Introduction to Parsing

Lecture 4

Prof. Necula CS 164 Lecture 5

Administrivia

* Programming Assignment 2 is Out!
- Due October 7
- Work in teams begins
* Required Readings
- Lex Manual
- Red Dragon Book Chapter 4

Prof. Necula CS 164 Lecture 5

Outline

Regular languages revisited

Parser overview

Context-free grammars (CFG's)

Derivations

Prof. Necula CS 164 Lecture 5

Languages and Automata

* Formal languages are very important in CS
- Especially in programming languages

* Regular languages
- The weakest formal languages widely used
- Many applications

*+ We will also study context-free languages

Prof. Necula CS 164 Lecture 5

Limitations of Regular Languages

» Intuition: A finite automaton that runs long
enough must repeat states

» Finite automaton can't remember # of times it
has visited a particular state

» Finite automaton has finite memory
- Only enough to store in which state it is
- Cannot count, except up to a finite limit

» E.g., language of balanced parentheses is not
regular: { (') | i, O}

Prof. Necula CS 164 Lecture 5 5

The Functionality of the Parser

» Input: sequence of tokens from lexer

* Output: parse tree of the program

Prof. Necula CS 164 Lecture 5

Example

+ Cool
if X =y then 1 else 2 fi
* Parser input
IF ID = 1D THEN INT ELSE INT Fl
* Parser output

IF-THEN-ELSE
- T
= INT INT

N
1D D

Prof. Necula CS 164 Lecture 5

Comparison with Lexical Analysis

Phase Input Output

Lexer Sequence of | Sequence of
characters tokens

Parser Sequence of Parse tree
tokens

Prof. Necula CS 164 Lecture 5

The Role of the Parser

* Not all sequences of tokens are programs . . .

* ... Parser must distinguish between valid and
invalid sequences of tokens

- We need

- A language for describing valid sequences of tokens

- A method for distinguishing valid from invalid
sequences of tokens

Prof. Necula CS 164 Lecture 5 9

Context-Free Grammars

* Programming language constructs have
recursive structure

+ An EXPR is
if EXPR then EXPR else EXPR fi . or
while EXPR loop EXPR pool , or

+ Context-free grammars are a natural notation
for this recursive structure

Prof. Necula CS 164 Lecture 5 10

CFGs (Cont.)

- A CFG consists of

- A set of terminals T

- A set of non-terminals N

- A start symbo/ S (a non-terminal)
- A set of productions

Assuming X € N
X=>¢ ,or

X=>Y,Y,..Y, where Y. e (NUT)

Prof. Necula CS 164 Lecture 5 11

Notational Conventions

* In these lecture notes
- Non-terminals are written upper-case

- Terminals are written lower-case

- The start symbol is the left-hand side of the first
production

Prof. Necula CS 164 Lecture 5 12

Examples of CFGs

A fragment of Cool:

EXPR — 1f EXPR then EXPR else EXPR fi
while EXPR loop EXPR pool
1d

Prof. Necula CS 164 Lecture 5 13

Examples of CFGs (cont.)

Simple arithmetic expressions:
E —» E=x*xE
E+E

(E)

id

Prof. Necula CS 164 Lecture 5

14

The Language of a CFG

Read productions as replacement rules:

X=>Y,..Y,
Means X can be replaced by Y, ..V,
X=>¢

Means X can be erased (replaced with empty string)

Prof. Necula CS 164 Lecture 5 15

Key Idea

1. Begin with a string consisting of the start
symbol "S"

2. Replace any non-terminal X in the string by a
right-hand side of some production

X => yl yn

3. Repeat (2) until there are no non-terminals in
the string

Prof. Necula CS 164 Lecture 5 16

The Language of a CFG (Cont.)

More formally, write
Xy Xi o X => Xg o Xisg Yoo Y Xisq oo X,
if there is a production

Xi => y1 ym

Prof. Necula CS 164 Lecture 5

17

The Language of a CFG (Cont.)

Write
X1 Xn =>" yl ym

in O or more steps

Prof. Necula CS 164 Lecture 5

18

The Language of a CFG

Let & be a context-free grammar with start
symbol S. Then the language of &is:

{a;..a,| S=>"q, .. a, and every a. is a terminal

}

Prof. Necula CS 164 Lecture 5 19

Terminals

- Terminals are called because there are no
rules for replacing them

* Once generated, terminals are permanent

» Terminals ought to be tokens of the language

Prof. Necula CS 164 Lecture 5 20

Examples

L(G) is the language of CFG G
Strings of balanced parentheses {(i)i = O}

Two grammars:
S — (5) o S — (5)
S — ¢ | g

Prof. Necula CS 164 Lecture 5 21

Cool Example

A fragment of COOL.:

EXPR — 1f EXPR then EXPR else EXPR fi
while EXPR loop EXPR pool
1d

Prof. Necula CS 164 Lecture 5 22

Cool Example (Cont.)

Some elements of the language

1d

1f 1d then 1d else 1d 1

while 1d loop 1d pool

1f while 1d loop 1d pool then 1d else 1d
1f 1f 1d then 1d else 1d f1 then 1d else 1d 11

Prof. Necula CS 164 Lecture 5 23

Arithmetic Example

Simple arithmetic expressions:
E—>E+E|E*E|(E)|id
Some elements of the language:
1d id + 1d
(id) id * id
(id) * id | id * (id)

Prof. Necula CS 164 Lecture 5 24

Notes

The idea of a CFG is a big step. But:

* Membership in a language is "yes" or "no"
- we also need parse tree of the input

* Must handle errors gracefully

* Need an implementation of CFG's (e.g., bison)

Prof. Necula CS 164 Lecture 5 25

More Notes

* Form of the grammar is important
- Many grammars generate the same language
- Tools are sensitive to the grammar

- Note: Tools for regular languages (e.g., flex) are
also sensitive to the form of the regular
expression, but this is rarely a problem in practice

Prof. Necula CS 164 Lecture 5 26

Derivations and Parse Trees

A derivation is a sequence of productions
S=>.=>..

A derivation can be drawn as a tree
- Start symbol is the tree's root

- For a production X =>YVY, ... Y, add children Y, ...,
Y, to node X

Prof. Necula CS 164 Lecture 5 27

Derivation Example

+ Grammar

E — E+E|E*E | (E)|id

-+ String
id * 1d

id

Prof. Necula CS 164 Lecture 5

28

Derivation Example (Cont.)

L3

E

E+E -

E * E+E /I\
id*E + E F *
id*id+E .
. . . Id Id
1d *1d + 1d

Prof. Necula CS 164 Lecture 5

29

Derivation in Detail (1)

Prof. Necula CS 164 Lecture 5

30

Derivation in Detail (2)

— E+E

Prof. Necula CS 164 Lecture 5

31

Derivation in Detail (3)

> E+F /I\

— ExE+E

Prof. Necula CS 164 Lecture 5

32

Derivation in Detail (4)

. N

- EE I
., EB<E+E £ *
& id*xE+E |

Id

Prof. Necula CS 164 Lecture 5

33

Derivation in Detail (5)

E I

EF+E E

E * E+E /N

d*E+ E ‘
id*1d + E id

NN

Prof. Necula CS 164 Lecture 5

34

Derivation in Detail (6)

L3

E

E+E /////T\\\\

E * E+E /I\ ‘
d*E + E E * E id
id*id+E | .

d d
id *1d + 1d

Prof. Necula CS 164 Lecture 5 35

Notes on Derivations

* A parse tree has
- Terminals at the leaves
- Non-terminals at the interior nodes

- An in-order traversal of the leaves is the
original input

* The parse tree shows the association of
operations, the input string does not

Prof. Necula CS 164 Lecture 5

36

Left-most and Right-most Derivations

* The previous example is

a right-most derivation E
- At each step, replace the
left-most non-terminal — E+E
. . — E+id
* Here is an equivalent
notion of a right-most :> > Ex*E+1d
derivation
— E=*1d +1d

— 1d*1d +1d

Prof. Necula CS 164 Lecture 5 37

Right-most Derivation in Detail (1)

Prof. Necula CS 164 Lecture 5

38

Right-most Derivation in Detail (2)

— E+E

Prof. Necula CS 164 Lecture 5

39

Right-most Derivation in Detail (3)

— E+E
— E+id

Prof. Necula CS 164 Lecture 5

40

Right-most Derivation in Detail (4)

. N

E
> BB N
— E+id F *

— E*E+1d

Prof. Necula CS 164 Lecture 5

41

Right-most Derivation in Detail (5)

E
E /I\
— E+E E * E
— E+id /N ‘
| E * E id
— E=*E +1d ‘
— E=*xid+1d id

Prof. Necula CS 164 Lecture 5 42

Right-most Derivation in Detail (6)

B F
— E+E - N -
— E+id /I\ ‘
— Ex*xE +1d E * E id
& Exid+id

. . . d d
— 1d*1d +1d

Prof. Necula CS 164 Lecture 5 43

Derivations and Parse Trees

* Note that right-most and left-most
derivations have the same parse tree

- The difference is the order in which branches
are added

Prof. Necula CS 164 Lecture 5 44

Summary of Derivations

+ We are not just interested in whether
sel(G)

- We need a parse tree for s

* A derivation defines a parse free
- But one parse tree may have many derivations

+ Left-most and right-most derivations are
important in parser implementation

Prof. Necula CS 164 Lecture 5

45

