
ICOM 4029 Compiler Writing Handout 3

Fall 2003 page 1 of 4

Programming Assignment III
A Parser for COOL

Due Tuesday, October 21, 2003

1. Introduction
In this assignment you will write a parser for Cool. The assignment makes use of two tools: the parser
generator (the C++ tool is called bison; the Java tool is called CUP) and a package for manipulating
trees. The output of your parser will be an abstract syntax tree (AST). You will construct this AST using
semantic actions of the parser generator.

You certainly will need to refer to the syntactic structure of Cool, found in Figure 1 of the CoolAid
manual, as well as other portions of the reference manual. There is a section on bison in the course
reader. There is also a section (Dragon Book 4.9) in the textbook on yacc, a close predecessor of bison.
Documentation for CUP may be found online. The C++ version of the tree package is described in the
“Tour of Cool Support Code” section in the back of the Cool manual, while the documentation for the
Java version is also available online. You will need the tree package information for this and future
assignments.

There is a lot of information in this handout, and you need to know most of it to write a working parser.
Please read the handout thoroughly.

You must work in a group for this assignment (where a group consists of two people). The submit
program will ask you to specify group members when you turn in your assignment.

2. Files and Directories
To get started, create a directory where you want to do the assignment and execute one of the following
commands in that directory. For the C++ version of the assignment, you should type:

gmake -f ~icom4029/cool/assignments/PA3/Makefile source
For Java, type:

gmake -f ~icom4029/cool/assignments/PA3J/Makefile source
 (notice the “J" in the path name). This command will copy a number of files to your directory. Some of
the files will be copied read-only (using symbolic links). You should not edit these files. In fact, if you
make and modify private copies of these files, you may find it impossible to complete the assignment. See
the instructions in the README file. The files that you will need to modify are:

• cool.y (in the C++ version) / cool.cup (in the Java version)

This file contains a start towards a parser description for Cool. You will need to add more rules. The
declaration section is mostly complete; all you need to do is add type declarations for new
nonterminals. (We have given you names and type declarations for the terminals.) The rule section is
very incomplete.

• good.cl and bad.cl

These files test a few features of the grammar. You should add tests to ensure that good.cl
exercises every legal construction of the grammar and that bad.cl exercises as many types of
parsing errors as possible in a single file. Explain your tests in these files and put any overall
comments in the README file.

ICOM 4029 Compiler Writing Handout 3

Fall 2003 page 2 of 4

• README
As usual, this file will contain the write-up for your assignment. Explain your design decisions, your
test cases, and why you believe your program is correct and robust. It is part of the assignment to
explain things in text, as well as to comment your code.

Important: All software supplied with this assignment is supported on the Linux/Pentium platform
available at the Amadeus computer center.

To submit your assignment, run “submit-PA3" from your PA3 directory and follow the instructions.
When asked whether you want to include cool.y (C++) or cool.cup (Java), choose yes! The parser
definition is, of course, the most important part of your project.

3. Testing the Parser
You will need a working scanner to test the parser. You may use either your own scanner or the coolc
scanner. By default, the coolc scanner is used, to change that, replace the lexer executable (which is a
symbolic link in your project directory) with your own scanner. Don't automatically assume that the
scanner {whichever one you use!} is bug free. Latent bugs in the scanner may cause mysterious
problems in the parser.

You will run your parser using myparser, a shell script that “glues" together the parser with the
scanner. Note that myparser takes a -p flag for debugging the parser; using this flag causes lots of
information about what the parser is doing to be printed on stdout. Both bison and CUP produce a
human-readable dump of the LALR(1) parsing tables in the cool.output file. Examining this dump is
frequently useful for debugging the parser definition.

You should test this compiler on both good and bad inputs to see if everything is working. Remember,
bugs in your parser may manifest themselves anywhere.

Your parser will be graded using our lexical analyzer. Thus, even if you do most of the work using your
own scanner you should test your parser with the coolc scanner before turning in the assignment.

4. Parser Output
Your semantic actions should build an AST. The root (and only the root) of the AST should be of type
program. For programs that parse successfully, the output of parser is a listing of the AST.

For programs that have errors, the output is the error messages of the parser. We have supplied you with
an error reporting routine that prints error messages in a standard format; please do not modify it. You
should not invoke this routing directly in the semantic actions; bison/CUP automatically invokes it
when a problem is detected.

Your parser need only work for programs contained in a single file. You don't have to worry about
compiling multiple files.

5. Error Handling
You should use the error pseudo-nonterminal to add error handling capabilities in the parser. The
purpose of error is to permit the parser to continue after some anticipated error. It is not a panacea and the
parser may become completely confused. See the bison/CUP documentation for how best to use error.
In your README, describe which errors you attempt to catch. Your test file bad.cl should have some
instances that illustrate the errors from which your parser can recover. To receive full credit, your parser
should recover in at least the following situations:

ICOM 4029 Compiler Writing Handout 3

Fall 2003 page 3 of 4

• If there is an error in a class definition but the class is terminated properly and the next class is
syntactically correct, the parser should be able to restart at the next class definition.

• Similarly, the parser should recover from errors in features (going on to the next feature), a let
binding (going on to the next variable), and an expression inside a {...} block.

Do not be overly concerned about the line numbers that appear in the error messages your parser
generates. If your parser is working correctly, the line number will generally be the line where the error
occurred. For erroneous constructs broken across multiple lines, the line number will probably be the last
line of the construct.

6. The Tree Package
There is an extensive discussion of the C++ version of the tree package for Cool abstract syntax trees in
the Tour section of the Cool documentation. The documentation for the Java version is available on the
UCB CS164 Spring 2003 course web page1. You will need most of that information to write a working
parser.

7. Remarks
You may use precedence declarations, but only for expressions. Do not use precedence declarations
blindly (i.e. do not respond to a shift-reduce conflict in your grammar by adding precedence rules until it
goes away). If you find yourself making up rules for many things other than operators in expressions and
for let, you are probably doing something wrong.

The Cool let construct introduces an ambiguity into the language (try to construct an example if you are
not convinced). The manual resolves the ambiguity by saying that a let expression extends as far to the
right as possible. The ambiguity will show up in your parser as a shift-reduce conflict involving the
productions for let.

This problem has a simple, but slightly obscure, solution. We will not tell you exactly how to solve it, but
we will give you a strong hint. In coolc, we implemented the resolution of the let shift-reduce conflict
by using a bison/CUP feature that allows precedence to be associated with productions (not just
operators). See the bison/CUP documentation for information on how to use this feature.

Since the mycoolc compiler uses pipes to communicate from one stage to the next, any extraneous
characters produced by the parser can cause errors; in particular, the semantic analyzer may not be able to
parse the AST your parser produces.

8. Notes for the C++ version of the assignment
If you are working on the Java version, skip to the following section.

You must declare bison “types" for your non-terminals and terminals that have attributes. For example,
in the skeleton cool.y is the declaration:

%type <program> program
This declaration says that the non-terminal program has type <program>. The use of the word “type" is
misleading here; what it really means is that the attribute for the non-terminal program is stored in the
program member of the union declaration in cool.y, which has type Program. By specifying the type:

%type <member_name> X Y Z ...

1 http://www-inst.eecs.berkeley.edu/~cs164/public_html-sp03/

ICOM 4029 Compiler Writing Handout 3

Fall 2003 page 4 of 4

you instruct bison that the attributes of non-terminals (or terminals) X, Y, and Z have a type appropriate
for the member_name of the union.

All the union members and their types have similar names by design. It is a coincidence in the example
above that the non-terminal program has the same name as a union member.

It is critical that you declare the correct types for the attributes of grammar symbols; failure to do so
virtually guarantees that your parser won't work. You do not need to declare types for symbols of your
grammar that do not have attributes.

The g++ type checker complains if you use the tree constructors with the wrong type parameters. If you
ignore the warnings, your program may crash when the constructor notices that it is being used
incorrectly. Moreover, bison may complain if you make type errors. Heed any warnings. Don't be
surprised if your program crashes when bison or g++ give warning messages.

9. Notes for the Java version of the assignment
If you are working on the C++ version, skip this section.

You must declare CUP “types" for your non-terminals and terminals that have attributes. For example, in
the skeleton cool.cup is the declaration:

nonterminal Program program;
This declaration says that the non-terminal program has type Program.

It is critical that you declare the correct types for the attributes of grammar symbols; failure to do so
virtually guarantees that your parser won't work. You do not need to declare types for symbols of your
grammar that do not have attributes.

The javac type checker complains if you use the tree constructors with the wrong type parameters. If
you fix the errors with frivolous casts, your program may throw an exception when the constructor
notices that it is being used incorrectly. Moreover, CUP may complain if you make type errors.

