University of Puerto Rico

Mayagiiez Campus

Mathematics Department

Experimental Validation of Bulk Synchronous
Parallel on Origin 2000

Elio Lozano
Advisor Dr. Edgar Acuna

March 9, 2003

Abstract

Experimental data validating some of the proposed
parallel computation models on SGI Origin 2000
is presented. This Architecture is characterized by
a large bandwidth and a relatively large startup
cost of a message transmission, which makes it ex-
tremely important to employ bulk transfers. The
models considered are the BSP model, in which
it is assumed that all messages have a fixed short
size; and the message passing model MPI, in which
the message passing can be synchronous or asyn-
chronous.

1 Introduction

Experimental validation of models of parallel com-
putation is extremely valuable. To emphasize this,
Snyder [Sny95] wrote ”in the absence of evidence
that it make accurate predictions, what serious in-
terest can there be in either model, or algorithms
developed with it?” Although some experimental
result investigating the prediction capabilities of
parallel model have been published, these results
were often unsatisfactory for the following reasons.
First, sometimes the experimental data was col-
lected on only one platform. In other cases, the
result were gathered on systems with only a few
processors. Third, often the communication over-
head was only a small part of the total execution
time. Since communication cost is the only cost
captured in detail by most models, this provides

no support for their predictive capabilities. The
Models considered in this paper are the Bulk Syn-
chronous Parallel (BSP) and Message Passing Inter-
face (MPI). In this section these models are briefly
described. The BSP model [Val90] consist of p pro-
cessors, a communication medium that can deliver
message point to point, and a mechanism for barrier
synchronization. BSP computations are organized
in supersteps, separated by barrier synchronization.
In a superstep, a processor can perform local oper-
ations, and send and receive some messages. Two
parameters are used to model communication cost:
(1) the latency/synchronization cost L, and (2) the
computational-to-communication through radio g.

Central to the BSP model is the concept of an h-
relation: a communication pattern in which each
processor sends and receives at most h messages.
The parameters g and L are such that an arbi-
trary h-relation followed by a barrier synchroniza-
tion takes g - h + L time. The cost of a superstep
is therefore w + g - h + L, where w is the maximum
amount of local work performed by any processors,
and h is the maximum number of messages sent
or received by any processor. In the BSP model
[Val9Q], all message have a fixed short size (essen-
tially the word size of the machine). However, it
is well known that on more parallel architectures
there is a large startup cost associated with a mes-
sage transmission.

The Message Passing Interface [Pac97] is the
most commonly used method for programming
distributed-memory systems. We saw that message
passing can be synchronous or asynchronous. If a

Elio Lozano

system provides buffering, then the system can copy
the sender’s message to a system buffer, and the
sender can continue with its work. However, if there
is no buffering, the processes must synchronize; i.
e. the sender must receive permission from the re-
ceiver to transmit the message . Message-Passing
functions can also be either blocking o no blocking.
In blocking message passing, a call to a communi-
cation function won’t return until the operation is
complete. For example, a blocking receive function
will not return until the message has been copied
into the user process’s memory. No blocking com-
munication consists of two phases. During the first
phase a function is called that starts the communi-
cation. During the second phase another function
is called that complete the communication.

2 Machine Description

For the experiments, we used the SGI Origin 2000
located at the high performance computing facility
of the Puerto Rico University (Mayagiiez Campus).
It is an 8 processor cache coherent non-uniform
memory access machine (ccNUMA)[Lau98]. Each
processor is RISC R10000, with 1GB main mem-
ory, is a 64 bit chip running at 250 Mhz capable
of 390 Mflops (2 flops per cycle) [Sai96]. Each pro-
cessor has 64 floating point registers and 64 integer
registers. The machine has separately level one in-
struction and data caches, but a unified level two
cache. The level 1 cache is 32KB with two ways set
associativity. The instruction cache has a line size
of 64 bytes, while the data cache line size is smaller
at 32 bytes. The 4 MB level two cache is two way
associative with a 128 byte line size.

3 Experiments

We implemented several simple benchmark pro-
grams using the native message passing library. Fig
shows one of two experiments. In the first experi-
ment, two processors repeatedly exchange a mes-
sage between them (the well known ”ping-pong”
benchmark). The results of this experiment are
labeled ”send/receive”. In the second experiment,
both processors send and receive a message simulta-
neously (the ”ping-pong double” benchmark). The
results of the experiment are labeled ”send + re-
ceive”. It can be seen that the time taken by both
experiments is well approximated by the measured
data points, we use least square to fit a line to the
resulting (message-size,time) pairs.

Origin 2000 Bandwicth
07r

0B

o5t

04t

seconcls

03 *

o2

[IA

0 L L L L L L L L L I
0 ns 1 15 2 25 3 35 4 45 5
Message size {Bytes) r

Figure 1: Ping pong benchmark for Origin 2000

The intercept will approximate t_s and the slope
t_c. The equation is given by:

time = ts + t.(message_size)

where:

n(> i) — (i ni)?
n(iy niti) — (07— na) (O ti)

tg =

>y n%)(Z?:l ti) = iy mat) (i i)
”(Z?ﬂ nit;) — (Z?:l m)(ZZLl ti)

te =

The time ¢, is sometimes called message latency,
and the reciprocal of ¢, is sometimes called the
bandwidth. It is surprisingly difficult to obtain reli-
able estimates of t5 and t.. For particular systems,
the best thing to do is to actually write programs
that send messages and take timings.

4 Speedup and Efficiency

From theoretical point of view [Pac97, [J4J92],
speedup s and efficiency & are defined for paral-
lel algorithms as: s = 7,/7, and & = s/p; where
T is the run time of the sequential algorithm and
Tp is the run time of the parallel algorithm. Let
7* be the running time of the best known sequen-
tial algorithm to solve the problem. The absolute
speedup Sqps and the relative speedup s, are de-
fined as: sqps = 7%/7, and Sy = T1/7p; thus, the
absolute efficiency E.ps and the relative efficiency
grel as: Eabs = Sabs/p and frel = Srel/p~

Elio Lozano

%10 Origin 2000 Banchwidth

Transferency rate {Bytes fzecand)
"
*

Bytes ’ F
Figure 2: Bandwidth for Origin 2000

Because of 7% < 71, Saps < Srer; and a certain ma-
chines and algorithms even p < s, is possible.
Such a superlinear relative speedup can be observed
due the memory hierarchies and remote accesses in
parallel machines. For the same reason, a superlin-
ear absolute speedup is possible too. s,..; is used to
demonstrate how good a certain algorithm can be
parallelized. But note, that a slow and efficient al-
gorithm often can be executed in parallel with large
Srel * Sabs appears in many cases to be quite low, es-
pecially for a large number of processors, limited
memory in a node processor and a lot of interpro-
cessor communication.

As application of these ideas, first let’s estimate the
running time of the serial trapezoidal rule. Let the
endpoints (a and b), and the number of trapezoids
(n), and then computes a running sum: it computes
the area of the ith trapezoidal and adds it into the
sum of the areas of previous i-1 trapezoids. The
heart of the program is

h=(b-a)/n;
integral=(f(a)+f(b))/2.0;
x=a;
for(i = 1; i<= n-1; i++){
X = x + h;
integral = integral + f(x);

}

integral = integralxh;

The execution time on a single processor displayed
in table [I| belong to 7 value calculation where
fl)=4/(1+2?);a=0and b= 1.

Now estimate the runtime of the parallel trape-

[n(0°) | 1 10 50 100 |
[Timeins [0.0224 0.224 1.123 2.245 |

Table 1: Execution time for a on a single processor
RISC R10000

zoidal rule. Once again, we include the part of our
parallel program that corresponds to the serial pro-
gram analyzed before.

h=(b-a) /n;

local_n=n/p;

local_a = a + my_rank*local_nx*h;

local_b local_a + local_nxh;

/* Call the serial trapezoidal functionx/
integral = Trap(local_a,local_b,local_n,h);

Crigin 2000 Speedup

Sequential Time/ Parallel Time
- %) w IS
—~ tn M W ;v = in
5
ES
ES

o
in

(=]

o
.
wh
=
n
®

Processors

Figure 3: Speedup for parallel trapezoidal rule using
50 % 10° trapezoids

5 Conclusions

In this paper we presented basic benchmark exper-
iments for Origin 2000 with 8 processors. This
benchmarks are executed successful in the batch
system. In the ping-pong experiment we find that
interchange of message size at order 107 take ap-
proximately 0.7 seconds, i. e. the message passing
system is faster that the other parallel machines. In
the bandwidth experiment the transference rate is
powerful at order 107 bytes per seconds. In other
hand we studied theoretically and practically the
speedup; in order to find the speedup we used the
parallel trapezoid rule for quantify the scalability.
We used 10° trapezoids for 7 calculation. We found
that the speedup using MPI and BSP are linear.
These results can be change from one machine to
another one.

Elio Lozano

6 References

References

[J4J92]

[Lau9g]

[Pac9T7]

[Sai96)

[Sny95]

[Val90]

J. JaJ4. An Introduction to Parallel Algo-
rithms. Addison Wesley, 1992.

D. Lenoski J. Laudon. The origin 2000:
A ccnuma highly scalable server. Silicon
Graphics. Inc, 1998.

Peter Pacheco. Parallel Programming with
MPI. Editorial Morgan Kauffman, 1997.

D. Bailey S. Saini. Hot chips for high per-
formance computing. In Supercomputing
Tutorials, 1996.

L. Snyder. Experimental validation of
models of parallel computation. J. Van
Leuwen, editor, Computer Science Today.
Springer LNCS 1000, 1995.

V. Valiant. A bridging model for paral-
lel computation. Communications of the
ACM, 1990.

	Introduction
	Machine Description
	Experiments
	Speedup and Efficiency
	Conclusions
	References

