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Abstract 
Most modern processors rely on pipeline techniques to 
achieve high throughput. This work reports the 
development of scalable, floating-point (FP) arithmetic 
operators with variable number of pipeline stages. A 
new algorithm for pipeline insertion was developed and 
used for FP Multiplication and FP Addition. The use of 
this algorithm enables operating frequencies up to 
175MHz when implemented on a Xilinx Virtex II 
FPGA. Future work includes the automation of the 
process and the inclusion of the algorithm into FP 
square root and division units. 

1.Introduction 

Pipeline techniques allow operating a circuit at high 
clock rates by dividing a large task into smaller non-
overlapping sub-tasks. This allows for parallel 
processing without the need of extra computing units. 
Final results are obtained after completing all stages. 
Careful selection of the latch insertion points is an 
important factor for obtaining optimal throughput.  

In special purpose computing, dedicated adders are 
required to have high throughput while latency 
constraints are not severe. In such cases, pipelined 
architectures are used widely. Traditional pipelined 
adders for parallel addition of two operands are based 
on carry save addition [3] or ripple adders. 

Pipelined multipliers are desirable for high-
performance arithmetic applications such as digital 
signal processing. The most common type of multiplier 
used for pipelined applications is the array multiplier. 
This is due to its regular and modular design. Asato et 
al. developed a compiler to produce customized, 
pipelined array multipliers optimized to operate at a 
given clock rate [2]. Their method for pipeline 
insertion consisted in the introduction of rows of 
latches through the multiplier structure, which divides 
the array into rows of cells that operate independently 
from each other. The results of this approach for a 

32×32 multiplier were a 33% area increase and three 
times the clock rate of an unpipelined design. 

2.Pipeline algorithm 

An algorithm for pipeline insertion has been 
developed. It works on regular structures like adders, 
multipliers, and multi-stage operators with similar 
delays. It uses two main parameters, which include the 
number of circuit stages ( )s  and the number of pipeline 
stages ( )p . The algorithm generates ( )x  cells of 

granularity ( ) 



= p

sg1   where 




= p

sx mod  and ( )xp −  

cells of granularity ( ) 



= p

sg2  . Under this scheme, 

the granularity of each part of the FP unit can be 
independently adjusted. It is necessary to give the 
optimal pipeline parameter to each component to 
achieve optimal throughput of the FP unit. All the FP 
unit and subcomponents were designed to provide 
scalable mantissa and exponent fields as well as a 
variable number of pipeline stages. 

3.FP Adder 

Figure 1 shows the basic structure of the FP adder. 
Exponent and mantissa field widths are specified 
through parameters ebit and mbit, respectively. The 
number of pipeline stages is specified through 5 
parameters (pip1, pip2a, pip2, pip3a and pip3b). In the 
following sections we provide descriptions of the main 
operators, components and processes used by the FP 
Adder, along with their associated pipeline parameters. 

Shifter: A right shifter is used to denormalize the 
smaller mantissa as required by the exponent 
equalization step. The shifter in Figure 2 uses a log-2 
right scheme based on multiplexers [4]. Each bit in the 
operand specifying the number of shift positions works 
as a multiplexer’s selector signal. Each multiplexer 
selects either the input vector or a shifted version of the 
input vector. 
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Figure 1: Pipelined FP Adder. 
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Figure 2: Scalable pipelined shifter  

Adder: Figure 3 shows the scheme selected for 
pipelined fixed-point addition, based on the approach 
proposed by Dadda et al. [3]. Latches are used to 
propagate the signals through each pipeline stage to its 
subsequent stage.  

Normalizer and leading zero detector: A topology 
shown in (Figure 4), has been developed, which 
follows the structure of the shifter. The last 
multiplexer's output is the normalized version of the 
unit's input. The result of each multi-input nor-gate is 
combined to form the total leading-zero amount. This 
topology improves over previous approaches by 

performing the zero leading detection and mantissa 
normalization in a single step, without the requirement 
of independent operations. 
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Figure 3: 12-bit pipelined adder (s=12, p=5) 
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Figure 4: Normalizing and zero detection unit 

3.1.FP adder components 

Sbb_expo (pip1): Subtracts both exponents to 
determine the number of shifting positions when 
denormalizing the smaller mantissa 
Latchexp (pip1, pip2a, pip2, pip3a): Adds one to the 
greater exponent. 
Shift_mantissa (pip2a): Right shifts the smaller 
number’s mantissa. 
Sum_mantissa (pip2b): Mantissa addition or 
subtraction depending on the sign of the input 
operands.  
Norm (pip3a): Detects leading zeros on the mantissa 
and normalizes it. 
Post_norm (pip3b): Adjusts the exponent result by 
subtracting the number of leading zeros provided by 
the normalizer. 
Bus_latches: Maintain the data integrity through the 
pipeline. 



3.2.FP Adder Processes 

fpa_pipe1: Compares the input operands and swap 
them if necessary. 

4.Floating Point Multiplier 

Figure 5 shows the general organization of the FP 
multiplier. Exponent and mantissa widths are specified 
through parameters ebit and mbit, respectively. The 
number of pipeline stages is specified through 3 
parameters (pip1, pip1b, pip2). The following sections 
provide descriptions of the main operators, components 
and processes used by the FP Multiplier, indicating 
their associated pipeline parameters. 

Array multiplier: Figure 6 shows the method used to 
add pipeline to the array multiplier. Based on the 
scheme developed by [2]. 

Adder: Uses the same structure as those in the FP 
Adder. 

4.1.FP Multiplier Components 

Mult_mant (pip1a, pip1b): Performs mantissa 
multiplication. The top-portion of the array has pip1a 
stages. The bottom-portion has pip1b stages.  
Add_expo (pip1a, pip1b): Performs exponent addition. 
Add_bias (pip2): Performs subtraction of the exponent 
bias and exponent adjustments due to mantissa 
normalization. 
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Figure 5: Pipelined FP Multiplier 

4.2.FP Multiplier Processes 

Sign_pipe1: Performs XOR of the signs. 
expo_pipe1: Pass the exponents 
mant_pipe1: Zero detection and adds the implicit 
hidden one to the mantissa. 
sign_pipe2: Pass the zero flag and the sign. 
expo_pipe2: Prepares the operands for exponent bias 
subtraction. 
mant_pipe2: Normalizes the mantissa. 
sign_pipe3: Modifies the sign in case of zero result. 
expo_pipe3: Modifies the exponent in case of overflow 
or underflow or zero result. Also set the status flags. 
mant_pipe3: Set underflow and underflow conditions. 
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Figure 6: 5x5 pipelined array multiplier 

5.Results 

Several units were synthesized of both FP adder and 
multiplier to quantify the performance and space 
requirements under the reported approach. The 
synthesis was carried from a VHDL source and the 
target device was a Xilinx Virtex-II FPGA 
(2V1000FG456–6).  

The effect of varying the number of pipeline stages on 
the speed of the FP units is illustrated in Figure 7. This 
graph shows that increasing the number of stages does 
effectively increase the operating frequency. This 
increase, however, has a variable rate mainly due to the 
routing delay, which sometimes achieves values over 
50% of the worst delay path. Note that FP operands 
work at a lower frequency than its components because 
of the extra logic needed for FP arithmetic. The slowest 
component in the FP Multiplier is the array multiplier, 
while in the FP adder the bottleneck is created by the 
normalizer. This means that these components have 
priority in the assignment of pipeline parameters. Note 
also that increasing the number of pipeline stages 



increases the consumption of FPGA resources as seen 
in. Figure 8 through the slice occupation. This increase 
seems to have a linear behavior and is mainly due to 
the increased usage of latches. 
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An implementation of single-precision, IEEE-754 
compliant adder and multiplier units were found to 
operate at 170MFLPOS and 175MFLOPS, 
respectively. These speeds are competitive with those 
of highly refined, pre-routed core components 
commercially available units from several vendors. In 
terms of area, it results difficult to establish meaningful 
comparisons since the reference implementations use 
dedicated Virtex-II resources other than slices. Our 
approach tries to avoid the usage of such resources in 
order to keep the units portable to targets other than 
Virtex-II and to maintain the flexibility of adjustable 
range, precision, and pipeline granularity. Table 1 
summarizes the obtained results along with typical 
speeds and resource utilization on some commercial 
implementations. 

6.Conclusion and Future Work 

An algorithm for pipeline insertion was developed and 
used to build several fixed-point, achieving operating 
frequencies well above 200MHz. Also a new topology 
for a mantissa normalizer was developed, which 
performs leading-zero detection and mantissa 
normalization in a single step without requiring an 
extra unit. 

The FP operators achieved frequencies up to 175MHz. 
Our FP units compete well in terms of operating 
frequency, although there is room for improvement in 
terms resources consumption. Their advantage is the 
flexibility of scalable pipeline, mantissa and exponent 
fields as well as portability to a wide range of FPGA 
targets. This kind of flexibility is helpful for rapid 
prototyping and reconfigurable computing. Pipelining 
techniques developed here will be extended to the FP 
Square Root and FP Division operators. Further work 
includes automation of the pipeline optimization and 
insertion process. 

Table 1: FP Adder comparations 
FP unit Source Frequency Slices Latency mbit ebit 

Nallatech [5] 184 290 14 24 8 
Quixilica [6] 147 121 11 20 6 Adder 

Ours 170 467 11 24 8 
Nallatech [5] 188 126 6 24 8 
Quixilica [6] 122 326 6 24 8 Multiplier 

Ours 175 973 13 24 8 
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