An Object Oriented Framework for Computational
Fluid Dynamics Simulations

Freddy Perez and Wilson Rivera
Electrical and Computer Engineering Department
Parallel and Distributed Computing Laboratory
University of Puerto Rico Mayaguez
Mayaguez, PR 00681, USA
{f perez, wrivera}@ece.uprm.edu

Abstract. This paper describes an object-
oriented framework for solving computational
fluid dynamics problems on parallel
computers. The design and components of the
framework are discussed related to design
patterns methodology.

The proposed framework offers higher-level
programming abstractions for parallelization
and improves the overall efficiency of
implementation.

1. Introduction

The rapid development of parallel and
distributed systems, numerical algorithms, and
high-speed data networks has resulted in
dramatically increased computational power
and efficiency. As a result, Computational
Fluid Dynamics (CFD) has emerged

as an essential analysis tool applied
extensively in analyzing fluid mechanics, heat
and mass transfer, hydrodynamics,
atmospheric sciences, solid mechanics, water
quality, and transport problems. Thus in the
CFD process, the partial differential equations
(PDEs), which govern the problem of interest,
are solved using numerical methods on high
performance parallel computers [1, 2, 3]. One
of the challenges in this arena is creating a
flexible and open development environment
that help reduce the high cost of implementing
parallel codes as comparing to the traditional
approach in which the application programmer
handles all the implementation details. From
the implementation point of view, modern
programming languages offer powerful tools
for flexibility, such as the inheritance of
object-oriented programming. The numerical
approach however should be flexible as well.
Consequently, flexible domain decomposition
techniques need to be implemented, without
compromising the accuracy of the algorithms

[4]. In addition, efficient management
strategies are needed to deal with all the
software components.

We propose a high-level parallelization of
CFD codes through an extensive use of object-
oriented programming techniques. A modular
implementation of mathematical abstractions,
which is a direct advantage of object-oriented
programming, allows for the generalization of
computational kernels, which are reusable in
many simulation applications. This approach
makes it possible to hide computational details
when it is needed as well as produce
simulators with unified generic interfaces. In
this paper, we describe our experience in
building an object-oriented framework for
parallel flow simulations. The description of
the framework is presented with emphasis on
design patterns methodology [5].

Design patterns provides a high level
perspective on both the problem and the
process of design and object orientation [6]. A
pattern describes a core solution of a problem
that occurs frequently in an environment.
There are three types of patterns: Creational,
structural and behavioral patterns [7].
Creational patterns create objects rather than
instantiate objects directly. Examples of such
patterns are builder, factory, prototype, and
singleton patterns. Structural patterns help
compose groups of objects into large
structures such as complex user interfaces.
Representatives of these patterns are adapter,
bridge, composite, and proxy. Behavioral
patterns, in turn, help define the
communication between objects and how the
flow is controlled in a complex system.
Examples of such patterns are interpreter,
mediator, observer, strategy, and template.
The base pattern of our framework is the
builder pattern, which creates a context to use

others patterns. The factory pattern is used to
select different approaches to solve a CFD
problem. We have also used the mediator
pattern for the communication among objects
created by the builder pattern, and the
observer pattern for data communication and
parallelization.

This paper is organized as follows. Session 2
depicts the design and components of our
framework. Session 3 discusses a study case.
Finally, conclusions and future work are listed
in session 4.

2. Framework Architecture

We use design patterns to define the software
architecture and design of the framework. The
main pattern of our framework is the builder
pattern (see Figure 1). A builder pattern
simplifies the creation of complex objects by
defining a class whose purpose is to build
instances of other classes. Since each CFD
problem may have different configuration and
requirements, it is needed to construct a
particular complex object for each particular
problem. Each complex object, referred to as
Solver, is a solver for an equation on a
particular mesh, using a numerical method
with particular initial and boundary conditions.
The class ConcreteBuilderSolver s
responsible for the creation of Solver. The four
components of Solver are the classes
Equation, Mesh, NMethod, and IBConditions.
Instances of these classes will be created in the
class BuilderSolver through the methods

buildEquation(), buildMesh(),
buildNMethod(), and buildIBCondition(),
respectively.

The object Solver is created according to
information provided by the user through a
graphical user interface. Such input data is
obtained by the class Director through the
method contruct(). The Equation class has a
reference to the interface ProductEquation and
defines the same methods of this interface.
This definition allows for the communication
between the class Equation and any instance
of the classes that implement
ProductEquation, such as FEulerEquation,
HeatEquation, and NavierEquation. This
design allows us, when needed, include
another type of equations with the
implementation of the methods defined in the
interface ProductEquation.

BuilderSolver

Director
:bulququatwuno p . g
*’Llunuhleehu ‘-;oue-‘-u-'tl']
bulldNMethod) L

ShuildIBC ondlition() A

A
L

ConcreteBuilderSokver
Soker

“‘g etSokver])

2’

')
ProductSokver

Fig. 1. Builder Pattern Implementation

The interface ProductEquation is implemented
as a factory pattern (see Figure 2).

The main idea behind factory patterns is to
delegate the decision of the kind of object to
be created to other subclasses. The method
factoryMethod(), which is defined in the class
CreatorEquation and implemented in the class
ConcreteCreatorEquation, returns an instance
of ProductEquation (e.g., EulerEquation,
HeatEquation or NavierEquation). The
methods of this instance are called using the
methods of the class Equation because there is
a reference to the class ProductPanel. In the
same way we can obtain a specific instance of
the classes that implement the interface
ProductMesh using a factory pattern again.
The class Mesh will be an interface between
Solver and any instance of the classes
UnstructuredMesh or StructuredMesh. Both
classes implement the interface ProductMesh.
With little or none modification we can obtain
a specific instance of /BCondition using the
technique described above.

B — ProductE quatio
CraatoEqguanion | _______[__a_u_'!_r;]
| {

—i

S Cperalions) N :
Siacionidainod) | .
A EularE quation
)
[NavierEquation | {HeatEouation |
t]
Cor ll'.".'.'-'_.'l"sll-":".d.!--_-rl]
SactaryMathad()

Fig. 2. Factory Pattern Implementation

In order to obtain an instance of the classes
ExplicitNMethod or ImplicitNMethod, certain
modifications are needed according to the
numerical method used to solve the equations.
The communication among the different
objects is the core of the framework. If we
considered direct communication among
objects, we would lose modularity by a tight
coupling. This problem is solved by using a
mediator pattern. This pattern is a center of
communication among the components that
simplifies communication. The instances of
Equation, Mesh, and NMethod send
information to Mediator. On the contrary,
IBCondition receives information from
Mediator. The communication is carried out
by the methods sendData() and receivedData()
defined in the different classes, and
administered by the methods in the class
Mediator (see Figure 3).

3. Case Study

To illustrate the usefulness of the proposed
framework, a case study of a subsonic
unsteady turbulent flow over a NACAO0012
airfoil has been performed. The governing
equations are the Navier Stokes equations,
which can be written as:

opu _
o V=0

%M+V-(PM ®u)+V.(pu) = V(e + p1,)S)

(%E + V.((PE + p)u) = V.((u+ p,)Su) + V.((x + x,)T)

where p is the density, u the velocity, T

temperature, E the total energy, p the pressure,
S = (Vu+Vu')— % p; the deformation tensor, and

p and p; the laminar and turbulent viscosities.
To model turbulence a k-e model is used,
which can be written as:

opk
% +V.(puk) = V((u+ p1,)Vh) = S,
L 4 (pue) =V (4 e V) =S,

The Navier-Stokes and k-¢ equations are
solved by a finite-volume Galerkin upwind
technique [8] using Roe Riemann solver [9].
The viscous terms are computed using a
standard Galerkin method. The computational
configuration and mesh of the case study are
shown in Figure 4a, 4b, such as they appear in
the graphical user interface.

The plot of Mach number lines shown in
Figure 5 is for a low-Mach number (Moo
=0.1), turbulent (Reynolds number =10°) flow.
We have obtained encouraged numerical
results and performance for diverse
configurations.

The architecture of the framework facilitates
the implementation of different numerical
methods without major efforts. The use of
domain decomposition techniques as described
in [4] are significantly simplified by using the
observer pattern. This pattern governs the
domain decompositions strategies and the
communication between subdmoains. We have
used mpiJava [10] for the implementation of
the parallel algorithms. However, the
framework is independent of the message
passing implementation used and can be
modified easily as consequence of the
programming abstractions provided by the
observer pattern.

]]
| e e—— M
[re——— N Timp
Aqnan N Yk
Taee Asae | e Nl | e Gt T BT e
"= et Ao s | 54
1
T o [ESepe—r— AL v—
Teprmensr Mo sehdden walt Tevmerimee |
e . v
[o i
- e o dnan
Lyenan 1 mase o Rl of poosnres |
P P] o ey
T Seentiy e T -
O vapry
MR pra—— e
i
T yomas L0 yomim Ak
< tebimaa o Taes D 400
MO b T
e pp— e P v
Uvaaem g b oprtmn Mose S o bl

Fig. 4a. Case Study General Information

Fig. 4b. Case Study Mesh

" Gragtar

s Sumer

Fig. 5. NACA 0012 Airfoil Mach Number
Lines

4. Conclusions

An object-oriented framework for solving
computational fluid dynamics problems on
parallel computers has been presented. We
argue that the combination of flexible domain
decomposition methods with extensive use of
object-oriented techniques will result in an
efficient, flexible, and systematic process for
developing parallel codes.

We have shown how design patterns
methodology contributes to produce reusable
software. The effectiveness and advantages of
the framework is illustrated upon a case study
of a subsonic unsteady turbulent flow over a
NACAO0012 airfoil. Further research and
development is needed to make the framework

capabilities complete and tuned for
performance.

Acknowledgements
This work was supported by the UPRM-NSF
PRECISE Project (EIA-NSF 99-77071).

References

1. S. W. Hammond and T. J. Barth, “Efficient
massively parallel Euler solver for two-
dimensional unstructured grids.” ATAA, 30(4):
947-952, 1992.

2. D. Drikakis and E. Schreck, “Development
of parallel implicit Navier-Stokes solvers on
MIMD multiprocessor systems," AIAA, 93-
0062.

3. R. Pankajakshan and W. R. Briley, “Parallel
solution of viscous incompressible flow on
multi-block structured grids using MPL” In
Parallel Computational Fluid Dynamics:
Implementation and Results Using Parallel
Computers, Elseiver Science, 601-608, 1996.
4. W. Rivera, J. Zhu, and D. Huddleston, “An
Efficient Parallel Algorithm with Application
to Computational Fluid Dynamics." To appear
in Computers and Mathematics with
Applications.

5. E. Gamma, R. Helm, R. Johnson, and J.
Vlissides, “Design Patterns: Elements of
Reusable Object-Oriented Software.”
Addisson-Wesley, 1995.

6. J. Copper, “The Design Patterns Java
Companion.” Addisson-Wesley, 1998.

7. A. Shalloway and J. Trott, “Design Patterns
Explained.” Addisson-Wesley, 2002.

8. K. W. Morton, “On the analysis of finite
volume methods for evolutionary problems.”
SIAM Journal on Numerical Analysis, 35 (6):
2195-2222, 1998.

9. P. L. Roe, “Approximate Riemann solvers,
parameter vector, and difference schemes.”
Journal of Computational Physics, 43: 357-
372, 1981.

10. M. Baker, B. Carpenter, G. Fox, S. Hoon
Ko, and X. Li. mpiJava: A Java interface to
MPL. In First Workshop on Java for High
Performance Network Computing, Europar
98.

