
Scalable Pipeline Insertion in Floating Point Units for FPGA
Synthesis

Irvin Ortiz Flores

Advisor: Manuel Jiménez

Electrical and Computer Engineering Department
University of Puerto Rico, Mayagüez Campus

Mayagüez, Puerto Rico 00681-5000
irvin.ortiz@ece.uprm.edu

Abstract
Most modern processors rely on pipeline techniques to
achieve high throughput. This work reports the
development of scalable, floating-point (FP) arithmetic
operators with variable number of pipeline stages. A
new algorithm for pipeline insertion was developed and
used for FP Multiplication and FP Addition. The use of
this algorithm enables operating frequencies up to
175MHz when implemented on a Xilinx Virtex II
FPGA. Future work includes the automation of the
process and the inclusion of the algorithm into FP
square root and division units.

1.Introduction

Pipeline techniques allow operating a circuit at high
clock rates by dividing a large task into smaller non-
overlapping sub-tasks. This allows for parallel
processing without the need of extra computing units.
Final results are obtained after completing all stages.
Careful selection of the latch insertion points is an
important factor for obtaining optimal throughput.

In special purpose computing, dedicated adders are
required to have high throughput while latency
constraints are not severe. In such cases, pipelined
architectures are used widely. Traditional pipelined
adders for parallel addition of two operands are based
on carry save addition [3] or ripple adders.

Pipelined multipliers are desirable for high-
performance arithmetic applications such as digital
signal processing. The most common type of multiplier
used for pipelined applications is the array multiplier.
This is due to its regular and modular design. Asato et
al. developed a compiler to produce customized,
pipelined array multipliers optimized to operate at a
given clock rate [2]. Their method for pipeline
insertion consisted in the introduction of rows of
latches through the multiplier structure, which divides
the array into rows of cells that operate independently
from each other. The results of this approach for a

32×32 multiplier were a 33% area increase and three
times the clock rate of an unpipelined design.

2.Pipeline algorithm

An algorithm for pipeline insertion has been
developed. It works on regular structures like adders,
multipliers, and multi-stage operators with similar
delays. It uses two main parameters, which include the
number of circuit stages ()s and the number of pipeline
stages ()p . The algorithm generates ()x cells of

granularity () 



= p

sg1 where 




= p

sx mod and ()xp −

cells of granularity () 



= p

sg2 . Under this scheme,

the granularity of each part of the FP unit can be
independently adjusted. It is necessary to give the
optimal pipeline parameter to each component to
achieve optimal throughput of the FP unit. All the FP
unit and subcomponents were designed to provide
scalable mantissa and exponent fields as well as a
variable number of pipeline stages.

3.FP Adder

Figure 1 shows the basic structure of the FP adder.
Exponent and mantissa field widths are specified
through parameters ebit and mbit, respectively. The
number of pipeline stages is specified through 5
parameters (pip1, pip2a, pip2, pip3a and pip3b). In the
following sections we provide descriptions of the main
operators, components and processes used by the FP
Adder, along with their associated pipeline parameters.

Shifter: A right shifter is used to denormalize the
smaller mantissa as required by the exponent
equalization step. The shifter in Figure 2 uses a log-2
right scheme based on multiplexers [4]. Each bit in the
operand specifying the number of shift positions works
as a multiplexer’s selector signal. Each multiplexer
selects either the input vector or a shifted version of the
input vector.

mailto:irvin.ortiz@ece.uprm.edu

stat(1)

Nexpo(ebit)

sign_fre

expo_fre

m
ant_fre

sign1_latch1(0)

sign2_latch1(0)

Mant2_latch1_temp

Mant1_latch1_tem p

expo2
expo1

sign2_latch1_temp

sign1_latch1_temp

unshifted_mant

Latchsig1:
bus_latches

(pip1+pip2a)

Latchsig2:
bus_latches

(pip1+pip2a)

Latchmant1:
bus_latches

(pip1+pip2a)

Latchmant2:
bus_latches

(pip1)

Process: fpa_pipe1

Shift_mantissa:
shift_pip

(pip2a)

+
Sum_mantissa:

sumres_pip
(pip2b)

Zero_expf(0)

sign1_latch2(0)

expo31

offset

Nexpo(ebit-1 downto 0)
mant_frs

Expo_diff

Shifted_mant

mant1_sumin

sign1_latch1(0)

m ant_latch2

Expo_diff
zero_expf_temp(0)

Sbb_expo:
sum_pipeline

(pip1)

+
Post_norm:

sum_pipeline
(pip3b)

Latchexp:
sum_pipeline

(pip1+pip2a+pip2b+
pip3a)

Normal:
bus_latches

(pip3b)

normant

+

fp1

fp2

norm:
normalizer

(pip3a)

Latchzeroflag:
bus_latches

(pip2a+pip2b+pip3a
+pip3b)

Latchsigfinal:
bus_latches

(pip2b+pip3a+pip3b)

mantz

mantz_latch

Mantzflag:
bus_latches

(pip3a+pip3b)

zeroflag

S0
S1

S0
S10 1 32 0 1 320 1

0

1

S0

+

Figure 1: Pipelined FP Adder.

IN (23 downto 0)

0000000000000000 , (23 downto 16)

00000000, (23 downto 8)

0000, (23 downto 4)

00, (23 downto 2)

0, (23 downto 1)

Shift4

Shift(4 downto 0)

Shift3 Shift2 Shift1 Shift0

OUT (23 downto 0)

1 0

1 0

1 0

1 0

1 0

1 0

24 bit 2-1 multiplexer

Flip-Flop

Figure 2: Scalable pipelined shifter

Adder: Figure 3 shows the scheme selected for
pipelined fixed-point addition, based on the approach
proposed by Dadda et al. [3]. Latches are used to
propagate the signals through each pipeline stage to its
subsequent stage.

Normalizer and leading zero detector: A topology
shown in (Figure 4), has been developed, which
follows the structure of the shifter. The last
multiplexer's output is the normalized version of the
unit's input. The result of each multi-input nor-gate is
combined to form the total leading-zero amount. This
topology improves over previous approaches by

performing the zero leading detection and mantissa
normalization in a single step, without the requirement
of independent operations.

Three
stages

of size g2

A0 B0A1 B1A2 B2A3 B3A4 B4A5 B5A6 B6A7 B7A8 B8A9 B9A10 B10A11 B11

Cin

S0S1S2S3S4S5S6S7S8S9S10S11

Full Adder with latched
outputs Flip-Flop

Cout

Two
stages

of size g1

Full Adder with latched sum
output

Figure 3: 12-bit pipelined adder (s=12, p=5)

1 0

1 0

1 0

1 0

1 0

1 0

IN (23 downto 0)

(23 downto 8)

(23 downto16)

(23 downto 20)

(23 downto 22)

(23 downto 23)

OUT (23 downto 0)

(7 downto 0) , 0000000000000000

(15 downto 0) , 00000000

(19 downto 0) , 0000

(21 downto 0) , 00

(22 downto 0) , 0

Shifted(0 to 4)

Shifted 4Shifted 3Shifted 2Shifted 1Shifted 0

24 bit 2-1 multiplexer

Multi-input NOR Gate

Flip-Flop

Figure 4: Normalizing and zero detection unit

3.1.FP adder components

Sbb_expo (pip1): Subtracts both exponents to
determine the number of shifting positions when
denormalizing the smaller mantissa
Latchexp (pip1, pip2a, pip2, pip3a): Adds one to the
greater exponent.
Shift_mantissa (pip2a): Right shifts the smaller
number’s mantissa.
Sum_mantissa (pip2b): Mantissa addition or
subtraction depending on the sign of the input
operands.
Norm (pip3a): Detects leading zeros on the mantissa
and normalizes it.
Post_norm (pip3b): Adjusts the exponent result by
subtracting the number of leading zeros provided by
the normalizer.
Bus_latches: Maintain the data integrity through the
pipeline.

3.2.FP Adder Processes

fpa_pipe1: Compares the input operands and swap
them if necessary.

4.Floating Point Multiplier

Figure 5 shows the general organization of the FP
multiplier. Exponent and mantissa widths are specified
through parameters ebit and mbit, respectively. The
number of pipeline stages is specified through 3
parameters (pip1, pip1b, pip2). The following sections
provide descriptions of the main operators, components
and processes used by the FP Multiplier, indicating
their associated pipeline parameters.

Array multiplier: Figure 6 shows the method used to
add pipeline to the array multiplier. Based on the
scheme developed by [2].

Adder: Uses the same structure as those in the FP
Adder.

4.1.FP Multiplier Components

Mult_mant (pip1a, pip1b): Performs mantissa
multiplication. The top-portion of the array has pip1a
stages. The bottom-portion has pip1b stages.
Add_expo (pip1a, pip1b): Performs exponent addition.
Add_bias (pip2): Performs subtraction of the exponent
bias and exponent adjustments due to mantissa
normalization.

fp1

fp2

signo(0)
mant2

mant1

expo1 expo2

expo_latch1sign_latch1

zero_fl1

Latchzflag:
bus_latches

(pip2)

Latchmant2:
bus_latches

(pip2)

Latchsig2:
bus_latches

(pip2)

+
Add_bias:

sum_pipeline
(pip2)

Latchsig1:
 bus_latches

(pip1a)

+
Add_expo:

sum_pipeline
(pip1a+pip1b)

Process: sign_pipe1 Process: expo_pipe1 Process: mant_pipe1

Process: sign_pipe2 Process: expo_pipe2 Process: mant_pipe2

mant_latch1(mbit+1)

mant_latch2toff
expo_sbuff2

expo_bbuff2

nrm_flg

expo_latch2(ebit+1 downto ebit)

s igno2

sign_latch2

zero_fl2toff

zero_fl2 mant_latch2

Process: mant_pipe3Process: expo_pipe3Process: sign_pipe3

expo_latch2

fpr(ebit+mbit) fpr(mbit-1 downto 0)

fpr

stat

fpr(mbit+ebit-1 downto mbit)

1

Latchsig1:
 bus_latches

(pip1a)

zero_fl

mant_latch1

Mul_mant:
 arraymult_pipe
(pip1a , pip1b)

x

Figure 5: Pipelined FP Multiplier

4.2.FP Multiplier Processes

Sign_pipe1: Performs XOR of the signs.
expo_pipe1: Pass the exponents
mant_pipe1: Zero detection and adds the implicit
hidden one to the mantissa.
sign_pipe2: Pass the zero flag and the sign.
expo_pipe2: Prepares the operands for exponent bias
subtraction.
mant_pipe2: Normalizes the mantissa.
sign_pipe3: Modifies the sign in case of zero result.
expo_pipe3: Modifies the exponent in case of overflow
or underflow or zero result. Also set the status flags.
mant_pipe3: Set underflow and underflow conditions.

a4a3a2a1a0 x4x3x2x1x0

xin (0) xin(0) xin(0) xin(0) xin(0)

xin (1) xin(1) xin(1) xin(1) xin(1)

xin (2)

xin (3)

xin (4)

xin(2)

xin(3)

xin(4)

xin(2)

xin(3)

xin(4)

xin(2)

xin(3)

xin(4)

xin(2)

xin(3)

xin(4)

along(4)
a long(3) along(2) along(1) along(0)

along(9)
alo ng(8) along (7) along(6) along (5)

along(14)
along(13) along(12) along(11) along (10)

along(19)
along(18) along(17) along(16) along (15)

along(24)
along(23) along(22) along(21) along (20)

diag(0)(0) diag(0)(1) diag(0)(2) diag(0)(3) diag(0)(4)

diag(1)(0) diag(1)(1) diag(1)(2) diag(1)(3) diag(1)(4)

diag(2)(0) diag(2)(1) diag(2)(2) diag(2)(3) diag(2)(4)

diag(3)(0) diag(3)(1) diag(3)(2) diag(3)(3) diag(3)(4)

diag(4)(0) diag(4)(1) diag(4)(2) diag(4)(3) diag(4)(4)
vertsum(4)(0) vertsum(4)(1) vertsum(4)(2) vertsum(4)(3)

vertsum(3)(0) vertsum(3)(1) vertsum(3)(2) vertsum(3)(3)

vertsum(2)(0) vertsum(2)(1) vertsum(2)(2) vertsum(2)(3)

vertsum(1)(0) vertsum(1)(1) vertsum(1)(2) vertsum(1)(3)

0 0 0 0

M0M1M2M3M4M5
M6M7M8M9

Cin

Cout

A B

Sum

Full Adder with
latched ouputs

Flip-Flop AND gate

Cin

Cout

A

Sum

B1

B2

Full Adder with AND gate (B1
and B2) with latched ouputs

Figure 6: 5x5 pipelined array multiplier

5.Results

Several units were synthesized of both FP adder and
multiplier to quantify the performance and space
requirements under the reported approach. The
synthesis was carried from a VHDL source and the
target device was a Xilinx Virtex-II FPGA
(2V1000FG456–6).

The effect of varying the number of pipeline stages on
the speed of the FP units is illustrated in Figure 7. This
graph shows that increasing the number of stages does
effectively increase the operating frequency. This
increase, however, has a variable rate mainly due to the
routing delay, which sometimes achieves values over
50% of the worst delay path. Note that FP operands
work at a lower frequency than its components because
of the extra logic needed for FP arithmetic. The slowest
component in the FP Multiplier is the array multiplier,
while in the FP adder the bottleneck is created by the
normalizer. This means that these components have
priority in the assignment of pipeline parameters. Note
also that increasing the number of pipeline stages

increases the consumption of FPGA resources as seen
in. Figure 8 through the slice occupation. This increase
seems to have a linear behavior and is mainly due to
the increased usage of latches.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13

Pipeline stages

Fr
eq

ue
nc

y
(M

Hz
)

24 bit Shif ter 24 bit adder 25 bit normalizer

32 bit FP Adder 24 bit array multiplier 32 bit FP Multiplier
Figure 7:Operating frequency Vs Pipeline stages

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Stages

Sl
ic

es

24 bit adder 25 bit normalizer 24 bit Array Multiplier

32 bit FP Multiplier 32 bit FP adder 24 bit Shifter
Figure 8: Slices consumption VS Pipeline stages

An implementation of single-precision, IEEE-754
compliant adder and multiplier units were found to
operate at 170MFLPOS and 175MFLOPS,
respectively. These speeds are competitive with those
of highly refined, pre-routed core components
commercially available units from several vendors. In
terms of area, it results difficult to establish meaningful
comparisons since the reference implementations use
dedicated Virtex-II resources other than slices. Our
approach tries to avoid the usage of such resources in
order to keep the units portable to targets other than
Virtex-II and to maintain the flexibility of adjustable
range, precision, and pipeline granularity. Table 1
summarizes the obtained results along with typical
speeds and resource utilization on some commercial
implementations.

6.Conclusion and Future Work

An algorithm for pipeline insertion was developed and
used to build several fixed-point, achieving operating
frequencies well above 200MHz. Also a new topology
for a mantissa normalizer was developed, which
performs leading-zero detection and mantissa
normalization in a single step without requiring an
extra unit.

The FP operators achieved frequencies up to 175MHz.
Our FP units compete well in terms of operating
frequency, although there is room for improvement in
terms resources consumption. Their advantage is the
flexibility of scalable pipeline, mantissa and exponent
fields as well as portability to a wide range of FPGA
targets. This kind of flexibility is helpful for rapid
prototyping and reconfigurable computing. Pipelining
techniques developed here will be extended to the FP
Square Root and FP Division operators. Further work
includes automation of the pipeline optimization and
insertion process.

Table 1: FP Adder comparations
FP unit Source Frequency Slices Latency mbit ebit

Nallatech [5] 184 290 14 24 8
Quixilica [6] 147 121 11 20 6 Adder

Ours 170 467 11 24 8
Nallatech [5] 188 126 6 24 8
Quixilica [6] 122 326 6 24 8 Multiplier

Ours 175 973 13 24 8

References

[1] P.A .A Walters. A scaleable FIR filter using 32-bit
floating-point complex arithmetic on
Reconfigurable computing machine. IEEE
Symposium on FPGAs for Custom Computing
Machines 1998 pp. 333–334.

[2] C.D.C.D. Asato. A data-path multiplier with
automatic insertion of pipeline stages. IEEE
Journal of Solid-State Circuits 1990. pp. 383 –
387.

[3] V. Dadda, L. Piuri. Pipelined adders. IEEE
Transactions on Computers 1996. pp. 348 – 356

[4] S. Heo. A low-power32-bit datapath design.
Master’s thesis, Massachusetts Institute of
Technology, 2000. pp. 66–76

[5] Nallatech Limited, “IEEE 754 Floating Point
Core”, 2001, Available HTTP:
http://www.nallatech.com/

[6] QinetiQ, “Quixilica Floating Point Cores”, 2002,
Available HTTP: http://www.quixilica.com/

http://www.nallatech.com/
http://www.quixilica.com/

