem for the Cool type system:
∀ E.   dynamic_type(E)  ≤ static_type(E)

Why is this Ok?
– All operations that can be used on an object of 

type C can also be used on an object of type C’ ≤ C
• Such as fetching the value of an attribute
• Or invoking a method on the object

– Subclasses can only add attributes or methods
– Methods can be redefined but with same type !
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An Example

class Count {
i : int ← 0;
inc () : Count {

{
i ← i + 1;
self;

}
};

};

• Class Count
incorporates a counter

• The inc method works 
for any subclass

• But there is disaster 
lurking in the type 
system
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An Example (Cont.)

• Consider a subclass Stock of Count

class Stock inherits Count { 
name : String; -- name of item

};

class Main {
Stock a ← (new Stock).inc (); 
…  a.name …

};

• And the following use of Stock:

Type checking error !
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What Went Wrong?

• (new Stock).inc() has dynamic type Stock
• So it is legitimate to write 

Stock a ← (new Stock).inc ()

• But this is not well-typed
(new Stock).inc() has static type Count

• The type checker “looses” type information
• This makes inheriting inc useless

– So, we must redefine inc for each of the subclasses, 
with a specialized return type 
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SELF_TYPE to the Rescue 

• We will extend the type system
• Insight:

– inc returns “self”
– Therefore the return value has same type as “self”
– Which could be Count or any subtype of Count !
– In the case of (new Stock).inc () the type is Stock

• We introduce the keyword SELF_TYPE to use 
for the return value of such functions
– We will also need to modify the typing rules to 

handle SELF_TYPE
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SELF_TYPE to the Rescue (Cont.)

• SELF_TYPE allows the return type of inc to 
change when inc is inherited

• Modify the declaration of inc to read
inc() : SELF_TYPE { … }

• The type checker can now prove:
O, M  ` (new Count).inc() : Count
O, M ` (new Stock).inc() : Stock

• The program from before is now well typed
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Notes About SELF_TYPE

• SELF_TYPE is not a dynamic type
• It is a static type

• It helps the type checker to keep better 
track of types

• It enables the type checker to accept more 
correct programs

• In short, having SELF_TYPE increases the 
expressive power of the type system
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SELF_TYPE and Dynamic Types (Example)

• What can be the dynamic type of the object 
returned by inc?
– Answer: whatever could be the type of “self”

class A inherits Count { } ;
class B inherits Count { } ;
class C inherits Count { } ;

– Answer: Count or any subtype of Count

(inc could be invoked through any of these classes)
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SELF_TYPE and Dynamic Types (Example)

• In general, if SELF_TYPE appears textually in 
the class C as the declared type of E then it 
denotes the dynamic type of the “self” 
expression:

dynamic_type(E) = dynamic_type(self)  ≤ C

• Note: The meaning of SELF_TYPE depends on 
where it appears
– We write SELF_TYPEC to refer to an occurrence of 

SELF_TYPE in the body of C
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Type Checking

• This suggests a typing rule:
SELF_TYPEC ≤ C                      

• This rule has an important consequence:
– In type checking it is always safe to replace 

SELF_TYPEC by C
• This suggests one way to handle SELF_TYPE :

– Replace all occurrences of SELF_TYPEC by C

• This would be correct but it is like not having 
SELF_TYPE at all
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Operations on SELF_TYPE

• Recall the operations on types
– T1 ≤ T2 T1 is a subtype of T2

– lub(T1,T2) the least-upper bound of T1 and T2

• We must extend these operations to handle 
SELF_TYPE



Prof. Necula  CS 164  Lectures 10-13 104

Extending ≤

Let T and T’ be any types but SELF_TYPE
There are four cases in the definition of ≤
1. SELF_TYPEC ≤ T if C ≤ T

• SELF_TYPEC can be any subtype of C
• This includes C itself 
• Thus this is the most flexible rule we can allow

2. SELF_TYPEC ≤ SELF_TYPEC
• SELF_TYPEC is the type of the “self” expression 
• In Cool we never need to compare SELF_TYPEs

coming from different classes
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Extending ≤ (Cont.)

3. T ≤ SELF_TYPEC always false
Note: SELF_TYPEC can denote any subtype of C. 

4. T ≤ T’ (according to the rules from before)

Based on these rules we can extend lub …
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Extending lub(T,T’)

Let T and T’ be any types but SELF_TYPE
Again there are four cases:
1. lub(SELF_TYPEC, SELF_TYPEC) = SELF_TYPEC

2. lub(SELF_TYPEC, T) = lub(C, T)
This is the best we can do because SELF_TYPEC ≤ C

3. lub(T, SELF_TYPEC) = lub(C, T)

4. lub(T, T’) defined as before



Prof. Necula  CS 164  Lectures 10-13 107

Where Can SELF_TYPE Appear in COOL? 

• The parser checks that SELF_TYPE appears 
only where a type is expected

• But SELF_TYPE is not allowed everywhere a 
type can appear:

1. class T inherits T’  {…}
• T, T’ cannot be SELF_TYPE
• Because SELF_TYPE is never a dynamic type

2. x : T
• T can be SELF_TYPE
• An attribute whose type is SELF_TYPEC
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Where Can SELF_TYPE Appear in COOL?

3. let x : T in E
• T can be SELF_TYPE
• x has type SELF_TYPEC

4. new T
• T can be SELF_TYPE
• Creates an object of the same type as self

5. m@T(E1,…,En)
• T cannot be SELF_TYPE
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Typing Rules for SELF_TYPE

• Since occurrences of SELF_TYPE depend on 
the enclosing class we need to carry more 
context during type checking

• New form of the typing judgment:
O,M,C ` e : T

(An expression e occurring in the body of C has 
static type T given a variable type environment O
and method signatures M)
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Type Checking Rules

• The next step is to design type rules using 
SELF_TYPE for each language construct

• Most of the rules remain the same except 
that ≤ and lub are the new ones

• Example: 

O ` id Ã e1 : T1

O(id) = T0

O ` e1 : T1

T1 · T0
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What’s Different?

• Recall the old rule for dispatch

O,M,C ` e0.f(e1,…,en) : Tn+1’

O,M,C ` e0 : T0

…

O,M,C ` en : Tn

M(T0, f) = (T1’,…,Tn’,Tn+1’)

Tn+1’ ≠ SELF_TYPE

Ti ≤ Ti’          1 ≤ i ≤ n
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What’s Different?

• If the return type of the method is 
SELF_TYPE then the type of the dispatch is 
the type of the dispatch expression:

O,M,C ` e0.f(e1,…,en) : T0

O,M,C ` e0 : T0

…

O,M,C ` en : Tn

M(T0, f) = (T1’,…,Tn’, SELF_TYPE)

Ti ≤ Ti’          1 ≤ i ≤ n
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What’s Different?

• Note this rule handles the Stock example
• Formal parameters cannot be SELF_TYPE
• Actual arguments can be SELF_TYPE

– The extended ≤ relation handles this case
• The type T0 of the dispatch expression could 

be SELF_TYPE
– Which class is used to find the declaration of f?
– Answer: it is safe to use the class where the 

dispatch appears
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Static Dispatch

• Recall the original rule for static dispatch

O,M,C ` e0@T.f(e1,…,en) : Tn+1’

O,M,C ` e0 : T0

…

O,M,C ` en : Tn

T0 ≤ T

M(T, f) = (T1’,…,Tn’,Tn+1’)

Tn+1’ ≠ SELF_TYPE

Ti ≤ Ti’          1 ≤ i ≤ n
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Static Dispatch

• If the return type of the method is 
SELF_TYPE we have:

O,M,C ` e0@T.f(e1,…,en) : T0

O,M,C ` e0 : T0

…

O,M,C ` en : Tn

T0 ≤ T

M(T, f) = (T1’,…,Tn’,SELF_TYPE)

Ti ≤ Ti’          1 ≤ i ≤ n
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Static Dispatch

• Why is this rule correct?
• If we dispatch a method returning 

SELF_TYPE in class T, don’t we get back a T?

• No. SELF_TYPE is the type of the self 
parameter, which may be a subtype of the 
class in which the method appears

• The static dispatch class cannot be 
SELF_TYPE
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New Rules

• There are two new rules using SELF_TYPE

• There are a number of other places where 
SELF_TYPE is used

O,M,C ` self : SELF_TYPEC

O,M,C ` new SELF_TYPE : SELF_TYPEC
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Where SELF_TYPE Cannot Appear in COOL?

m(x : T) : T’ { … }
• Only T’ can be SELF_TYPE !

What could go wrong if T were SELF_TYPE?
class A {  comp(x : SELF_TYPE) : Bool {…};  };
class B inherits A { 

b : int; 
comp(x : SELF_TYPE) : Bool { … x.b …};  };

…
let x : A ← new B in  … x.comp(new A); …

…
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Summary of SELF_TYPE

• The extended ≤ and lub operations can do a lot 
of the work. Implement them to handle 
SELF_TYPE

• SELF_TYPE can be used only in a few places. 
Be sure it isn’t used anywhere else.

• A use of SELF_TYPE always refers to any 
subtype in the current class
– The exception is the type checking of dispatch.  
– SELF_TYPE as the return type in an invoked 

method might have nothing to do with the current 
class
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Why Cover SELF_TYPE ?

• SELF_TYPE is a research idea
– It adds more expressiveness to the type system

• SELF_TYPE is itself not so important
– except for the project

• Rather, SELF_TYPE is meant to illustrate that 
type checking can be quite subtle

• In practice, there should be a balance 
between the complexity of the type system 
and its expressiveness



Prof. Necula  CS 164  Lectures 10-13 121

Type Systems

• The rules in these lecture were COOL-specific
– Other languages have very different rules
– We’ll survey a few more type systems later

• General themes
– Type rules are defined on the structure of 

expressions
– Types of variables are modeled by an environment

• Types are a play between flexibility and safety


