Introduction to Parsing
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Administrivia

* Programming Assignment 2 is Out!
- Due October 7
- Work in teams begins
* Required Readings
- Lex Manual
- Red Dragon Book Chapter 4
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Outline

Regular languages revisited

Parser overview

Context-free grammars (CFG's)

Derivations
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Languages and Automata

* Formal languages are very important in CS
- Especially in programming languages

* Regular languages
- The weakest formal languages widely used
- Many applications

*+ We will also study context-free languages
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Limitations of Regular Languages

» Intuition: A finite automaton that runs long
enough must repeat states

» Finite automaton can't remember # of times it
has visited a particular state

» Finite automaton has finite memory
- Only enough to store in which state it is
- Cannot count, except up to a finite limit

» E.g., language of balanced parentheses is not
regular: { (') | i, O}
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The Functionality of the Parser

» Input: sequence of tokens from lexer

* Output: parse tree of the program
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Example

+ Cool
if X =y then 1 else 2 fi
* Parser input
IF ID = 1D THEN INT ELSE INT Fl
* Parser output

IF-THEN-ELSE
- T
= INT INT

N
1D D
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Comparison with Lexical Analysis

Phase Input Output

Lexer Sequence of | Sequence of
characters tokens

Parser Sequence of Parse tree
tokens
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The Role of the Parser

* Not all sequences of tokens are programs . . .

* ... Parser must distinguish between valid and
invalid sequences of tokens

- We need

- A language for describing valid sequences of tokens

- A method for distinguishing valid from invalid
sequences of tokens
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Context-Free Grammars

* Programming language constructs have
recursive structure

+ An EXPR is
if EXPR then EXPR else EXPR fi . or
while EXPR loop EXPR pool , or

+ Context-free grammars are a natural notation
for this recursive structure
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CFGs (Cont.)

- A CFG consists of

- A set of terminals T

- A set of non-terminals N

- A start symbo/ S (a non-terminal)
- A set of productions

Assuming X € N
X=>¢ ,or

X=>Y,Y,..Y, where Y. e (NUT)
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Notational Conventions

* In these lecture notes
- Non-terminals are written upper-case

- Terminals are written lower-case

- The start symbol is the left-hand side of the first
production
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Examples of CFGs

A fragment of Cool:

EXPR — 1f EXPR then EXPR else EXPR fi
while EXPR loop EXPR pool
1d

Prof. Necula CS 164 Lecture 5 13



Examples of CFGs (cont.)

Simple arithmetic expressions:
E —» E=x*xE
E+E

(E)

id
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The Language of a CFG

Read productions as replacement rules:

X=>Y,..Y,
Means X can be replaced by Y, ..V,
X=>¢

Means X can be erased (replaced with empty string)
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Key Idea

1. Begin with a string consisting of the start
symbol "S"

2. Replace any non-terminal X in the string by a
right-hand side of some production

X => yl yn

3. Repeat (2) until there are no non-terminals in
the string
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The Language of a CFG (Cont.)

More formally, write
Xy Xi o X => Xg o Xisg Yoo Y Xisq oo X,
if there is a production

Xi => y1 ym
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The Language of a CFG (Cont.)

Write
X1 Xn =>" yl ym

in O or more steps
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The Language of a CFG

Let & be a context-free grammar with start
symbol S. Then the language of &is:

{a;..a,| S=>"q, .. a, and every a. is a terminal

}
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Terminals

- Terminals are called because there are no
rules for replacing them

* Once generated, terminals are permanent

» Terminals ought to be tokens of the language
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Examples

L(G) is the language of CFG G
Strings of balanced parentheses {(i)i = O}

Two grammars:
S — (5) o S — (5)
S — ¢ | g
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Cool Example

A fragment of COOL.:

EXPR — 1f EXPR then EXPR else EXPR fi
while EXPR loop EXPR pool
1d
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Cool Example (Cont.)

Some elements of the language

1d

1f 1d then 1d else 1d 1

while 1d loop 1d pool

1f while 1d loop 1d pool then 1d else 1d
1f 1f 1d then 1d else 1d f1 then 1d else 1d 11
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Arithmetic Example

Simple arithmetic expressions:
E—>E+E|E*E|(E)|id
Some elements of the language:
1d id + 1d
(id) id * id
(id) * id | id * (id)
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Notes

The idea of a CFG is a big step. But:

* Membership in a language is "yes" or "no"
- we also need parse tree of the input

* Must handle errors gracefully

* Need an implementation of CFG's (e.g., bison)
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More Notes

* Form of the grammar is important
- Many grammars generate the same language
- Tools are sensitive to the grammar

- Note: Tools for regular languages (e.g., flex) are
also sensitive to the form of the regular
expression, but this is rarely a problem in practice
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Derivations and Parse Trees

A derivation is a sequence of productions
S=>.=>..

A derivation can be drawn as a tree
- Start symbol is the tree's root

- For a production X =>YVY, ... Y, add children Y, ...,
Y, to node X
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Derivation Example

+ Grammar

E — E+E|E*E | (E)|id

-+ String
id * 1d

id
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Derivation Example (Cont.)

L3

E

E+E -

E * E+E /I\
id*E + E F *
id*id+E .
. . . Id Id
1d *1d + 1d
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Derivation in Detail (1)
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Derivation in Detail (2)

—  E+E
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Derivation in Detail (3)

> E+F /I\

— ExE+E
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Derivation in Detail (4)

. N

- EE I
., EB<E+E £ *
& id*xE+E |

Id
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Derivation in Detail (5)

E I

EF+E E

E * E+E /N

d*E+ E ‘
id*1d + E id

NN
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Derivation in Detail (6)

L3

E

E+E /////T\\\\

E * E+E /I\ ‘
d*E + E E * E id
id*id+E | .

d d
id *1d + 1d
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Notes on Derivations

* A parse tree has
- Terminals at the leaves
- Non-terminals at the interior nodes

- An in-order traversal of the leaves is the
original input

* The parse tree shows the association of
operations, the input string does not
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Left-most and Right-most Derivations

* The previous example is

a right-most derivation E
- At each step, replace the
left-most non-terminal — E+E
. . —  E+id
* Here is an equivalent
notion of a right-most :> > Ex*E+1d
derivation
— E=*1d +1d

— 1d*1d +1d
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Right-most Derivation in Detail (1)
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Right-most Derivation in Detail (2)

—  E+E
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Right-most Derivation in Detail (3)

—  E+E
— E+id
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Right-most Derivation in Detail (4)

. N

E
> BB N
— E+id F *

— E*E+1d
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Right-most Derivation in Detail (5)

E
E /I\
— E+E E * E
— E+id /N ‘
| E * E id
— E=*E +1d ‘
— E=*xid+1d id
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Right-most Derivation in Detail (6)

B F
— E+E - N -
—  E+id /I\ ‘
— Ex*xE +1d E * E id
& Exid+id

. . . d d
— 1d*1d +1d
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Derivations and Parse Trees

* Note that right-most and left-most
derivations have the same parse tree

- The difference is the order in which branches
are added
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Summary of Derivations

+ We are not just interested in whether
sel(G)

- We need a parse tree for s

* A derivation defines a parse free
- But one parse tree may have many derivations

+ Left-most and right-most derivations are
important in parser implementation
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