
Class Design

When designing classes, there are three different design errors you can fall
into:

- The Data Warehouse Trap: An object is not a repository for data that
the rest of your program will use. Your objects should contain both data
and the methods that work on that data.

If you find yourself with classes that have lots of data elements and
almost every element has a get() or set() method, you may be falling into
this trap.

Objects should do something, not just sit there!

- The Spectral Object Trap: An object is not just a collection of methods
that you pass data to. If a class has no data elements, and if most of the
methods in the class are static, then what you have is a procedural
module.

An object contains both data and the operations that are performed on the
data. Objects with no data are ghosts (specters)!

- The Multiple Personality Trap: An object should model one
abstraction. It should be one kind of thing. Every class should be highly
cohesive, meaning that every data element and every method should
contribute to that one abstraction.

Class Interfaces

In evaluating the public interface of your class, ask yourself the following
questions:

1. Does the interface represent, or model, a single abstraction?

Classes are not collections of autonomous methods. Make sure each
method contributes to the intended behavior of your object.

2. Does each method represent, or model, a single operation? That is,
are the methods themselves internally cohesive?

3. Does the class do everything it needs to do, and no more?

If programs that use your objects rely primarily on get() and set()
methods, this may be a sign that your interface is not complete, that
client objects are having to process your object’s data.

If there are methods that are not used, don’t clutter your interface with
them.

4. Is your interface easy to use?

Your interface should be designed around the problem your class
solves, not the details of your implementation.

Methods that require long argument lists or complex calculations
clamor for simplification. Ex: input in Hex, or an addresses in decimal.
Ease of use must be evaluated from the user’s perspective.

5. Use a checklist of common operations that all classes should
understand.

Use your checklist to make sure that you have considered how objects
are constructed, copied (or assigned), and destroyed.

Make sure you’ve dealt with the difference between identity and
equality if ordering or sorting objects is important. When you design
your class, consider including methods to test, debug, and print the
state of your objects.

Class Design Guidelines

1. The only members of the public interface of a class should be the
operators of the class.

Information hiding required reinforces the development of
representation independent designs.

2. An instance of a class A should not send a message directly to a
component of B.

Encapsulation: prohibits accessing class instances used as part of the
representation of this class.

This first two rules enforce the idea that a class is characterized by its
set of operations and not by its representation.

3. An operator should be public if and only if it is to be available to users
of instances of the class.

All other should be private or protected.

4. Each operator that belongs to a class either accesses or modifies some
data of the class.

Requires that to belong to the class, each operator must represent a
behavior of the concept being modeled by the class.

The first four guidelines address the form and use of the class
interface; and give the designer directions for developing and
separating the class interface and representation.

5. A class should be dependent on as few other classes as possible.

Constrains the designer to link a class with as few other classes as
possible.

If a class being designed will need many of the services of another
class, perhaps that functionality should be part of the new class.

6. The interaction between two classes should be explicit.

Intended to reduce, and perhaps, eliminate global information. All that
is needed should be passed as parameter. Also helps design standard
interfaces.

7. Each subclass should be developed as a specialization of the superclass
with the interface of the superclass becoming a part of the public interface
of the subclass.

Prohibits the use of inheritance to develop the representation of a new class
rather than its interface (private inheritance in C++). Consider using
composition.

8. The root class of an inheritance structure should be an abstract model of the
target concept.

Encourages designers to develop inheritance structures of classes which are
specializations of an abstraction. Leads to more reasonable subclasses and
to clear-cut differences between subclasses.

The second set considers the relationship of the class to other classes

Designing Reusable Classes

The design rules given are a way of converting specific solutions into reusable
abstractions, not a way of deducing abstractions from first principles.

1. Recursion Introduction

If one class communicates with a number of other classes, its interface to
each of them should be the same.

2. Eliminate Case Analysis

It is almost always a mistake to check the class of an object.

if (anObj.class == ThisClass)
anObj.foo()

else
anObj.fee()

This could be replaced with a message to the object whose class is being
checked (anObj). Methods will have to be created in the various possible
classes of the object to respond to the message, and each method will contain
one of the cases that is being replaced.

3. Reduce the Number of Arguments

Messages that have a dozen or more arguments are hard to read (except
constructors). Messages with smaller number of arguments are more likely
to be similar to some other message.

The number of arguments can be reduced by breaking a message into
several smaller messages or by creating a new class that represents a group
of arguments.

4. Reduce the Size of Methods

It is easier to subclass a class with small methods, since its behavior can be
changed by redefining a few small methods instead of modifying a few
large methods.

5. Hierarchies should be Deep and Narrow

6. The Top of the Hierarchy should be Abstract

7. Subclasses should be specializations

8. Split Large Classes

Large classes should be viewed with suspicion and held to be guilty of
poor design until proven innocent.

9. Factor Implementation differences into subcomponents

If some subclasses implement a method one way and others implement it
another way then the implementation of that method is independent of the
superclass. It is likely that it is not an integral part of the subclasses and
should be split off into the class of a component.

10. Separate Methods that do not Communicate

A class should almost always be split when half of its methods access
half of its instance variables and the other half of its methods access the
other half of its variables.

Restructure a Hierarchy

With extensive expansion, the inheritance hierarchy may become less
suitable and a restructuring may be necessary.

Example: Assume with have a class Person and subclasses Male and Female
that inherit some common attributes from Person; but redefine the functions
jump(), and dance().

i) Assume we add two individuals: James, Peter

ii) Describe the them as old men having different
characteristics (dance style)

How will the new class be related to the existing ones ?

1. OldMale as subclass of Person and define the differences.

2. OldMale inherits from Male and redefine the dance method
inherited.

3. Create another class YoungMale that also inherits from Male and
define the dance functions at that level.

To determine the appropriate restructuring alternative consider the following
factors:

• How the classes are to be used

• How will further modifications be handled

• What do we really want to model

• How important is a clear understanding

• How difficult is it to restructure the classes

• What is the price of restructuring

• How does it affect the applications

Building Good Hierarchies

1. Model a "Kind_Of" / "Is_A" hierarchy: subclass should support all the
responsibilities defined in their superclass, and possibly more.

When a subclass correctly supports all the responsibilities defined in their
superclass, its responsibilities will completely encompass those of its
superclass.

When the subclass includes only part of the responsibilities, create an
abstract class with all the responsibilities that are common.

2. Factor common responsibilities as high as possible: If a set of classes
all support a common responsibility, then they should inherit it form a
common superclass (probably abstract).

DrawingElement

Text Line Ellipse Rect Group

Ellipses, Rects, Line are responsible for maintaining two attributes: width,
color of the line by which they are drawn. Since the others do not support
that responsibility those attributes cannot be added to the superclass.

DrawingElement

Text LinearElement Group

Line Ellipse Rectangle

Rectangle and Ellipses share a responsibility associated with the ability to
be filled with a color ?

Add polygon ?

The main benefit of carefully designing with Abstract Classes evidences
itself when you wish to add new functionality to the existing application.

More behavior can be reused with abstract classes. Using ACs means you
have factored out as much common behavior as you could.

3. Make sure that Abstract classes do not inherit from concrete classes:
abstract classes support their responsibilities in implementation
independent ways. They should never inherit form a concrete class,
which may specifically depend upon implementation.

4. Eliminate classes that do not add functionality.

Example: Assume that we have a Class defined to represent Birds. Among
its behavior we have a method flyingRange() because it was important in
the original specs of the problem.

Suppose that we decide to add a class to represent the Penguins. What would
the best solution for this extension ?

Composition vs. Inheritance

Example: Suppose we have a class to represent a Course. The attributes includes
the number and the title, and the behavior includes a method print all course
information.

The attributes does not include the time of the course and the teacher of the
course because no all existing courses are scheduled to be taught.

How do we define a class to represent a course that is scheduled to be taught ?

Example: Design a Symbol Table for string values. Since the class Dictionary
already exists we can either make the ST a subclass of D or let the ST contain a
D. Advantages and disadvantages:

Inh: is shorter and may be easier to develop (good for prototyping)

Inh: does not prevent users from manipulating a Symbol Table as though it
were a Dictionary

Comp: the fact that a Dict. is used is merely an implementation detail, it would
be easy to reimplement the ST with a different technique with minimal impact
on the users of the ST.

Comp: defines a clear interface to the ST, only the operations explicitly
provided are permitted

Inh: may provide free useful inherited operations.

Inh: may be more difficult to understand because some methods may not be
proper for the ST.

Example: Suppose that and existing class provides 80% of the functionality
needed for a new requirement and that this new functionality can be added
with a few new methods.

Should the programmer simply change the base class to provide the new
functionality or create a new class and used inheritance to gain access to the
existing structure ???

If the existing class is widely used by other applications then its probably
best to leave the class alone. Especially true if new data is added. There is
always a risk that new changes may introduce errors.

If the changes are totally transparent (replacing an algorithm with a more
efficient one) then a single change can have widespread, and probably
welcomed, advantages.

Example: A digital timer consists of two display panes, one for hours and one
for minutes.

Each display will hold a value between 0 and some preset upper limit.

Users must be able to initialize the timer by initializing each display’s value to
0.

Users should also be able to :

• Increment the minutes and hours

• Set the value of each display

• Ask the timer to show its value by showing the value of each display.

