ICOM 4029 Compiler Writing

 Handout 1

Programming Assignment I

Due Tuesday, September 16, 2003 at 11:59pm

This assignment asks you to write a short Cool program. The purpose is to acquaint you with the Cool language and to give you experience with some of the tools used in the course. This assignment will not be done with a partner; you should turn in your own individual work. All future programming assignments will be done in teams of either one or two.
A machine with only a single stack for storage is a stack machine. Consider the following very primitive language for programming a stack machine:

	Command
	Meaning

	int
	push the integer int on the stack

	+
	push a `+' on the stack

	s
	push an `s' on the stack

	e
	evaluate the top of the stack (see below)

	d
	display contents of the stack

	x
	stop

The `d' command simply prints out the contents of the stack, one element per line, beginning with the top of the stack. The behavior of the `e' command depends on the contents of the stack when `e' is issued:
· If `+' is on the top of the stack, then the `+' is popped of the stack, the following two integers are popped and added, and the result is pushed back on the stack.

· If `s' is on top of the stack, then the `s' is popped and the following two items are swapped on the stack.

· If an integer is on top of the stack or the stack is empty, the stack is left unchanged.
The following examples show the effect of the `e' command in various situations; the top of the stack is on the left:
	stack before
	stack after

	+ 1 2 5 s
	3 5 s

	s 1 + + 99
	+ 1 + 99

	1 + 3
	1 + 3

You are to implement an interpreter for this language in Cool. Input to the program is a series of commands, one command per line. Your interpreter should prompt for commands with >. Your program need not do any error checking: you may assume that all commands are valid and that the appropriate number and type of arguments are on the stack for evaluation. You may also assume that the input integers are unsigned.

You are free to implement this program in any style you choose. However, in preparation for building a Cool compiler, we recommend that you try to develop an object-oriented solution. One approach is to define a class Stack with a number of generic operations, and then to define subclasses of Stack, one for each kind of command in the language. These subclasses define operations specific to each command, such as how to evaluate that command, display that command, etc. If you wish, you may use the classes defined in atoi.cl in the ~icom4029/examples directory to perform string to integer conversion. If you find any other code in ~icom4029/examples that you think would be useful, you are free to use it as well.
We have a solution of approximately 200 lines of Cool source code. This information is provided to you as a rough measure of the amount of work involved in the assignment. Your solution may be either substantially shorter or longer.

Sample session

Make sure you add the pathname ~icom4029/cool/bin to your PATH environment variable. Otherwise the shell will not find the commands that you will be using. The following is a sample compile and run of our solution.

%cd ~<your_account>/privado/PA1

%coolc –o stack.s stack.cl ~icom4029/cool/examples/atoi.cl

%spim –trap_file ~icom4029/cool/lib/trap.handler -file stack.s

SPIM Version 5.6 of January 18, 1995

Copyright 1990-1994 by James R. Larus (larus@cs.wisc.edu).

All Rights Reserved.

See the file README a full copyright notice.

Loaded: /home/courses/icom4029/cool/lib/trap.handler

>1

>+

>2

>s

>d

s

2

+

1

>e

>e

>d

3

>x

COOL program successfully executed

Getting and turning in the assignment

Create a private working directory called PA1 inside your privado directory and cd into it.
% cd ~<your_account>/privado

% mkdir PA1

% chmod –R 0700 PA1

% cd PA1
From there, type

% gmake -f ~icom4029/cool/assignments/PA1/Makefile

This command creates several files you will need in the directory. Follow the directions in the README file.

To turn the assignment in:

1. Make sure your code is in stack.cl and that it compiles and works :-). A copy of Makefile and atoi.cl will be present when we test your submission, so all we need from you is stack.cl.

2. Answer the three questions that appear in the README file and include any other relevant comments in the README file. Ignore the questions about the Harmonia system.
3. Make sure everything is in a directory called PA1.

4. Create a tar file PA1.tar containing the PA1 directory.

5. Gzip the PA1.tar file into a PA1.tar.gz file.

6. Email your PA1.tar.gz file to icom4029-tas@ece.uprm.edu.
� This programming assignment is the same one used in the spring 2003 CS 164 course at UC Berkeley. Recycled with permission from Professor George Necula.

Fall 2003

page 1 of 3

