
Integer Pair Representation for Multiple-Output Logic

Rafael A. Arce Nazario
Advisor: Manuel Jimenez

Electrical and Computer Engineering Department
University of Puerto Rico, Mayag̈uez Campus

Mayag̈uez, Puerto Rico 00681-5000
rafael.arce@ece.uprm.edu

Abstract

Extensions allowing the Integer Pair Representation
(IPR) format to work with multiple-output binary valued ex-
pressions are presented. The structure and semantics of the
new format, IPR-M, are discussed as well as algorithms to
aid in using this format for the representation and minimiza-
tion of Boolean functions.

1 Introduction

The representation and manipulation of two-level com-
binational logic is essential to the design, synthesis and im-
plementation of digital systems. Several formats support-
ing two-level combinational logic representations and cor-
responding manipulation algorithms have been proposed.
Among these, binary decision diagrams (BDDs) and posi-
tional cube notation (PCN) are worth mentioning. As de-
veloped as these two models are, their implementations still
provide room for improvement in the way they use mem-
ory for representation of literals. For example, BDDs use a
graph structure to represent a function, where each node is
a literal and the vertices represent it’s relation to the other
literals [3]. PCN uses two characters per binary-valued vari-
able [2]. Memory usage in these methods is dictated by their
structure and semantics, and therefore, a mechanism to op-
timize the memory usage of BDD or PCN would probably
render useless the representations and operators.

A more compact representation of Boolean functions,
the Integer Pair Representation (IPR), was suggested by
Diaz et al. [1]. In this representation, each product term
is identified by an ordered pair (cx, cy) of positive integers
including zero, where the bits that compose each integer are
determined by the state of the variable in each product term.
Because of the structure of this notation, each literal can be
implemented using only two bits. A discussion of the con-
version rules, operators and algorithms for an Espresso-like
minimization heuristic algorithm is provided in [1].

An important aspect missing from IPR Algebra is its
ability to represent (and process) multiple-output Boolean
expressions. In the case of logic minimization, it is gen-
erally known that when several functions are to be imple-
mented, it is often possible to obtain a multiple-output min-

imized expression requiring fewer gates than separate cir-
cuits implementing the individual optimized functions [4].
So, to be considered a full-fledged 2-value logic representa-
tion notation, the IPR Algebra should be expanded to repre-
sent and manipulate multiple-output expressions.

We shall call our adaptation of IPR for multiple-output
capability the IPR-M. In the rest of this paper, structure,
semantics and algorithms for the algebra of IPR-M are dis-
cussed. The implementation of a minimization program us-
ing this new scheme is presented and its results are com-
pared with Espresso.

2 Definitions

Before we proceed to explain the structure, operators,
and algorithms proposed for IPR-M, some terms used
throughout the paper are defined. Most of these definitions
were adopted from [1], [5], [6] and [7].

An incompletely specified, binary-valued multiple-
output Boolean functionf is a mapping

f : {0, 1}n → {0, 1, ∗}m (1)

Y = (y1, . . . , ym) = (f1(X), . . . , fm(X)), (2)

wheren is the number of inputs,m is the number of outputs,
X = (x1, x2, . . . , xn) ∈ {0, 1}n is the input vector, andY
is the output vector off . TheonsetF , offsetR, anddon’t
care setD are sets of minterms which are mapped byY to
0,1, and *, respectively.

A literal is a binary Boolean variable or its complement.
A cube is a product of one or more literals such that no two
literals are complement of each other. A variable missing in
a cube is called adon’t care variable

A cubeA is said tocover another cubeB if the set of
minterms represented byB is a subset of that represented
by A. A cubeA is animplicant of f if A ⊆ F ∪D. If there
is no other cubeB such thatA is covered byB thenA is a
prime implicant . A prime cube isessentialif it has at least
a single minterm covered by this and only this prime cube.
A prime cube isredundant if every minterm it covers is
also covered by essential prime cubes. A prime cube which
is neither essential nor redundant is aselective prime cube.

Thedistancebetween two cubesA andB is the number
of variables that appear in bothA andB and are uncomple-
mented inA and complemented inB or viceversa.



3 Structure

3.1 Single Output IPR

In the IPR notation proposed in [1], each cube C of an
n-variable Boolean expression is mapped to an ordered pair
(cx, cy), where cx and cy are n-bit binary-valued vectors,
and are referred to as the position and expansion parts of the
IPR term, respectively. Each of the binary-valued vectorscx

andcy are constructed as follows:

cx = cx1 , cx2 , cx3 , . . . , cxn (3)

cy = cy1 , cy2 , cy3 , . . . , cyn (4)

where eachcxi, cyi are determined according to Table 1.

Table 1. IPR values for the position (cxi) and expansion
(cyi) terms.

Condition cxi cyi Meaning that inC

x̄1 ∈ C 0 0 x1 appears inverted
x1 ∈ C 1 0 x1 appears non inverted
x1 /∈ C 0 1 x1 is a don’t care variable
−− 1 1 Cube is not valid

3.2 IPR-M

To account for the representation of multiple-output
functions, we propose the addition of a third term for each
cube (we shall call this term thefunction term). Thus, for an
m-output expression, each cube would now be represented
by an ordered triplet (cx, cy,cz), wherecx, cywill be as-
signed according to the IPR rules, andcz is an n-tuple where
each bitczi indicates if the cube belongs (czi=1) or does not
belong (czi=0) to functionfi. A cube with everyfi = 0 is
not a valid cube.

To maintain compatibility with the original IPR scheme,
single-output expressions can be expressed IPR-M by con-
verting each ordered pair to an ordered triplet with the same
position, and expansion terms, and a single ‘1’ in the func-
tion term.

4 Cube operators

The implementation in IPR of two common cube opera-
tors: coverage and orthogonality was described in [1]. We
proceed to expand the original implementation to handle
multi-output expressions.

4.1 Coverage

LetA= (ax, ay, az) andB= (bx, by, bz) be a pair of cubes
and their representation in IPR-M. CubeA covers cubeB,
written B⊆A, if every literal inA also appears inB andA
appears in all the functions whereB appears.

In IPR-M, coverage is guaranteed if and only if the fol-
lowing is satisfied:

bx ∧ āy = ax (5)

and by ∨ ay = ay (6)

and bz ∧ az = bz (7)

4.2 Orthogonality

Two cubesA and B are said to be orthogonal (writ-
ten A ⊥ B) if their intersection is an empty set (they do
not have any minterms in common). In IPR-M, two multi-
output cubesA andB are orthogonal if and only if:

ax ∧ b̄y 6= bx ∧ āy (8)

or az ∧ bz = 0 (9)

4.3 Multi-Output Shared Cube

Let A andB be cubes that that belong to different func-
tions (az ∧ bz = 0). The multi-output shared cube (MOSC)
of A and B (written A ∓ B) is the cube that covers the
minterms common toA andB and nothing more. We ob-
tain the MOSC of two cubes (C = A∓B) in IPR-M by:

cx = ax ∨ bx (10)

cy = ay ∧ by (11)

cz = az ∨ bz (12)

5 Algorithms

Virtually any Boolean manipulation algorithm can be
implemented using IPR-M. Below we present several fre-
quently used algorithms for Boolean manipulation.

5.1 Single Output Expansion

This operation, representedζ(F,D, fi), expands every
cube in F that appears in functionfi considering the on
minterms infi and the don’t care minterms infi.

Algorithm 1 Single Output Expansion

Input: Input: Function onset F, don’t care set D, and
single output functionfi.
Output: Expanded function for single output.

1. C ← ∅.
2. F ′ = {A ∈ F, azi

= 1}
3. D′ = {B ∈ D, bzi

= 1}
4. WhileF ′ 6= ∅ do:

4.1. Select a cubeY ∈ F ′.
4.2. X ← Y♦((F ′ ∪ C), D′).
4.3. C ← C ∪X.
4.4. F ′ ← F ′ ◦X.

5. ReturnC.

The operationX = Y♦(F,D) invoked in step 4.2 is
called cube expansion and is performed exactly as in [1]. It
expands every cube in the offsetF of a function considering
the minterms in the don’t care setD. The operationF ′ ◦X
invoked in step 4.4 is called cube removal (defined in [1]).
It removes the cubes in setF that are covered byX.



5.2 Border Cubes

The border of a cubeC is to be defined as the set of cubes
that exactly cover the cubeC and the minterms that are at a
distance of 1 fromC.

Algorithm 2 Border Cubes
Input: CubeC.
Output: Border cube setH.

1. H ← ∅.
2. ∀wxi ∈ cx, wxi = 0 do:

2.1. MakeD ← C.
2.2. Makedxi

= 0, dyi
= 1 .

2.3. H ← H ∪D .

3. ReturnH.

5.3 Adjacent and Intersecting Cubes

Rao and Jacob [7] propose a method for determining if
a cube is essential by using it’s Adjacent and Intersecting
Cube (AIC) set. The AIC of a prime cubeA are those cubes:

1. In the onset or the dcset which are logically adjacent
to A.

2. In the don’t care set which intersectA.

3. In the onset which intersectA without coveringA.

One way of determining which cubes are adjacent to
cubeA is by obtaining which cubes are at a distance of ex-
actly 1 from cubeA. However, the distance operation is
costly when implemented in software as it involves count-
ing the number of ones on a binary word. The algorithm
described below utilizes the border set of cubeA to deter-
mine its AIC.

Algorithm 3 Adjacent and Intersecting Cubes

Input: CubeA, function onsetF , and don’t care setD
Output: Adjacent and intersecting cube setG.

1. G← ∅.
2. H ← Border(A).
3. ∀C ∈ (F ∪D) do:

3.1. If C 6⊥ H Then
3.1.1. IfC 6∈ F or A 6⊆ C ThenG← G ∪ C

4. ReturnG.

5.4 Essential Primes Cubes

Rao and Jacob [7] establish that, given a prime cube
A ∈ F , it can be determined ifA is an essential prime cube
(EPC) using the following procedure:

1. For every literalai that appears in cubeA, change the
corresponding literal in each of the Adjancent and In-
tersecting CubesAIC(A).

2. If the new modifiedAIC(A) does not coverA, thenA
is an essential prime cube.

Algorithm 4 Essential Primes Cube

Input: CubeA, function onsetF , and don’t care setD
Output: True if cubeA is an EPC.

1. B ← AIC(A)
2. ∀ayi

∈ ay, ayi
= 0 do:

2.1. ∀C ∈ B do:
2.1.1. Makecxi = axi , cyi = 0.

3. ReturnA b C

The operationA b C is called tautology test and is de-
scribed in [1]. It verifies that all minters inA are covered
by functionC.

6 Multiple output minimization

To illustrate IPR-M’s ability to support more complex
operations we present the implementation of a heuristic al-
gorithm, previously proposed by Guranath et al. [5], for
minimizing multiple-output logic functions, using the algo-
rithms described in Section 5.

The chosen heuristic algorithm uses a divide and conquer
approach wherein the minimization is carried out by four
main procedures:

1. Selection of essential prime cubes: Each cube is ex-
panded within a single function and any redundant
cubes are removed. If it is determined that the ex-
panded cube is essential and it is shared among two
or more functions or that it is orthogonal to all other
functions, it will be included in the solution.

Whenever a cube is added to the solution, it will be
added to the don’t care function. This will allow re-
maining cubes to expand, if needed, using the solution
terms.

Algorithm 5 Select essential prime cubes
Input: Function onsetF and don’t care setD.
Output: Set of essential cubesE and preliminary
solution setS with shared and exclusive essential
cubes.

1. E = ∅, S = ∅.
2. ∀fi ∈ F do:

2.1. G = ρ(ζ(F,D, fi)).
2.2. ∀B ∈ G do:

2.2.1. IfEPC(B) ThenE ← E ∪B
3. ∀fi ∈ F do:

3.1. ∀C ∈ E do:
3.1.1. IfC b fi Or C ⊥ fi Then

S ← S ∪ C, E ← E ◦ C,
D = D ∪ C.

4. ReturnS, E.

2. Selection of valid selective primes: Selective prime
cubes are detected. If a selective cube is shared by
two or more functions, or if it is orthogonal to all other
functions then it is included in the solution.

To determine selective cubes we use the fact that prime
cubes are either essential, selective, or redundant. The
expand and irredundancy step of the previous algo-
rithm eliminates all redundant primes. Thus, after the
algorithm for essential cubes is executed,F contains
only selective prime cubes.



Algorithm 6 Selective Cubes
Input: Function onsetF , don’t care setD, and pre-
liminary solution setS from previous algorithm.
Output: Preliminary solution setS with shared and
exclusive selective cubes.

1. ∀fi ∈ F do:
1.1. ∀C ∈ F do:

1.1.1. IfC b fi Or C ⊥ fi Then
S ← S ∪ C, E ← E ◦ C,
D = D ∪ C.

2. ReturnS, E.

3. Selection of intersecting cubes: Find the intersection
among functions of the remaining essential and se-
lective primes. The process of selecting intersect-
ing cubes simply involves determining if a given cube
A ∈ fi has an intersection with a cubeB ∈ fj that
covers the uncovered minterms inA andB.

Algorithm 7 Intersecting Cubes
Input: Function onsetF , don’t care setD, and pre-
liminary solution setS from previous algorithm.
Output: Preliminary solution setS with intersect-
ing cubes.

1. F = F ∪ E

1.1. ∀X ∈ fi, Y ∈ fj , i 6= j

1.1.1. Z = X ∓ Y
1.1.2. IfZ 6= ∅ And (X\Y ) b D And

(Y \X) b D Then
S = S ∪ Z, F ← F ◦X,
F ← F ◦ Y , D = D ∪X,
D = D ∪ Y .

2. ReturnS, F .

The operationX\Y is called cube difference [1] and
it obtains the set of cubes that cover the minterms cov-
ered byX but not byY , and nothing more.

4. Select exclusive cubes: The terms not yet chosen by
previous steps are exclusive cubes (either essential or
selective). This step expands them in their particular
function.

Algorithm 8 Select Exclusive Cubes
Input: Function onsetF , don’t care setD.
Output: Solution setS.

1. ∀fi ∈ F

1.1. ζ(F,D, fi)
2. ReturnF .

7 Preliminary Results

To verify the correctness of the presented algorithms, we
implemented them in C++ as part of a logic minimization
program. Table 2 shows preliminary results obtained for
several multiple-output examples provided with Espresso
Version 2.3, when minimized with the IPR-M-based pro-
gram and Espresso. For each test, the table shows the num-
ber of cubesc, input variables (In), and output variables

(Out) of the multi-output function, as well as the number of
cubesc and literalsl in the minimized result.

As evidenced by the results, the algorithm implementa-
tion still needs some validation because, although for some
of the examples the results were the same, for others Espres-
sos’ results contain considerably less literals and cubes.

Table 2. Minimization results for the IPR-based and
standard Espresso algorithms.

Circuit Input set IPR Espresso
Name c In Out c l c l

a2pair 16 4 3 11 32 11 32
mlp4 256 8 8 163 899 128 735
Z5xp1 128 7 10 79 312 65 287
stial 22 14 8 22 140 22 140

8 Conclusions and Future Work

IPR-M’s ability to represent and manipulate multiple-
output logic functions has been discussed and justified
through the presentation of common multiple-output min-
imization operators and algorithms. To establish more
meaningful comparisons with other representations (such as
BDD and PCN) our future work will be directed towards an-
alyzing the time and space complexity of IPR-M algorithms
and comparing them with established methods.

References

[1] A. Diaz, M. Jimenez, E. Strangas, and M. Shanblatt. Integer
pair representation of binary terms and equations. In1998
Midwest Symposium on Circuits and Systems, pages 172–175.
IEEE, August 1998.

[2] G. D.Micheli. Synthesis and Optimization of Digital Circuits.
McGraw Hill, Inc., New York, NY 02061, 1994.

[3] R. Drechsler and D. Sieling. Binary decision diagrams in the-
ory and practice.Internal Journal of STTT, pages 112–136,
2001.

[4] A. Friedman and P. Menon.Theory and Design of Switch-
ing Circuits. Computer Science Press, Inc., Maryland, USA
20850, 1975.

[5] B. Gurunath and N. Biswas. An algorithm for multiple output
minimization. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, pages 1007–1013,
September 1989.

[6] H. J. Mathony. Universal logic design algorithm and its ap-
plication to the synthesis of two-level switching circuits. In
Computers and Digital Techniques, IEE Proceedings, volume
136, pages 171–177, May 1989.

[7] P. Rao and J. Jacob. A fast two-level logic minimizer. InPro-
ceedings Eleventh International Conference on VLSI Design,
1998, pages 528–533, January 1998.


