
ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

1

Overview of COOL

ICOM 4029
Lecture 2

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

2

Lecture Outline

• Cool

• The Course Project

• Programming Assignment 1

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

3

Cool Overview

• Classroom Object Oriented Language
• Designed to

– Be implementable in one semester
– Give a taste of implementation of modern

• Abstraction
• Static typing
• Reuse (inheritance)
• Memory management
• And more …

• But many things are left out

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

4

A Simple Example

• Cool programs are sets of class definitions
– A special class Main with a special method main
– No separate notion of subroutine

• class = a collection of attributes and methods
• Instances of a class are objects

class Point {
x : Int ← 0;
y : Int ← 0;

};

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

5

Cool Objects

• An object can be thought of as a record
with a slot for each attribute

class Point {
x : Int ← 0;
y : Int; (* use default value *)

};

x y
0 0

• The expression “new Point” creates a new
object of class Point

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

6

Methods

• Methods can refer to the current object using self

class Point {
x : Int ← 0;
y : Int ← 0;
movePoint(newx : Int, newy : Int): Point {

{ x ← newx;
y ← newy;
self;

} -- close block expression
}; -- close method

}; -- close class

• A class can also define methods for manipulating
the attributes

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

7

Information Hiding in Cool

• Methods are global

• Attributes are local to a class
– They can only be accessed by the class’s methods

• Example:
class Point {

. . .
x () : Int { x };
setx (newx : Int) : Int { x ← newx };

};

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

8

Methods

• Each object knows how to access the code of a
method

• As if the object contains a slot pointing to the code

• In reality implementations save space by sharing
these pointers among instances of the same class

x y
0 0

movePoint
*

x y
0 0

methods

movePoint
*

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

9

Inheritance

• We can extend points to colored points using
subclassing => class hierarchy

class ColorPoint inherits Point {
color : Int ← 0;
movePoint(newx : Int, newy : Int): Point {
{ color ← 0;
x ← newx; y ← newy;
self;

}
};

}; x y
0 0

color
0

movePoint
*

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

10

Cool Types

• Every class is a type
• Base classes:

– Int for integers
– Bool for boolean values: true, false
– String for strings
– Object root of the class hierarchy

• All variables must be declared
– compiler infers types for expressions

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

11

Cool Type Checking

• Is well typed if P is an ancestor of C in the
class hierarchy
– Anywhere an P is expected a C can be used

• Type safety:
– A well-typed program cannot result in runtime type

errors

x : P;
x ← new C;

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

12

Method Invocation and Inheritance

• Methods are invoked by dispatch
• Understanding dispatch in the presence of

inheritance is a subtle aspect of OO languages
p : Point;
p ← new ColorPoint;
p.movePoint(1,2);

p has static type Point
p has dynamic type ColorPoint
p.movePoint must invoke the ColorPoint version

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

13

Method Invocation

• Example: invoke one-argument method m
e.m(e’)

…
2

…
1

m: self ←
x ←
<method code>

4

5

5

6

1. Eval. argum e’

3. Find class of e
4. Find code of m

2. Eval. e

5. Bind self and x
6. Run method

…

…

3

method
table

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

14

Other Expressions

• Expression language (every expression has a
type and a value)
– Conditionals if E then E else E fi
– Loops: while E loop E pool
– Case statement case E of x : Type ⇒ E; … esac
– Arithmetic, logical operations
– Assignment x ← E
– Primitive I/O out_string(s), in_string(), …

• Missing features:
– Arrays, Floating point operations, Interfaces,

Exceptions,…

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

15

Cool Memory Management

• Memory is allocated every time new is invoked

• Memory is deallocated automatically when an
object is not reachable anymore
– Done by the garbage collector (GC)
– There is a Cool GC

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

16

Course Project

• A complete compiler
– Cool ==> MIPS assembly language
– No optimizations

• Split in 5 programming assignments (PAs)
• There is adequate time to complete

assignments
– But start early and please follow directions
– Turn in early to test the turn-in procedure

• Individual or team (max. 2 students)

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

17

Programming Assignment I

• Write an interpreter for a stack machine …
• … in Cool
• Due in 2 week
• Must be completed individually

ICOM 4029 Fall 2003 Lecture 2
(Adapted from Prof. Necula UCB CS 164)

18

Homework for Next Week

• Work on Programming Assignment I

• Read Chapters 1-2 of Textbook

• Continue learning Flex/Jlex

