
Prof. Necula CS 164 Lectures 10-13 1

Semantic Analysis
Typechecking in COOL

Lecture 7

Prof. Necula CS 164 Lectures 10-13 2

Outline

• The role of semantic analysis in a compiler
– A laundry list of tasks

• Scope

• Types

Prof. Necula CS 164 Lectures 10-13 3

The Compiler So Far

• Lexical analysis
– Detects inputs with illegal tokens

• Parsing
– Detects inputs with ill-formed parse trees

• Semantic analysis
– Last “front end” phase
– Catches more errors

Prof. Necula CS 164 Lectures 10-13 4

What’s Wrong?

• Example 1
let y: Int in x + 3

• Example 2
let y: String ← “abc” in y + 3

Prof. Necula CS 164 Lectures 10-13 5

Why a Separate Semantic Analysis?

• Parsing cannot catch some errors

• Some language constructs are not context-
free
– Example: All used variables must have been

declared (i.e. scoping)
– Example: A method must be invoked with arguments

of proper type (i.e. typing)

Prof. Necula CS 164 Lectures 10-13 6

What Does Semantic Analysis Do?

• Checks of many kinds . . . coolc checks:
1. All identifiers are declared
2. Types
3. Inheritance relationships
4. Classes defined only once
5. Methods in a class defined only once
6. Reserved identifiers are not misused
And others . . .

• The requirements depend on the language

Prof. Necula CS 164 Lectures 10-13 7

Scope

• Matching identifier declarations with uses
– Important semantic analysis step in most languages
– Including COOL!

Prof. Necula CS 164 Lectures 10-13 8

Scope (Cont.)

• The scope of an identifier is the portion of a
program in which that identifier is accessible

• The same identifier may refer to different
things in different parts of the program
– Different scopes for same name don’t overlap

• An identifier may have restricted scope

Prof. Necula CS 164 Lectures 10-13 9

Static vs. Dynamic Scope

• Most languages have static scope
– Scope depends only on the program text, not run-

time behavior
– Cool has static scope

• A few languages are dynamically scoped
– Lisp, SNOBOL
– Lisp has changed to mostly static scoping
– Scope depends on execution of the program

Prof. Necula CS 164 Lectures 10-13 10

Static Scoping Example

let x: Int <- 0 in
{

x;
let x: Int <- 1 in

x;
x;

}

Prof. Necula CS 164 Lectures 10-13 11

Static Scoping Example (Cont.)

let x: Int <- 0 in
{

x;
let x: Int <- 1 in

x;
x;

}
Uses of x refer to closest enclosing definition

Prof. Necula CS 164 Lectures 10-13 12

Dynamic Scope

• A dynamically-scoped variable refers to the
closest enclosing binding in the execution of
the program

• Example
Class foo {

a : Int ← 4;
g(y : Int) : Int {y + a};
f() : Int { let a ← 5 in g(2) }

– When invoking f() the result will be 6
• More about dynamic scope later in the course

Prof. Necula CS 164 Lectures 10-13 13

Scope in Cool

• Cool identifier bindings are introduced by
– Class declarations (introduce class names)
– Method definitions (introduce method names)
– Let expressions (introduce object id’s)
– Formal parameters (introduce object id’s)
– Attribute definitions in a class (introduce object

id’s)
– Case expressions (introduce object id’s)

Prof. Necula CS 164 Lectures 10-13 14

Implementing the Most-Closely Nested Rule

• Much of semantic analysis can be expressed as
a recursive descent of an AST
– Process an AST node n
– Process the children of n
– Finish processing the AST node n

Prof. Necula CS 164 Lectures 10-13 15

Implementing . . . (Cont.)

• Example: the scope of let bindings is one
subtree

let x: Int ← 0 in e

• x can be used in subtree e

Prof. Necula CS 164 Lectures 10-13 16

Symbol Tables

• Consider again: let x: Int ← 0 in e
• Idea:

– Before processing e, add definition of x to current
definitions, overriding any other definition of x

– After processing e, remove definition of x and
restore old definition of x

• A symbol table is a data structure that tracks
the current bindings of identifiers

Prof. Necula CS 164 Lectures 10-13 17

Scope in Cool (Cont.)

• Not all kinds of identifiers follow the most-
closely nested rule

• For example, class definitions in Cool
– Cannot be nested
– Are globally visible throughout the program

• In other words, a class name can be used
before it is defined

Prof. Necula CS 164 Lectures 10-13 18

Example: Use Before Definition

Class Foo {
. . . let y: Bar in . . .

};

Class Bar {
. . .

};

Prof. Necula CS 164 Lectures 10-13 19

More Scope in Cool

Attribute names are global within the class in
which they are defined

Class Foo {
f(): Int { a };
a: Int ← 0;

}

Prof. Necula CS 164 Lectures 10-13 20

More Scope (Cont.)

• Method and attribute names have complex
rules

• A method need not be defined in the class in
which it is used, but in some parent class

• Methods may also be redefined (overridden)

Prof. Necula CS 164 Lectures 10-13 21

Class Definitions

• Class names can be used before being defined
• We can’t check this property

– using a symbol table
– or even in one pass

• Solution
– Pass 1: Gather all class names
– Pass 2: Do the checking

• Semantic analysis requires multiple passes
– Probably more than two

Prof. Necula CS 164 Lectures 10-13 22

Types

• What is a type?
– The notion varies from language to language

• Consensus
– A set of values
– A set of operations on those values

• Classes are one instantiation of the modern
notion of type

Prof. Necula CS 164 Lectures 10-13 23

Why Do We Need Type Systems?

Consider the assembly language fragment

addi $r1, $r2, $r3

What are the types of $r1, $r2, $r3?

Prof. Necula CS 164 Lectures 10-13 24

Types and Operations

• Certain operations are legal for values of each
type

– It doesn’t make sense to add a function pointer and
an integer in C

– It does make sense to add two integers

– But both have the same assembly language
implementation!

Prof. Necula CS 164 Lectures 10-13 25

Type Systems

• A language’s type system specifies which
operations are valid for which types

• The goal of type checking is to ensure that
operations are used with the correct types
– Enforces intended interpretation of values,

because nothing else will!

• Type systems provide a concise formalization
of the semantic checking rules

Prof. Necula CS 164 Lectures 10-13 26

What Can Types do For Us?

• Can detect certain kinds of errors
• Memory errors:

– Reading from an invalid pointer, etc.
• Violation of abstraction boundaries:

class FileSystem {
open(x : String) : File {

…
}

…
}

class Client {
f(fs : FileSystem) {

File fdesc <- fs.open(“foo”)
…

} -- f cannot see inside fdesc !
}

Prof. Necula CS 164 Lectures 10-13 27

Type Checking Overview

• Three kinds of languages:

– Statically typed: All or almost all checking of types
is done as part of compilation (C, Java, Cool)

– Dynamically typed: Almost all checking of types is
done as part of program execution (Scheme)

– Untyped: No type checking (machine code)

Prof. Necula CS 164 Lectures 10-13 28

The Type Wars

• Competing views on static vs. dynamic typing
• Static typing proponents say:

– Static checking catches many programming errors
at compile time

– Avoids overhead of runtime type checks
• Dynamic typing proponents say:

– Static type systems are restrictive
– Rapid prototyping easier in a dynamic type system

Prof. Necula CS 164 Lectures 10-13 29

The Type Wars (Cont.)

• In practice, most code is written in statically
typed languages with an “escape” mechanism
– Unsafe casts in C, Java

• It’s debatable whether this compromise
represents the best or worst of both worlds

Prof. Necula CS 164 Lectures 10-13 30

Type Checking in Cool

Prof. Necula CS 164 Lectures 10-13 31

Outline

• Type concepts in COOL

• Notation for type rules
– Logical rules of inference

• COOL type rules

• General properties of type systems

Prof. Necula CS 164 Lectures 10-13 32

Cool Types

• The types are:
– Class names
– SELF_TYPE
– Note: there are no base types (as in Java int, …)

• The user declares types for all identifiers

• The compiler infers types for expressions
– Infers a type for every expression

Prof. Necula CS 164 Lectures 10-13 33

Type Checking and Type Inference

• Type Checking is the process of verifying fully
typed programs

• Type Inference is the process of filling in
missing type information

• The two are different, but are often used
interchangeably

Prof. Necula CS 164 Lectures 10-13 34

Rules of Inference

• We have seen two examples of formal notation
specifying parts of a compiler
– Regular expressions (for the lexer)
– Context-free grammars (for the parser)

• The appropriate formalism for type checking
is logical rules of inference

Prof. Necula CS 164 Lectures 10-13 35

Why Rules of Inference?

• Inference rules have the form
If Hypothesis is true, then Conclusion is true

• Type checking computes via reasoning
If E1 and E2 have certain types, then E3 has a

certain type

• Rules of inference are a compact notation for
“If-Then” statements

Prof. Necula CS 164 Lectures 10-13 36

From English to an Inference Rule

• The notation is easy to read (with practice)

• Start with a simplified system and gradually
add features

• Building blocks
– Symbol ∧ is “and”
– Symbol ⇒ is “if-then”
– x:T is “x has type T”

Prof. Necula CS 164 Lectures 10-13 37

From English to an Inference Rule (2)

If e1 has type Int and e2 has type Int,
then e1 + e2 has type Int

(e1 has type Int ∧ e2 has type Int) ⇒
e1 + e2 has type Int

(e1: Int ∧ e2: Int) ⇒ e1 + e2: Int

Prof. Necula CS 164 Lectures 10-13 38

From English to an Inference Rule (3)

The statement
(e1: Int ∧ e2: Int) ⇒ e1 + e2: Int

is a special case of
(Hypothesis1 ∧ . . . ∧ Hypothesisn) ⇒ Conclusion

This is an inference rule

Prof. Necula CS 164 Lectures 10-13 39

Notation for Inference Rules

• By tradition inference rules are written

• Cool type rules have hypotheses and
conclusions of the form:

` e : T
• ` means “it is provable that . . .”

` Conclusion
` Hypothesis1 … ` Hypothesisn

Prof. Necula CS 164 Lectures 10-13 40

Two Rules

` i : Int
i is an integer

[Int]

` e1 + e2 : Int

` e1 : Int
` e2 : Int [Add]

Prof. Necula CS 164 Lectures 10-13 41

Two Rules (Cont.)

• These rules give templates describing how to
type integers and + expressions

• By filling in the templates, we can produce
complete typings for expressions

Prof. Necula CS 164 Lectures 10-13 42

Example: 1 + 2

` 1 : Int
1 is an integer 2 is an integer

` 1 + 2 : Int
` 2 : Int

Prof. Necula CS 164 Lectures 10-13 43

Soundness

• A type system is sound if
– Whenever ` e : T
– Then e evaluates to a value of type T

• We only want sound rules
– But some sound rules are better than others:

` i : Object
i is an integer

Prof. Necula CS 164 Lectures 10-13 44

Type Checking Proofs

• Type checking proves facts e : T
– Proof is on the structure of the AST
– Proof has the shape of the AST
– One type rule is used for each kind of AST node

• In the type rule used for a node e:
– Hypotheses are the proofs of types of e’s

subexpressions
– Conclusion is the proof of type of e

• Types are computed in a bottom-up pass over
the AST

Prof. Necula CS 164 Lectures 10-13 45

Rules for Constants

` false : Bool [Bool]

` s : String
s is a string constant [String]

Prof. Necula CS 164 Lectures 10-13 46

Rule for New

new T produces an object of type T
– Ignore SELF_TYPE for now . . .

` new T : T [New]

Prof. Necula CS 164 Lectures 10-13 47

Two More Rules

` not e : Bool
` e : Bool

[Not]

` while e1 loop e2 pool : Object

` e1 : Bool
` e2 : T [Loop]

Prof. Necula CS 164 Lectures 10-13 48

Typing: Example

• Typing for while not false loop 1 + 2 * 3 pool

while loop pool

not

false

+

1 *

2 3

: Bool

: Bool

: Int

: Int : Int

: Int

: Int

: Object

Prof. Necula CS 164 Lectures 10-13 49

Typing Derivations

• The typing reasoning can be expressed as a
tree:

` 2 * 3 : Int
` 2 : Int ` 3 : Int

` not false : Bool
` false : Bool ` 1 : Int

` while not false loop 1 + 2 * 3 : Object
` 1 + 2 * 3: Int

• The root of the tree is the whole expression
• Each node is an instance of a typing rule
• Leaves are the rules with no hypotheses

Prof. Necula CS 164 Lectures 10-13 50

A Problem

• What is the type of a variable reference?

• The local, structural rule does not carry
enough information to give x a type.

` x : ?
x is an identifier

[Var]

Prof. Necula CS 164 Lectures 10-13 51

A Solution: Put more information in the rules!

• A type environment gives types for free
variables
– A type environment is a function from

ObjectIdentifiers to Types
– A variable is free in an expression if:

• It occurs in the expression
• It is declared outside the expression

– E.g. in the expression “x”, the variable “x” is free
– E.g. in “let x : Int in x + y” only “y” is free

Prof. Necula CS 164 Lectures 10-13 52

Type Environments

Let O be a function from ObjectIdentifiers to
Types

The sentence O ` e : T

is read: Under the assumption that variables
have the types given by O, it is provable that
the expression e has the type T

Prof. Necula CS 164 Lectures 10-13 53

Modified Rules

The type environment is added to the earlier
rules:

O ` i : Int
i is an integer

[Int]

O ` e1 + e2 : Int

O ` e1 : Int
O ` e2 : Int [Add]

Prof. Necula CS 164 Lectures 10-13 54

New Rules

And we can write new rules:

O ` x : T
O(x) = T

[Var]

Prof. Necula CS 164 Lectures 10-13 55

Now

• More (complicated) typing rules

• Connections between typing rules and safety
of execution

Prof. Necula CS 164 Lectures 10-13 56

Let

O[T0/x] means O modified to return T0 on
argument x and behave as O on all other
arguments:

O[T0/x] (x) = T0

O[T0/x] (y) = O(y)

O ` let x : T0 in e1 : T1

O[T0/x] ` e1 : T1
[Let-No-Init]

Prof. Necula CS 164 Lectures 10-13 57

Let. Example.

• Consider the Cool expression
let x : T0 in (let y : T1 in Ex, y) + (let x : T2 in Fx, y)

(where Ex, y and Fx, y are some Cool expression that
contain occurrences of “x” and “y”)

• Scope
– of “y” is Ex, y

– of outer “x” is Ex, y

– of inner “x” is Fx, y

• This is captured precisely in the typing rule.

Prof. Necula CS 164 Lectures 10-13 58

Let. Example.

let x : T0 in

let y : T1 in

+

let x : T2 in

E(x, y)

F(x, y)

O `

x

O[T0/x] `

(O[T0/x])[T1/y] `

(O[T0/x])[T1/y] `

: int

: int

AST
Type env.
Types

: int

: int

: int

: int
: T0

O[T0/x] ` O[T0/x] `

(O[T0/x])[T2/x] `

Prof. Necula CS 164 Lectures 10-13 59

Notes

• The type environment gives types to the free
identifiers in the current scope

• The type environment is passed down the AST
from the root towards the leaves

• Types are computed up the AST from the
leaves towards the root

Prof. Necula CS 164 Lectures 10-13 60

Let with Initialization

Now consider let with initialization:

This rule is weak. Why?

O ` let x : T0 ← e0 in e1 : T1

O ` e0 : T0

O[T0/x] ` e1 : T1
[Let-Init]

Prof. Necula CS 164 Lectures 10-13 61

Let with Initialization

• Consider the example:

class C inherits P { … }
…
let x : P ← new C in …
…

• The previous let rule does not allow this code
– We say that the rule is too weak

Prof. Necula CS 164 Lectures 10-13 62

Subtyping

• Define a relation X · Y on classes to say that:
– An object of type X could be used when one of

type Y is acceptable, or equivalently
– X conforms with Y
– In Cool this means that X is a subtype of Y

• Define a relation ≤ on classes
X ≤ X
X ≤ Y if X inherits from Y
X ≤ Z if X ≤ Y and Y ≤ Z

Prof. Necula CS 164 Lectures 10-13 63

Let with Initialization (Again)

• Both rules for let are correct
• But more programs type check with the latter

O ` let x : T0 ← e0 in e1 : T1

O ` e0 : T
T · T0

O[T0/x] ` e1 : T1 [Let-Init]

Prof. Necula CS 164 Lectures 10-13 64

Let with Subtyping. Notes.

• There is a tension between
– Flexible rules that do not constrain programming

– Restrictive rules that ensure safety of execution

Prof. Necula CS 164 Lectures 10-13 65

Expressiveness of Static Type Systems

• A static type system enables a compiler to
detect many common programming errors

• The cost is that some correct programs are
disallowed
– Some argue for dynamic type checking instead
– Others argue for more expressive static type

checking

• But more expressive type systems are also
more complex

Prof. Necula CS 164 Lectures 10-13 66

Dynamic And Static Types

• The dynamic type of an object is the class C
that is used in the “new C” expression that
creates the object
– A run-time notion
– Even languages that are not statically typed have

the notion of dynamic type
• The static type of an expression is a notation

that captures all possible dynamic types the
expression could take
– A compile-time notion

Prof. Necula CS 164 Lectures 10-13 67

Dynamic and Static Types. (Cont.)

• In early type systems the set of static types
correspond directly with the dynamic types

• Soundness theorem: for all expressions E
dynamic_type(E) = static_type(E)

(in all executions, E evaluates to values of the type
inferred by the compiler)

• This gets more complicated in advanced type
systems

Prof. Necula CS 164 Lectures 10-13 68

Dynamic and Static Types in COOL

• A variable of static type A can hold values of
static type B, if B ≤ A

class A { … }
class B inherits A {…}
class Main {

A x ← new A;
…
x ← new B;
…

}

x has static
type A

Here, x’s value has
dynamic type A

Here, x’s value has
dynamic type B

Prof. Necula CS 164 Lectures 10-13 69

Dynamic and Static Types

Soundness theorem for the Cool type system:
∀ E. dynamic_type(E) ≤ static_type(E)

Why is this Ok?
– All operations that can be used on an object of

type C can also be used on an object of type C’ ≤ C
• Such as fetching the value of an attribute
• Or invoking a method on the object

– Subclasses can only add attributes or methods
– Methods can be redefined but with same type !

Prof. Necula CS 164 Lectures 10-13 70

Let. Examples.

• Consider the following Cool class definitions

Class A { a() : int { 0 }; }
Class B inherits A { b() : int { 1 }; }

• An instance of B has methods “a” and “b”
• An instance of A has method “a”

– A type error occurs if we try to invoke method “b”
on an instance of A

Prof. Necula CS 164 Lectures 10-13 71

Example of Wrong Let Rule (1)

• Now consider a hypothetical let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T · T0 O ` e1 : T1

• The following good program does not typecheck
let x : Int Ã 0 in x + 1

• Why?

Prof. Necula CS 164 Lectures 10-13 72

Example of Wrong Let Rule (2)

• Now consider a hypothetical let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T0 · T O[T0/x] ` e1 : T1

• The following bad program is well typed
let x : B Ã new A in x.b()

• Why is this program bad?

Prof. Necula CS 164 Lectures 10-13 73

Example of Wrong Let Rule (3)

• Now consider a hypothetical let rule:

• How is it different from the correct rule?

O ` let x : T0 Ã e0 in e1 : T1

O ` e0 : T T · T0 O[T/x] ` e1 : T1

• The following good program is not well typed
let x : A Ã new B in {… x Ã new A; x.a(); }

• Why is this program not well typed?

Prof. Necula CS 164 Lectures 10-13 74

Morale.

• The typing rules use very concise notation
• They are very carefully constructed
• Virtually any change in a rule either:

– Makes the type system unsound
(bad programs are accepted as well typed)

– Or, makes the type system less usable
(perfectly good programs are rejected)

• But some good programs will be rejected anyway
– The notion of a good program is undecidable

Prof. Necula CS 164 Lectures 10-13 75

Assignment

More uses of subtyping:

[Assign]O ` id Ã e1 : T1

O(id) = T0

O ` e1 : T1

T1 · T0

Prof. Necula CS 164 Lectures 10-13 76

Initialized Attributes

• Let OC(x) = T for all attributes x:T in class C

• Attribute initialization is similar to let, except
for the scope of names

[Attr-Init]
OC ` id : T0 Ã e1 ;

OC(id) = T0

OC ` e1 : T1

T1 · T0

Prof. Necula CS 164 Lectures 10-13 77

If-Then-Else

• Consider:
if e0 then e1 else e2 fi

• The result can be either e1 or e2

• The type is either e1’s type or e2’s type

• The best we can do is the smallest supertype
larger than the type of e1 and e2

Prof. Necula CS 164 Lectures 10-13 78

If-Then-Else example

• Consider the class hierarchy

• … and the expression
if … then new A else new B fi

• Its type should allow for the dynamic type to
be both A or B
– Smallest supertype is P

P

A B

Prof. Necula CS 164 Lectures 10-13 79

Least Upper Bounds

• lub(X,Y), the least upper bound of X and Y, is
Z if
– X ≤ Z ∧ Y ≤ Z

Z is an upper bound

– X ≤ Z’ ∧ Y ≤ Z’ ⇒ Z ≤ Z’
Z is least among upper bounds

• In COOL, the least upper bound of two types
is their least common ancestor in the
inheritance tree

Prof. Necula CS 164 Lectures 10-13 80

If-Then-Else Revisited

[If-Then-Else]
O ` if e0 then e1 else e2 fi : lub(T1, T2)

O ` e0 : Bool
O ` e1 : T1

O ` e2 : T2

Prof. Necula CS 164 Lectures 10-13 81

Case

• The rule for case expressions takes a lub over
all branches

[Case]

O ` case e0 of x1:T1) e1; …; xn : Tn) en; esac : lub(T1’,…,Tn’)

O ` e0 : T0

O[T1/x1] ` e1 : T1’
…

O[Tn/xn] ` en : Tn’

Prof. Necula CS 164 Lectures 10-13 82

Outline

• Type checking method dispatch

• Type checking with SELF_TYPE in COOL

Prof. Necula CS 164 Lectures 10-13 83

Method Dispatch

• There is a problem with type checking method
calls:

• We need information about the formal
parameters and return type of f

[Dispatch]

O ` e0.f(e1,…,en) : ?

O ` e0 : T0

O ` e1 : T1

…
O ` en : Tn

Prof. Necula CS 164 Lectures 10-13 84

Notes on Dispatch

• In Cool, method and object identifiers live in
different name spaces
– A method foo and an object foo can coexist in the

same scope
• In the type rules, this is reflected by a

separate mapping M for method signatures
M(C,f) = (T1,. . .Tn,Tn+1)

means in class C there is a method f
f(x1:T1,. . .,xn:Tn): Tn+1

Prof. Necula CS 164 Lectures 10-13 85

An Extended Typing Judgment

• Now we have two environments O and M

• The form of the typing judgment is
O, M ` e : T

read as: “with the assumption that the object
identifiers have types as given by O and the
method identifiers have signatures as given by
M, the expression e has type T”

Prof. Necula CS 164 Lectures 10-13 86

The Method Environment

• The method environment must be added to all
rules

• In most cases, M is passed down but not
actually used
– Example of a rule that does not use M:

– Only the dispatch rules uses M

[Add]

O, M ` e1 + e2 : Int

O, M ` e1 : T1

O, M ` e2 : T2

Prof. Necula CS 164 Lectures 10-13 87

The Dispatch Rule Revisited

[Dispatch]

O, M ` e0.f(e1,…,en) : Tn+1’

O, M ` e0 : T0

O, M ` e1 : T1

…
O, M ` en : Tn

M(T0, f) = (T1’,…,Tn’, Tn+1’)
Ti · Ti’ (for 1 · i · n)

Prof. Necula CS 164 Lectures 10-13 88

Static Dispatch

• Static dispatch is a variation on normal
dispatch

• The method is found in the class explicitly
named by the programmer

• The inferred type of the dispatch expression
must conform to the specified type

Prof. Necula CS 164 Lectures 10-13 89

Static Dispatch (Cont.)

[StaticDispatch]

O, M ` e0@T.f(e1,…,en) : Tn+1’

O, M ` e0 : T0

O, M ` e1 : T1

…
O, M ` en : Tn

T0 · T
M(T, f) = (T1’,…,Tn’, Tn+1’)

Ti · Ti’ (for 1 · i · n)

Prof. Necula CS 164 Lectures 10-13 90

Handling the SELF_TYPE

Prof. Necula CS 164 Lectures 10-13 91

Flexibility vs. Soundness

• Recall that type systems have two conflicting
goals:
– Give flexibility to the programmer

– Prevent valid programs to “go wrong”
• Milner, 1981: “Well-typed programs do not go wrong”

• An active line of research is in the area of
inventing more flexible type systems while
preserving soundness

Prof. Necula CS 164 Lectures 10-13 92

Dynamic And Static Types. Review.

• The dynamic type of an object is the class C
that is used in the “new C” expression that
created it
– A run-time notion
– Even languages that are not statically typed have

the notion of dynamic type
• The static type of an expression is a notation

that captures all possible dynamic types the
expression could take
– A compile-time notion

Prof. Necula CS 164 Lectures 10-13 93

Dynamic and Static Types. Review

Soundness theorem for the Cool type system:
∀ E. dynamic_type(E) ≤ static_type(E)

Why is this Ok?
– All operations that can be used on an object of

type C can also be used on an object of type C’ ≤ C
• Such as fetching the value of an attribute
• Or invoking a method on the object

– Subclasses can only add attributes or methods
– Methods can be redefined but with same type !

Prof. Necula CS 164 Lectures 10-13 94

An Example

class Count {
i : int ← 0;
inc () : Count {

{
i ← i + 1;
self;

}
};

};

• Class Count
incorporates a counter

• The inc method works
for any subclass

• But there is disaster
lurking in the type
system

Prof. Necula CS 164 Lectures 10-13 95

An Example (Cont.)

• Consider a subclass Stock of Count

class Stock inherits Count {
name : String; -- name of item

};

class Main {
Stock a ← (new Stock).inc ();
… a.name …

};

• And the following use of Stock:

Type checking error !

Prof. Necula CS 164 Lectures 10-13 96

What Went Wrong?

• (new Stock).inc() has dynamic type Stock
• So it is legitimate to write

Stock a ← (new Stock).inc ()

• But this is not well-typed
(new Stock).inc() has static type Count

• The type checker “looses” type information
• This makes inheriting inc useless

– So, we must redefine inc for each of the subclasses,
with a specialized return type

Prof. Necula CS 164 Lectures 10-13 97

SELF_TYPE to the Rescue

• We will extend the type system
• Insight:

– inc returns “self”
– Therefore the return value has same type as “self”
– Which could be Count or any subtype of Count !
– In the case of (new Stock).inc () the type is Stock

• We introduce the keyword SELF_TYPE to use
for the return value of such functions
– We will also need to modify the typing rules to

handle SELF_TYPE

Prof. Necula CS 164 Lectures 10-13 98

SELF_TYPE to the Rescue (Cont.)

• SELF_TYPE allows the return type of inc to
change when inc is inherited

• Modify the declaration of inc to read
inc() : SELF_TYPE { … }

• The type checker can now prove:
O, M ` (new Count).inc() : Count
O, M ` (new Stock).inc() : Stock

• The program from before is now well typed

Prof. Necula CS 164 Lectures 10-13 99

Notes About SELF_TYPE

• SELF_TYPE is not a dynamic type
• It is a static type

• It helps the type checker to keep better
track of types

• It enables the type checker to accept more
correct programs

• In short, having SELF_TYPE increases the
expressive power of the type system

Prof. Necula CS 164 Lectures 10-13 100

SELF_TYPE and Dynamic Types (Example)

• What can be the dynamic type of the object
returned by inc?
– Answer: whatever could be the type of “self”

class A inherits Count { } ;
class B inherits Count { } ;
class C inherits Count { } ;

– Answer: Count or any subtype of Count

(inc could be invoked through any of these classes)

Prof. Necula CS 164 Lectures 10-13 101

SELF_TYPE and Dynamic Types (Example)

• In general, if SELF_TYPE appears textually in
the class C as the declared type of E then it
denotes the dynamic type of the “self”
expression:

dynamic_type(E) = dynamic_type(self) ≤ C

• Note: The meaning of SELF_TYPE depends on
where it appears
– We write SELF_TYPEC to refer to an occurrence of

SELF_TYPE in the body of C

Prof. Necula CS 164 Lectures 10-13 102

Type Checking

• This suggests a typing rule:
SELF_TYPEC ≤ C

• This rule has an important consequence:
– In type checking it is always safe to replace

SELF_TYPEC by C
• This suggests one way to handle SELF_TYPE :

– Replace all occurrences of SELF_TYPEC by C

• This would be correct but it is like not having
SELF_TYPE at all

Prof. Necula CS 164 Lectures 10-13 103

Operations on SELF_TYPE

• Recall the operations on types
– T1 ≤ T2 T1 is a subtype of T2

– lub(T1,T2) the least-upper bound of T1 and T2

• We must extend these operations to handle
SELF_TYPE

Prof. Necula CS 164 Lectures 10-13 104

Extending ≤

Let T and T’ be any types but SELF_TYPE
There are four cases in the definition of ≤
1. SELF_TYPEC ≤ T if C ≤ T

• SELF_TYPEC can be any subtype of C
• This includes C itself
• Thus this is the most flexible rule we can allow

2. SELF_TYPEC ≤ SELF_TYPEC
• SELF_TYPEC is the type of the “self” expression
• In Cool we never need to compare SELF_TYPEs

coming from different classes

Prof. Necula CS 164 Lectures 10-13 105

Extending ≤ (Cont.)

3. T ≤ SELF_TYPEC always false
Note: SELF_TYPEC can denote any subtype of C.

4. T ≤ T’ (according to the rules from before)

Based on these rules we can extend lub …

Prof. Necula CS 164 Lectures 10-13 106

Extending lub(T,T’)

Let T and T’ be any types but SELF_TYPE
Again there are four cases:
1. lub(SELF_TYPEC, SELF_TYPEC) = SELF_TYPEC

2. lub(SELF_TYPEC, T) = lub(C, T)
This is the best we can do because SELF_TYPEC ≤ C

3. lub(T, SELF_TYPEC) = lub(C, T)

4. lub(T, T’) defined as before

Prof. Necula CS 164 Lectures 10-13 107

Where Can SELF_TYPE Appear in COOL?

• The parser checks that SELF_TYPE appears
only where a type is expected

• But SELF_TYPE is not allowed everywhere a
type can appear:

1. class T inherits T’ {…}
• T, T’ cannot be SELF_TYPE
• Because SELF_TYPE is never a dynamic type

2. x : T
• T can be SELF_TYPE
• An attribute whose type is SELF_TYPEC

Prof. Necula CS 164 Lectures 10-13 108

Where Can SELF_TYPE Appear in COOL?

3. let x : T in E
• T can be SELF_TYPE
• x has type SELF_TYPEC

4. new T
• T can be SELF_TYPE
• Creates an object of the same type as self

5. m@T(E1,…,En)
• T cannot be SELF_TYPE

Prof. Necula CS 164 Lectures 10-13 109

Typing Rules for SELF_TYPE

• Since occurrences of SELF_TYPE depend on
the enclosing class we need to carry more
context during type checking

• New form of the typing judgment:
O,M,C ` e : T

(An expression e occurring in the body of C has
static type T given a variable type environment O
and method signatures M)

Prof. Necula CS 164 Lectures 10-13 110

Type Checking Rules

• The next step is to design type rules using
SELF_TYPE for each language construct

• Most of the rules remain the same except
that ≤ and lub are the new ones

• Example:

O ` id Ã e1 : T1

O(id) = T0

O ` e1 : T1

T1 · T0

Prof. Necula CS 164 Lectures 10-13 111

What’s Different?

• Recall the old rule for dispatch

O,M,C ` e0.f(e1,…,en) : Tn+1’

O,M,C ` e0 : T0

…

O,M,C ` en : Tn

M(T0, f) = (T1’,…,Tn’,Tn+1’)

Tn+1’ ≠ SELF_TYPE

Ti ≤ Ti’ 1 ≤ i ≤ n

Prof. Necula CS 164 Lectures 10-13 112

What’s Different?

• If the return type of the method is
SELF_TYPE then the type of the dispatch is
the type of the dispatch expression:

O,M,C ` e0.f(e1,…,en) : T0

O,M,C ` e0 : T0

…

O,M,C ` en : Tn

M(T0, f) = (T1’,…,Tn’, SELF_TYPE)

Ti ≤ Ti’ 1 ≤ i ≤ n

Prof. Necula CS 164 Lectures 10-13 113

What’s Different?

• Note this rule handles the Stock example
• Formal parameters cannot be SELF_TYPE
• Actual arguments can be SELF_TYPE

– The extended ≤ relation handles this case
• The type T0 of the dispatch expression could

be SELF_TYPE
– Which class is used to find the declaration of f?
– Answer: it is safe to use the class where the

dispatch appears

Prof. Necula CS 164 Lectures 10-13 114

Static Dispatch

• Recall the original rule for static dispatch

O,M,C ` e0@T.f(e1,…,en) : Tn+1’

O,M,C ` e0 : T0

…

O,M,C ` en : Tn

T0 ≤ T

M(T, f) = (T1’,…,Tn’,Tn+1’)

Tn+1’ ≠ SELF_TYPE

Ti ≤ Ti’ 1 ≤ i ≤ n

Prof. Necula CS 164 Lectures 10-13 115

Static Dispatch

• If the return type of the method is
SELF_TYPE we have:

O,M,C ` e0@T.f(e1,…,en) : T0

O,M,C ` e0 : T0

…

O,M,C ` en : Tn

T0 ≤ T

M(T, f) = (T1’,…,Tn’,SELF_TYPE)

Ti ≤ Ti’ 1 ≤ i ≤ n

Prof. Necula CS 164 Lectures 10-13 116

Static Dispatch

• Why is this rule correct?
• If we dispatch a method returning

SELF_TYPE in class T, don’t we get back a T?

• No. SELF_TYPE is the type of the self
parameter, which may be a subtype of the
class in which the method appears

• The static dispatch class cannot be
SELF_TYPE

Prof. Necula CS 164 Lectures 10-13 117

New Rules

• There are two new rules using SELF_TYPE

• There are a number of other places where
SELF_TYPE is used

O,M,C ` self : SELF_TYPEC

O,M,C ` new SELF_TYPE : SELF_TYPEC

Prof. Necula CS 164 Lectures 10-13 118

Where SELF_TYPE Cannot Appear in COOL?

m(x : T) : T’ { … }
• Only T’ can be SELF_TYPE !

What could go wrong if T were SELF_TYPE?
class A { comp(x : SELF_TYPE) : Bool {…}; };
class B inherits A {

b : int;
comp(x : SELF_TYPE) : Bool { … x.b …}; };

…
let x : A ← new B in … x.comp(new A); …

…

Prof. Necula CS 164 Lectures 10-13 119

Summary of SELF_TYPE

• The extended ≤ and lub operations can do a lot
of the work. Implement them to handle
SELF_TYPE

• SELF_TYPE can be used only in a few places.
Be sure it isn’t used anywhere else.

• A use of SELF_TYPE always refers to any
subtype in the current class
– The exception is the type checking of dispatch.
– SELF_TYPE as the return type in an invoked

method might have nothing to do with the current
class

Prof. Necula CS 164 Lectures 10-13 120

Why Cover SELF_TYPE ?

• SELF_TYPE is a research idea
– It adds more expressiveness to the type system

• SELF_TYPE is itself not so important
– except for the project

• Rather, SELF_TYPE is meant to illustrate that
type checking can be quite subtle

• In practice, there should be a balance
between the complexity of the type system
and its expressiveness

Prof. Necula CS 164 Lectures 10-13 121

Type Systems

• The rules in these lecture were COOL-specific
– Other languages have very different rules
– We’ll survey a few more type systems later

• General themes
– Type rules are defined on the structure of

expressions
– Types of variables are modeled by an environment

• Types are a play between flexibility and safety

