
No. 7-1

Chapter #7: Sequential Logic Case Studies

Contemporary Logic Design

No. 7-2

Storage Register
Group of storage elements read/written as a unit

4-bit register constructed from 4 D FFs
Shared clock and clear lines

Q1

CLR

D3
D2
D1
D0

171

Q1

Q0
Q0

CLK Q3
Q3
Q2
Q2

11

10
9

5

6
7

4
3
2

14

13

15
1

12

No. 7-3

Input/Output Variations

Selective Load Capability
Tri-state or Open Collector Outputs
True and Complementary Outputs

74377 Octal D-type FFs
with input enable

74374 Octal D-type FFs
with output enable

EN enabled low and
lo-to-hi clock transition
to load new data into

register

OE asserted low
presents FF state to

output pins; otherwise
high impedence

D3

D6
Q5

Q2

377

Q1
Q0

Q3

EN
CLK

Q6

Q4

Q7

D5

D2
D1
D0

D4

D7

1

3
4
7
8

13
14
17
18

11

2
5
6
9
12
15
16
19

H
G
F
E
D
C
B
A

QH
QG
QF
QE
QD
QC
QB
QA

OE

374
11

1

3
4
7
8

13
14
17
18

2
5
6
9
12
15
16
19

CLK

No. 7-4

Register Files
Two dimensional array of flipflops
Address used as index to a particular word
Word contents read or written

74670 4x4 Register File with
Tri-state Outputs

Separate Read and Write Enables
Separate Read and Write Address
Data Input, Q Outputs

Contains 16 D-ffs, organized as
four rows (words) of four elements (bits)

670

Q4

D1

D4
D3
D2

Q3
Q2
Q1

WE

WA
WB

RE

RA
RB

5
4

11

14
13

12

15
1
2
3

10
9
7
6

No. 7-5

Shift Registers
Storage + ability to circulate data among storage elements

Shift from left storage
 element to right neighbor
 on every lo-to-hi transition
 on shift signal

Wrap around from rightmost
 element to leftmost element Master Slave FFs: sample inputs while

 clock is high; change outputs on
 falling edge

Shift Direction\Reset

\Reset
Shift

CLK CLK CLK CLK

Q 1

1

0

0

0

Q 2

0

1

0

0

Q 3

0

0

1

0

Q 4

0

0

0

1

Shift

Shift

Shift

No. 7-6

Shift Register I/O
Serial vs. Parallel Inputs
Serial vs. Parallel Outputs
Shift Direction: Left vs. Right

74194 4-bit Universal
Shift Register

Serial Inputs: LSI, RSI
Parallel Inputs: D, C, B, A
Parallel Outputs: QD, QC, QB, QA
Clear Signal
Positive Edge Triggered Devices

S1,S0 determine the shift function
S1 = 1, S0 = 1: Load on rising clk edge
 synchronous load
S1 = 1, S0 = 0: shift left on rising clk edge
 LSI replaces element D
S1 = 0, S0 = 1: shift right on rising clk edge
 RSI replaces element A
S1 = 0, S0 = 0: hold state

Multiplexing logic on input to each FF!

Shifters well suited for serial-to-parallel conversions,
 such as terminal to computer communications

No. 7-7

Shift Register Application: Parallel to Serial Conversion

QA
QB
QC
QD

S1
S0
LSI
D
C
B
A
RSI
CLK
CLR

QA
QB
QC
QD

S1
S0
LSI
D
C
B
A
RSI
CLK
CLR

D7
D6
D5
D4

Sender

D3
D2
D1
D0

QA
QB
QC
QD

S1
S0
LSI
D
C
B
A
RSI
CLK

CLR

QA
QB
QC
QD

S1
S0
LSI
D
C
B
A
RSI
CLK

CLR

Receiver

D7
D6
D5
D4

D3
D2
D1
D0

Clock

194 194

194194

Parallel
Inputs

Serial
transmission

Parallel
Outputs

No. 7-8

Counters

- Proceed through a well-defined sequence of states in response to
 count signal

- 3 Bit Up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, …

- 3 Bit Down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, …

- Binary vs. BCD vs. Gray Code Counters

A counter is a "degenerate" finite state machine/sequential circuit
where the state is the only output

A counter is a "degenerate" finite state machine/sequential circuit
where the state is the only output

No. 7-9

Johnson (Mobius) Counter

End-Around

8 possible states, single bit change per state, useful for avoiding glitches

J
CLK
K

S

R

Q

Q

+

+

+ +

0
1

Shift

Q 1 Q 2 Q 3 Q 4

\Reset

J

K

S

R

Q

Q

J

K

S

R

Q

Q

J

K

S

R

Q

Q
CLK CLK CLK

1

0

0

0

1

1

0

0

1

1

1

0

1

1

1

1

0

1

1

1

0

0

1

1

0

0

0

1

0

0

0

0

Shift

Q 1

Q 2

Q 3

Q 4

100

No. 7-10

Catalog Counter

74163 Synchronous
4-Bit Upcounter

Synchronous Load and Clear Inputs

Positive Edge Triggered FFs

Parallel Load Data from D, C, B, A

P, T Enable Inputs: both must be asserted to
 enable counting

RCO: asserted when counter enters its highest
 state 1111, used for cascading counters
 "Ripple Carry Output"

74161: similar in function, asynchronous load and reset

QA
QB
QC
QD

163
RCO

P
T

A
B
C
D

LOAD

CLR

CLK2

7
10

15

9

1

3
4
5
6

14

12
11

13

No. 7-11

74163 Detailed Timing Diagram

CLK

A

B

C

D

LOAD

CLR

P

T

Q A

Q B

Q C

Q D

RCO
12 13 14 15 0 1 2

Clear Load Count Inhibit

No. 7-12

Counter Design Procedure

Introduction

This procedure can be generalized to implement ANY
 finite state machine

Counters are a very simple way to start:
 no decisions on what state to advance to next
 current state is the output

No. 7-13

Example: 3-bit Binary Upcounter

State Transition
Table

Flipflop
Input Table

Decide to implement with
Toggle Flipflops

What inputs must be
presented to the T FFs
to get them to change

to the desired state bit?

This is called
"Remapping the Next

State Function"

Present
State

Next
State

Flipflop
Inputs

No. 7-14

Counter Design Procedure
Introduction

This procedure can be generalized to implement ANY finite state
 machine

Counters are a very simple way to start:
 no decisions on what state to advance to next
 current state is the output

Example: 3-bit Binary Upcounter

State Transition
Table

Flipflop
Input Table

Decide to implement with
Toggle Flipflops

What inputs must be
presented to the T FFs
to get them to change

to the desired state bit?

This is called
"Remapping the Next

State Function"

Present
State

Next
State

Flipflop
Inputs

No. 7-15

Count

\Reset

Q C

Q B

Q A

100

K-maps for Toggle
Inputs:

Resulting Logic Circuit:

Timing Diagram:

T

CLK

\Reset

Q

Q

S

R

QA
T

CLK

Q

Q

S

R

QB
T

CLK

Q

Q

S

R

QC

Count

+

TB = A

TC = A • B

T A = 1

CB
A

C

00 01 11 10

0

1

B

1 1 1 1

1 1 1 1

CB
A

C

00 01 11 10

0

1

B

0 0 0 0

1 1 1 1

CB
A

C

B

00 01 11 10

0

1

0 0 0 0

0 1 1 0

No. 7-16

More Complex Count Sequence

Step 1: Derive the State Transition Diagram

Count sequence: 000, 010, 011, 101, 110

Step 2: State Transition Table

Present
State

Next
State

No. 7-17

Step 1: Derive the State Transition Diagram

Sequence: 000, 010, 011, 101, 110

Step 2: State Transition Table

Note the Don't Care conditions

Present
State

Next
State

No. 7-18

Step 3: K-Maps for Next State Functions

CB
00 01 11 10A

0

1

C+ =

CB
00 01 11 10A

0

1

A+ =

CB
00 01 11 10A

0

1

B+ =

No. 7-19

Step 3: K-Maps for Next State Functions

C+

A+

B+

No. 7-20

Step 4: Choose Flipflop Type for Implementation
 Use Excitation Table to Remap Next State Functions

Toggle Excitation
Table

Remapped Next State
Functions

Present
State

Toggle
Inputs

No. 7-21

Counter Design Procedure
More Complex Counter Sequencing

Step 4: Choose Flipflop Type for Implementation
 Use Excitation Table to Remap Next State Functions

Toggle Excitation
Table

Remapped Next State
Functions

Present
State

Toggle
Inputs

No. 7-22

Remapped K-Maps

TC =

TB =

TA =

CB
00 01 11 10A

0

1

TC

CB
00 01 11 10A

0

1

TA

CB
00 01 11 10A

0

1

TB

No. 7-23

Remapped K-Maps

TC = A C + A C = A xor C

TB = A + B + C

TA = A B C + B C

TC

TA

TB

No. 7-24

Resulting Logic:

Timing Waveform:

5 Gates
13 Input Literals +
 Flipflop connections

TC
T

CLK

Q

Q

S

R
Count

T

CLK

Q

Q

S

R

TBC

\C

B A

\B \A

TA
T

CLK

Q

Q

S

R

\Reset

0

0

0

0

0

0

0

1

0

0

1

1

1

0

1

1

1

0

0

0

0

100

Count

\Reset

C

B

A

No. 7-25

Self-Starting Counters
Start-Up States

At power-up, counter may be in possible state

Designer must guarantee that it (eventually) enters a valid state

Especially a problem for counters that validly use a subset of states

Self-Starting Solution:
Design counter so that even the invalid states
 eventually transition to valid state

Two Self-Starting State Transition Diagrams
for the Example Counter

Implementation
in Previous

Slide!

No. 7-26

Self-Starting Counters
Deriving State Transition Table from Don't Care Assignment

TC

TB

TA

C+

B+

A+

Present
State

Next
State

C+
0
1
0
1
0
1
0
1

B+
1
1
1
0
1
1
0
0

A+
0
1
1
1
1
0
0
1

C
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

A
0
1
0
1
0
1
0
1

Inputs to Toggle Flip-flops State Changes

State Transition Table

No. 7-27

Implementation with Different Kinds of FFs
R-S Flipflops

Continuing with the 000, 010, 011, 101, 110, 000, ... counter example

RS Exitation Table

Remapped Next State Functions

Present
State

Next
State Remapped Next State

Q+ = S + R Q

No. 7-28

Implementation with Different Kinds of FFs
R-S Flipflops

Continuing with the 000, 010, 011, 101, 110, 000, ... counter example

RS Exitation Table

Remapped Next State Functions

Present
State

Next
State Remapped Next State

Q+ = S + R Q

No. 7-29

Implementation with Different Kinds of FFs
RS FFs Continued

RC =

SC =

RB =

SB =

RA =

SA =

CB
00 01 11 10A

0

1

RC

CB
00 01 11 10A

0

1

RA

CB
00 01 11 10A

0

1

RB

CB
00 01 11 10A

0

1

SC

CB
00 01 11 10A

0

1

SA

CB
00 01 11 10A

0

1

SB

No. 7-30

Implementation with Different Kinds of FFs
RS FFs Continued

RC = A

SC = A

RB = A B + B C

SB = B

RA = C

SA = B C

RC

RA

RB

SC

SA

SB

No. 7-31

Implementation With Different Kinds of FFs

RS FFs Continued

Resulting Logic Level Implementation:
 3 Gates, 11 Input Literals + Flipflop connections

CLK CLK CLK
\ A R

S A

C

\ C

Q

Q

RB

\ B

R

S

Q

Q
\ B

B C

SA

R

S

A

\A

B

A
C B

\C
RB SA

Q

Q

Count

No. 7-32

Implementation with Different FF Types

J-K FFs

J-K Excitation Table

Remapped Next State Functions

Present
State

Next
State Remapped Next State

Q+ = J Q + K Q

No. 7-33

Implementation with Different FF Types

J-K FFs

J-K Excitation Table

Remapped Next State Functions

Present
State

Next
State Remapped Next State

Q+ = J Q + K Q

No. 7-34

Implementation with Different FF Types
J-K FFs Continued

JC =

KC =

JB =

KB =

JA =

KA =

CB
00 01 11 10A

0

1

JC

CB
00 01 11 10A

0

1

JA

CB
00 01 11 10A

0

1

JB

CB
00 01 11 10A

0

1

KC

CB
00 01 11 10A

0

1

KA

CB
00 01 11 10A

0

1

KB

No. 7-35

Implementation with Different FF Types
J-K FFs Continued

JC = A

KC = A

JB = 1

KB = A + C

JA = B C

KA = C

JC

JA

JB

KC

KA

KB

No. 7-36

Implementation with Different FF Types
J-K FFs Continued

Resulting Logic Level Implementation:
 2 Gates, 10 Input Literals + Flipflop Connections

CLK CLK CLK
J

K

Q

Q

A

\ A

C

\ C KB

J

K

Q

Q

B

\ B

+

J

K

Q

Q

JA

C

A

\ A

B
\ C

Count

A
C KB JA

No. 7-37

Implementation with Different FF Types
D FFs

Simplest Design Procedure: No remapping needed!

DC = A

DB = A C + B

DA = B C

Resulting Logic Level Implementation:
 3 Gates, 8 Input Literals + Flipflop connections

CLK CLK

D Q

Q

A

\ A

D Q

Q

DA DB B

\ B CLK

D Q

Q

A C

\ C
Count

\ C
\ A

\ B

B
\ C DA DB

No. 7-38

Implementation with Different FF Types
Comparison

• T FFs well suited for straightforward binary counters

 But yielded worst gate and literal count for this example!

• No reason to choose R-S over J-K FFs: it is a proper subset of J-K

 R-S FFs don't really exist anyway

 J-K FFs yielded lowest gate count

 Tend to yield best choice for packaged logic where gate count is key

• D FFs yield simplest design procedure

 Best literal count

 D storage devices very transistor efficient in VLSI

 Best choice where area/literal count is the key

No. 7-39

Asynchronous vs. Synchronous Counters
Ripple Counters

Deceptively attractive alternative to synchronous design style

Count signal ripples from left to right

State transitions are not sharp!

Can lead to "spiked outputs" from combinational logic
decoding the counter's state

Can lead to "spiked outputs" from combinational logic
decoding the counter's state

T

Count

Q

Q
A

T Q

Q
B

T

CLK

Q

Q
C

CLK CLK

No. 7-40

Asynchronous vs. Synchronous Counters
Cascaded Synchronous Counters with Ripple Carry Outputs

First stage RCO
enables second stage

for counting

RCO asserted
soon after stage
enters state 1111

also a function
of the T Enable

Downstream stages
lag in their 1111 to

0000 transitions

Affects Count period
and decoding logic (1) Low order 4-bits = 1111

(2) RCO goes high

(3) High order 4-bits
are incremented

No. 7-41

Clock

Load

D

C

B

A

100

Asynchronous vs. Synchronous Counters
The Power of Synchronous Clear and Load

Starting Offset Counters:
 e.g., 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1111, 0110, ...

Use RCO signal to trigger Load of a new state

Since 74163 Load is synchronous, state changes
 only on the next rising clock edge

0110
is the state

to be loaded

D C B A

L
O
A
D

C
L
R

C
L
K

R
C
O

P T

Q
A

Q
B

Q
C

Q
D1

6
3

Load

D C B A

0 1++

No. 7-42

Asynchronous vs. Synchronous Counters
Offset Counters Continued

Ending Offset Counter:
 e.g., 0000, 0001, 0010, ..., 1100, 1101, 0000

Decode state to
determine when to

reset to 0000

Clear signal takes effect on the rising count edge

Replace '163 with '161, Counter with Async Clear
Clear takes effect immediately!

D C B A

C
L
R

L
O
A
D

C
L
KP T

1
6
3

R
C
O

Q Q Q Q
D C B A

CLR

D C B A

1
0

