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Abstract. This paper describes an object-
oriented framework for solving computational 
fluid dynamics problems on parallel 
computers. The design and components of the 
framework are discussed related to design 
patterns methodology. 
The proposed framework offers higher-level 
programming abstractions for parallelization 
and improves the overall efficiency of 
implementation. 
 
1. Introduction 
The rapid development of parallel and 
distributed systems, numerical algorithms, and 
high-speed data networks has resulted in 
dramatically increased computational power 
and efficiency. As a result, Computational 
Fluid Dynamics (CFD) has emerged 
as an essential analysis tool applied 
extensively in analyzing fluid mechanics, heat 
and mass transfer, hydrodynamics, 
atmospheric sciences, solid mechanics, water 
quality, and transport problems. Thus in the 
CFD process, the partial differential equations 
(PDEs), which govern the problem of interest, 
are solved using numerical methods on high 
performance parallel computers [1, 2, 3]. One 
of the challenges in this arena is creating a 
flexible and open development environment 
that help reduce the high cost of implementing 
parallel codes as comparing to the traditional 
approach in which the application programmer 
handles all the implementation details. From 
the implementation point of view, modern 
programming languages offer powerful tools 
for flexibility, such as the inheritance of 
object-oriented programming. The numerical 
approach however should be flexible as well. 
Consequently, flexible domain decomposition 
techniques need to be implemented, without 
compromising the accuracy of the algorithms 

[4]. In addition, efficient management 
strategies are needed to deal with all the 
software components. 
We propose a high-level parallelization of 
CFD codes through an extensive use of object-
oriented programming techniques. A modular 
implementation of mathematical abstractions, 
which is a direct advantage of object-oriented 
programming, allows for the generalization of 
computational kernels, which are reusable in 
many simulation applications. This approach 
makes it possible to hide computational details 
when it is needed as well as produce 
simulators with unified generic interfaces. In 
this paper, we describe our experience in 
building an object-oriented framework for 
parallel flow simulations. The description of 
the framework is presented with emphasis on 
design patterns methodology [5]. 
Design patterns provides a high level 
perspective on both the problem and the 
process of design and object orientation [6]. A 
pattern describes a core solution of a problem 
that occurs frequently in an environment. 
There are three types of patterns: Creational, 
structural and behavioral patterns [7]. 
Creational patterns create objects rather than 
instantiate objects directly. Examples of such 
patterns are builder, factory, prototype, and 
singleton patterns. Structural patterns help 
compose groups of objects into large 
structures such as complex user interfaces. 
Representatives of these patterns are adapter, 
bridge, composite, and proxy. Behavioral 
patterns, in turn, help define the 
communication between objects and how the 
flow is controlled in a complex system. 
Examples of such patterns are interpreter, 
mediator, observer, strategy, and template. 
The base pattern of our framework is the 
builder pattern, which creates a context to use 



others patterns. The factory pattern is used to 
select different approaches to solve a CFD 
problem. We have also used the mediator 
pattern for the communication among objects 
created by the builder pattern, and the 
observer pattern for data communication and 
parallelization. 
This paper is organized as follows. Session 2 
depicts the design and components of our 
framework. Session 3 discusses a study case. 
Finally, conclusions and future work are listed 
in session 4. 
 
2. Framework Architecture 
We use design patterns to define the software 
architecture and design of the framework. The 
main pattern of our framework is the builder 
pattern (see Figure 1). A builder pattern 
simplifies the creation of complex objects by 
defining a class whose purpose is to build 
instances of other classes. Since each CFD 
problem may have different configuration and 
requirements, it is needed to construct a 
particular complex object for each particular 
problem. Each complex object, referred to as 
Solver, is a solver for an equation on a 
particular mesh, using a numerical method 
with particular initial and boundary conditions. 
The class ConcreteBuilderSolver is 
responsible for the creation of Solver. The four 
components of Solver are the classes 
Equation, Mesh, NMethod, and IBConditions. 
Instances of these classes will be created in the 
class BuilderSolver through the methods 
buildEquation(), buildMesh(), 
buildNMethod(), and buildIBCondition(), 
respectively. 
The object Solver is created according to 
information provided by the user through a 
graphical user interface. Such input data is 
obtained by the class Director through the 
method contruct(). The Equation class has a 
reference to the interface ProductEquation and 
defines the same methods of this interface. 
This definition allows for the communication 
between the class Equation and any instance 
of the classes that implement 
ProductEquation, such as EulerEquation, 
HeatEquation, and NavierEquation. This 
design allows us, when needed, include 
another type of equations with the 
implementation of the methods defined in the 
interface ProductEquation. 

 

 
Fig. 1. Builder Pattern Implementation 

 
 
The interface ProductEquation is implemented 
as a factory pattern (see Figure 2). 
The main idea behind factory patterns is to 
delegate the decision of the kind of object to 
be created to other subclasses. The method 
factoryMethod(), which is defined in the class 
CreatorEquation and implemented in the class 
ConcreteCreatorEquation, returns an instance 
of ProductEquation (e.g., EulerEquation, 
HeatEquation or NavierEquation). The 
methods of this instance are called using the 
methods of the class Equation because there is 
a reference to the class ProductPanel. In the 
same way we can obtain a specific instance of 
the classes that implement the interface 
ProductMesh using a factory pattern again. 
The class Mesh will be an interface between 
Solver and any instance of the classes 
UnstructuredMesh or StructuredMesh. Both 
classes implement the interface ProductMesh. 
With little or none modification we can obtain 
a specific instance of IBCondition using the 
technique described above. 

 
 

Fig. 2. Factory Pattern Implementation 
 



In order to obtain an instance of the classes 
ExplicitNMethod or ImplicitNMethod, certain 
modifications are needed according to the 
numerical method used to solve the equations. 
The communication among the different 
objects is the core of the framework. If we 
considered direct communication among 
objects, we would lose modularity by a tight 
coupling. This problem is solved by using a 
mediator pattern. This pattern is a center of 
communication among the components that 
simplifies communication. The instances of 
Equation, Mesh, and NMethod send 
information to Mediator. On the contrary, 
IBCondition receives information from 
Mediator. The communication is carried out 
by the methods sendData() and receivedData() 
defined in the different classes, and 
administered by the methods in the class 
Mediator (see Figure 3). 

 
3. Case Study 
To illustrate the usefulness of the proposed 
framework, a case study of a subsonic 
unsteady turbulent flow over a NACA0012 
airfoil has been performed. The governing 
equations are the Navier Stokes equations, 
which can be written as:  
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where ρ  is the density, u the velocity, T 
temperature, E the total energy, p the pressure, 
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µ and µt the laminar and turbulent viscosities. 
To model turbulence a k-e model is used, 
which can be written as: 
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The Navier-Stokes and k-ε equations are 
solved by a finite-volume Galerkin upwind 
technique [8] using Roe Riemann solver [9]. 
The viscous terms are computed using a 
standard Galerkin method. The computational 
configuration and mesh of the case study are 
shown in Figure 4a, 4b, such as they appear in 
the graphical user interface. 
The plot of Mach number lines shown in 
Figure 5 is for a low-Mach number (M∞ 
=0.1), turbulent (Reynolds number =106) flow. 
We have obtained encouraged numerical 
results and performance for diverse 
configurations. 
The architecture of the framework facilitates 
the implementation of different numerical 
methods without major efforts. The use of 
domain decomposition techniques as described 
in [4] are significantly simplified by using the 
observer pattern. This pattern governs the 
domain decompositions strategies and the 
communication between subdmoains. We have 
used mpiJava [10] for the implementation of 
the parallel algorithms. However, the 
framework is independent of the message 
passing implementation used and can be 
modified easily as consequence of the 
programming abstractions provided by the 
observer pattern. 
 

 
Fig. 4a. Case Study General Information 

 



 

 
Fig. 4b. Case Study Mesh 

 
 

 
 

Fig. 5. NACA 0012 Airfoil Mach Number 
Lines 
 
4. Conclusions 
An object-oriented framework for solving 
computational fluid dynamics problems on 
parallel computers has been presented. We 
argue that the combination of flexible domain 
decomposition methods with extensive use of 
object-oriented techniques will result in an 
efficient, flexible, and systematic process for 
developing parallel codes. 
We have shown how design patterns 
methodology contributes to produce reusable 
software. The effectiveness and advantages of 
the framework is illustrated upon a case study 
of a subsonic unsteady turbulent flow over a 
NACA0012 airfoil. Further research and 
development is needed to make the framework 

capabilities complete and tuned for 
performance. 
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