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Abstract imized expression requiring fewer gates than separate cir-
cuits implementing the individual optimized functions [4].
Extensions allowing the Integer Pair Representation So, to be considered a full-fledged 2-value logic representa-
(IPR) format to work with multiple-output binary valued ex- tion notation, the IPR Algebra should be expanded to repre-
pressions are presented. The structure and semantics of theent and manipulate multiple-output expressions.
new format, IPR-M, are discussed as well as algorithmsto ~ We shall call our adaptation of IPR for multiple-output
aid in using this format for the representation and minimiza- capability the IPR-M. In the rest of this paper, structure,
tion of Boolean functions. semantics and algorithms for the algebra of IPR-M are dis-
cussed. The implementation of a minimization program us-
ing this new scheme is presented and its results are com-

1 Introduction pared with Espresso.

. _ _ 2 Definitions
The representation and manipulation of two-level com-

binational logic is essential to the design, synthesis and im-
plementation of digital systems. Several formats support-
ing two-level combinational logic representations and cor-

responding manipulation algorithms have been proposed
Among these, binary decision diagrams (BDDs) and posi-
tional cube notation (PCN) are worth mentioning. As de-

veloped as these two models are, their implementations still

Before we proceed to explain the structure, operators,
and algorithms proposed for IPR-M, some terms used
throughout the paper are defined. Most of these definitions
were adopted from [1], [5], [6] and [7].

An incompletely specified, binary-valued multiple-
output Boolean functiorf is a mapping

provide room for improvement in the way they use mem- f:{0,1}" — {0,1,%}™ (1)
ory for representation of literals. For example, BDDs use a

graph structure to represent a function, where each node is Y=y, ym) = ((X),..., fm(X)), (2
a literal and the vertices represent it's relation to the other wheren is the number of inputsy is the number of outputs,
literals [3]. PCN uses two characters per binary-valued vari- X = (xy,zs,...,z,) € {0,1}" is the input vector, and’

able [2]. Memory usage in these methods is dictated by theiris the output vector of . TheonsetF, offset R, anddon’t
structure and semantics, and therefore, a mechanism to opeare setD are sets of minterms which are mappedbyo
timize the memory usage of BDD or PCN would probably 0,1, and *, respectively.
render useless the representations and operators. A literal is a binary Boolean variable or its complement.
A more compact representation of Boolean functions, A cubeis a product of one or more literals such that no two
the Integer Pair Representation (IPR), was suggested byiterals are complement of each other. A variable missing in
Diaz et al. [1]. In this representation, each product term a cube is called don’t care variable
is identified by an ordered pait,(; c,) of positive integers A cube A is said tocover another cubeB if the set of
including zero, where the bits that compose each integer areminterms represented by is a subset of that represented
determined by the state of the variable in each product term.by A. A cubeA is animplicant of f if A C FUD. Ifthere
Because of the structure of this notation, each literal can beis no other cube3 such that4 is covered byB thenA is a
implemented using only two bits. A discussion of the con- prime implicant. A prime cube igssentialif it has at least
version rules, operators and algorithms for an Espresso-likea single minterm covered by this and only this prime cube.
minimization heuristic algorithm is provided in [1]. A prime cube isredundant if every minterm it covers is
An important aspect missing from IPR Algebra is its also covered by essential prime cubes. A prime cube which
ability to represent (and process) multiple-output Boolean is neither essential nor redundant isedective prime cube
expressions. In the case of logic minimization, it is gen-  Thedistancebetween two cubed and B is the number
erally known that when several functions are to be imple- of variables that appear in bothand B and are uncomple-
mented, it is often possible to obtain a multiple-output min- mented inA and complemented iB or viceversa.



3 Structure 4.2 Orthogonality

3.1 Single Output IPR Two cubesA and B are said to be orthogonal (writ-
ten A 1 B) if their intersection is an empty set (they do
In the IPR notation proposed in [1], each cube C of an not have any minterms in common). In IPR-M, two multi-
n-variable Boolean expression is mapped to an ordered pailputput cubest and B are orthogonal if and only if:
(cz, ¢y), where ¢ and ¢, are n-bit binary-valued vectors,

and are referred to as the position and expansion parts of the ay A Ey # by Ay (8)

IPR term, respectively. Each of the binary-valued vectgrs or a.Ab. =0 ©)
andc, are constructed as follows: B
Co = Cays Cazy Cagyv - -y Can 3) 4.3 Multi-Output Shared Cube

Cy = Cyy»Cyys Cysy - -+ Cyn 4)
Let A and B be cubes that that belong to different func-
tions (@, A b, = 0). The multi-output shared cube (MOSC)

Table 1. IPR values for the position:{;) and expansion ~ 0of A and B (written A & B) is the cube that covers the
(cyi) terms. minterms common tol and B and nothing more. We ob-

where eacle,;, c,; are determined according to Table 1.

[ Condition [ cui | cyi | Meaning that inC' ‘ tain the MOSC of two cubes{ = A F B) in IPR-M by:
1 €C 0 0 r1 appears mv_erted e = ay V by (10)
1, €C 1 0 x1 appears non inverted
11 ¢C 0 | 1 | x,isadon’tcare variable Cy = ay N by (11)
- 11 Cube is not valid c.=a. Vb, (12)

3.2 IPR-M 5 Algorithms

To account for the representation of multiple-output
functions, we propose the addition of a third term for each ~ Virtually any Boolean manipulation algorithm can be
cube (we shall call this term tHanction tern). Thus, foran  implemented using IPR-M. Below we present several fre-
m-output expression, each cube would now be representediuently used algorithms for Boolean manipulation.
by an ordered tripletd;, ¢, c.), wherec,, c¢,will be as-
signed according to the IPR rules, ands an n-tuplewhere 5.1  Single Output Expansion
each bitc,; indicates if the cube belongs.(=1) or does not
belong ¢.;=0) to functionf;. A cube with everyf; = 0 is
not a valid cube.

To maintain compatibility with the original IPR scheme,
single-output expressions can be expressed IPR-M by con
verting each ordered pair to an ordered triplet with the same
position, and expansion terms, and a single ‘1’ in the func- Algorithm 1 Single Output Expansion
tion term.

This operation, representédF, D, f;), expands every
cube in F that appears in functigfy considering the on
minterms inf; and the don’t care minterms jfy.

Input: Input: Function onset F, don’t care set D, and
single output functiory;.

4 Cube operators Output: Expanded function for single output.

The implementation in IPR of two common cube opera-
tors: coverage and orthogonality was described in [1]. We 1. C < (.
proceed to expand the original implementation to handle 2. F' ={A € F,a,, =1}

multi-output expressions. 3. D'={BeD,b, =1}
4. While F’ # () do:
4.1 Coverage 4.1. Selectacub¥ c F'.
42. X —YO(F'uQ), D).
Let A= (as, ay, a,) andB= (b, by, b.) be a pair of cubes 43. C —CUX.
and their representation in IPR-M. Culecovers cube3, 44. F' — F' o X.
written BCA, if every literal in A also appears i3 and A 5. ReturnC.

appears in all the functions whefeappears.

In IPR-M, coverage is guaranteed if and only if the fol- ~ The operationX’ = Y'¢(F, D) invoked in step 4.2 is
lowing is satisfied: called cube expansion and is performed exactly as in [1]. It

by Ay = ap (5) expands every cube in the offgéiof a function considering
the minterms in the don’t care sBt The operatior”’ o X
and by V ay = ay ©)  invoked in step 4.4 is called cube removal (defined in [1]).
and b, Na,=b, ) It removes the cubes in sétthat are covered by .



5.2 Border Cubes

Input: CubeA, function onsef’, and don’t care seb
Output: True if cubeA is an EPC.

The border of a cub€'is to be defined as the setof cubes 1. B «— AIC(A)
that exactly cover the cub@ and the minterms thatareata 2. va,, € a,,a,, = 0 do:

distance of 1 fronC.

Algorithm 2 Border Cubes
Input: CubeC.
Output: Border cube sef.
1. H«0.
2. Yw,, € ¢, w,, = 0do:
2.1. MakeD — C.
2.2. Maked,;, =0,d,, =1.
23. H+— HUD.
3. ReturnH.

2.1. VvC € Bdo:
2.1.1. Makec,, = as,, ¢y, = 0.

3. Returnd € C

The operationd € C is called tautology test and is de-

scribed in [1]. It verifies that all minters id are covered
by functionC.

6 Multiple output minimization

To illustrate IPR-M's ability to support more complex

operations we present the implementation of a heuristic al-

gorithm, previously proposed by Guranath et al. [5], for

5.3 Adjacent and Intersecting Cubes

minimizing multiple-output logic functions, using the algo-

rithms described in Section 5.

Rao and Jacob [7] propose a method for determining if

The chosen heuristic algorithm uses a divide and conquer

a cube is essential by using it's Adjacent and Intersecting gnproach wherein the minimization is carried out by four

Cube (AIC) set. The AIC of a prime cubtare those cubes:

1. In the onset or the dcset which are logically adjacent
to A.

2. In the don’t care set which interset

3. Inthe onset which intersegt without coveringA.

One way of determining which cubes are adjacent to
cubeA is by obtaining which cubes are at a distance of ex-
actly 1 from cubeA. However, the distance operation is
costly when implemented in software as it involves count-
ing the number of ones on a binary word. The algorithm
described below utilizes the border set of cubéo deter-
mine its AIC.

Algorithm 3 Adjacent and Intersecting Cubes

Input: CubeA, function onsef”, and don’t care seb

Output: Adjacent and intersecting cube get
1. G 0.
2. H < Border(A).
3. VC e (FuUD)do:

3.1. IfC L H Then
311. fCEForAZ CThenG — GUC

4., ReturnG.
5.4 Essential Primes Cubes

Rao and Jacob [7] establish that, given a prime cube
A € F, it can be determined il is an essential prime cube
(EPC) using the following procedure:

1. For every literak; that appears in cubg, change the
corresponding literal in each of the Adjancent and In-
tersecting Cubed IC(A).

2. Ifthe new modifieddIC(A) does not coved, thenA
is an essential prime cube.

Algorithm 4 Essential Primes Cube

main procedures:

1. Selection of essential prime cube&ach cube is ex-
panded within a single function and any redundant
cubes are removed. If it is determined that the ex-
panded cube is essential and it is shared among two
or more functions or that it is orthogonal to all other
functions, it will be included in the solution.

Whenever a cube is added to the solution, it will be
added to the don't care function. This will allow re-
maining cubes to expand, if needed, using the solution
terms.

Algorithm 5 Select essential prime cubes
Input: Function onsef” and don't care seb.

Output: Set of essential cubels and preliminary
solution setS with shared and exclusive essential
cubes.
1. E=0,8=0.
2. Vf; € Fdo:
21. G=p((F,D,f)).
2.2. VB e Gdo:
221. IfEPC(B)ThenE — EUB
3. Vf; € Fdo:
3.1. VC € E do:
311 IfC e f;OrC L f; Then
S—SUC,E+ Eo(C,
D=DucC.
4. ReturnS, E.

2. Selection of valid selective primeselective prime
cubes are detected. If a selective cube is shared by
two or more functions, or if it is orthogonal to all other
functions then it is included in the solution.

To determine selective cubes we use the fact that prime
cubes are either essential, selective, or redundant. The
expand and irredundancy step of the previous algo-
rithm eliminates all redundant primes. Thus, after the
algorithm for essential cubes is executédcontains
only selective prime cubes.



Algorithm 6 Selective Cubes (@]

ut) of the multi-output function, as well as the number of

Input: Function onsef’, don't care seD, and pre- cubesc and literald in the minimized result.

liminary solution setS from previous algorithm.

As evidenced by the results, the algorithm implementa-

Output: Preliminary solution se$ with shared and  tion still needs some validation because, although for some
exclusive selective cubes. of the examples the results were the same, for others Espres-
sos’ results contain considerably less literals and cubes.

1. Vf; € Fdo:
1.1. VC € F do:
1.11. IfC e f;orC L f; Then

Table 2. Minimization results for the IPR-based and
standard Espresso algorithms.

Circuit Input set IPR Espresso
Name | ¢ [InfOut]| ¢ [ I c |1

S+~ SUC,E+— FEo(C,
D=DuUC.
2. ReturnS, E.

aZpair| 16 | 4 3 11 | 32 | 11 | 32

mip4 | 256 | 8 8 | 163 | 899 | 128 | 735

3. Selection of intersecting cubefind the intersection

Z5xpl | 128 | 7 | 10 | 79 | 312 | 65 | 287

among functions of the remaining essential and se-

stial 22 | 14| 8 22 | 140 | 22 | 140

lective primes. The process of selecting intersect-
ing cubes simply involves determining if a given cube

A € f; has an intersection with a culde € f; that 8
covers the uncovered minterms4nandB.

Conclusions and Future Work

IPR-M’s ability to represent and manipulate multiple-

Algorithm 7 Intersecting Cubes output logic functions has been discussed and justified
Input: Function onsef”, don't care seD, and pre- through the presentation of common multiple-output min-
liminary solution setS from previous algorithm. imization operators and algorithms. To establish more
Output: Preliminary solution sef with intersect- meaningful comparisons with other representations (such as
ing cubes. BDD and PCN) our future work will be directed towards an-

1. F=FUE
1.1 VX e fi,Yef,i#j
111. Z=XFY

an

alyzing the time and space complexity of IPR-M algorithms

d comparing them with established methods.

1.1.2. fZ+#0And(X\Y)e€ D And References

(Y\X) € D Then
S=SUZ F—FoX, (1]
F—FoY,D=DUX,
D=DUY.
2. Returns, F. 2]

The operationX'\Y is called cube difference [1] and
it obtains the set of cubes that cover the minterms cov- [°!
ered byX but not byY’, and nothing more.

4. Select exclusive cube3he terms not yet chosen by (4]
previous steps are exclusive cubes (either essential or
selective). This step expands them in their particular [5]
function.

Algorithm 8 Select Exclusive Cubes

Input: Function onsef’, don’t care seD. (6]
Output: Solution setS.
1. Vf; e F
11. ((F, D, f:) [7]
2. ReturnF.

7 Preliminary Results

To verify the correctness of the presented algorithms, we
implemented them in C++ as part of a logic minimization
program. Table 2 shows preliminary results obtained for
several multiple-output examples provided with Espresso
Version 2.3, when minimized with the IPR-M-based pro-
gram and Espresso. For each test, the table shows the num-
ber of cubes, input variables (In), and output variables
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