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Abstract 

This paper implements a parallel multidimensional 
crystallographic FFT of prime edge-length, and reports 
its run times on a cluster of eight SMPs.  

1. Introduction 

The present works implements the Parallel prime edge-
length Crystallographic FFT (PCFFT).  This 
implementation is organized in four phases (Figure 1).  
The first and last are computation phase which are 
implemented using Fastest Fourier Transform in the 
West (FFTW).  The second phase develops the 
Hadamard product and it uses bit permutation to 
rearrange data.  The third phase develops a hypercube 
communication based on Karnaugh map using 
Message Passing Interface (MPI). 

This article is organized as follows:  Section 2 provides 
a detailed description of PCFFT and implementation 
phases of PCFFT.  Section 3 summarizes the results of 
the experiment of PCFFT for hypercube model and for 
MPI collective communication.  

2. Background 

The core computations of PCFFT are represented in 

[Seguel02b] asU .  The vector U is composed by Q-

point segments denoted sa IaU ∈, .  This is 
represented by   Equation 1 from [Seguel02b].  We 
assume that the processors are power of two that 
divides Л.  We denote the ratio by P/Λ=ρ .  We 
decompose V in P processor groups of size Qρ and 

denote the set of indices of the i-th group by iP .  Thus, 
processor i receives the collection of input vector 

segments 
b
V  with iPb∈ .  A pre-computed array of size 

QΛ  contains the diagonal entries of ( )( )
ba

H
,

∆ , it is 

stored in the processor i.  This array is denoted by
b
D .  

For a Q-point vector Y, we define YD
b
⋅  as the 

Hadamard product of the vector formed by 
concatenating Λ copies of Y and

b
D .   
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Using these conventions, the PCFFT is represented by 
the Figure 1, where the computation set is represented by 
the FFTW phase (phase 1) that is denoted as 

aQa
VFY 1−= , Hadamard product (phase 2) that is 

denoted as 
aaa
YDZ ⋅= , and a sub-phase inside of 

communication phase that is denoted as 

∑ ∈
=

iPa ai ZX .  The previous phases do not require 

inter-processor communication. 

In the communication phase, for each processor peer 
(i,j), the processor i sends the upper segment of Xi to 
processor j, and processor j sends the lower segment of 
Xj (Figure 2).  Then the processor i adds the lower 
segment of Xj with its lower segment Xi and stores the 
result in a new half size vector Xi ; while processor j adds 
the upper segment of Xi with its upper segment of Xj and 
stores the result in a new half size vector Xj. 

At the end of the communication phase, the core 
computation is completed by performing 

)(1 i
aQa
XFU −=  for each iPa∈  (Phase 4). 
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Figure 1.  PCFFT structure for 8 processes.

The parallel communication of PCFFT is implemented 
by our hypercube topology; this topology performs the 
communication in  Plog  steps (Figure 3).  Also, the 
parallel prime edge-length symmetric FFT introduced 
in “A new Prime Edge Length Crystallographic FFT” 
[Seguel02] involves O(n2) communications.  By using a 
hypercube method, we have managed to reduce the 
communication to O(n). 

Where the problem size is given by pNM .= ; p is the 
number of processes and N is the number of elements 
in the Vector V.  The number of communication 
stages in the butterfly structure is given by plog , and 
each processes transfers the half of information on 
each stage (Figure 2).  Based on these characteristics, 
we conclude that the communications with the 
hypercube method in the parallel Prime Edge Length 
Crystalographic FFT are less than Np (Equation 3). 
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The hypercube method is conformed by two strategies: 
First, hypercube communication which is implemented 

by MPI; and second, data rearrangement which uses bit 
reversal permutation.  

First strategy, the hypercube method bases on Karnaugh 
map [Karnaugh53] for selects the process peers (Figure 
3).  This method selects the processes whose id changes 
from one to another in a bit. 

Second strategy, bit reversal permutation rearranges the 
data to reduce the communications and auxiliary buffers 
(Figure 2).   

The parallel program developed in this research 
implements the Equation 1.  The Equation 2 is a matrix 
notation representation of Equation 1.  In the Equation 
2, the expression )( p

NV  defines a column vector V with N 
elements belonging at the process p.  The notation 

)( p
NpD defines a column vector D with N*p elements 

belonging at the process p.  ][kB  is the bit reversal 
permutation.  And )( p

NpZ  is the Hadamard product of D 
and V belonging at the process p with N*p elements.  To 
simplify the equation, the size of the vector Z depends on 
number of processes, and the size of the vectors V are 
homogenous in every processes.  Each process has a 
different vector V and D created randomly.  



[ ] )()()( ]][[ p
N

p
Np

p
Np VkBDkX ⋅=  Equation 2 

In the hypercube method, the Hadamard product is 
executed before the communications, which it is the 
product of a bit-reversal permutation of D with V.  
The bit-reversal permutation rearranges the data 
(Figure 2) to allow process communicates data without 
jumps or auxiliary buffers.  That information is storages 
in Z. 

As soon as it is storages, each process sends the half of 
Z vector to its peer process.  Depend on specified flag, 
the process sends the upper half or the lower half of 
the Z vector.  When the information is received by peer 
entity, the peer process sums it with the its half section 
that was not send and storages in X.  

The process pairs for each communication epoch are 
identified by its rank binary number, from Less 
Significant Bit (LSB) to the Most Significant Bit (MSB).  
That means, the LSB identifies the process peers of the 
first communication epoch, the second bit identifies 
the process peers of the second epoch, and so on 
(Figure 3).  

)5(
0Z

)5(
4Z

)5(
2Z

)5(
1Z

)5(
5Z

)5(
7Z

)5(
6Z

)5(
3Z

)0(
0Z

)0(
4Z

)0(
5Z

)0(
1Z

)0(
3Z

)0(
2Z

)0(
7Z

)0(
6Z

)1(
0Z

)1(
4Z

)1(
2Z

)1(
1Z

)1(
5Z

)1(
7Z

)1(
6Z

)1(
3Z

)2(
0Z

)2(
4Z

)2(
5Z

)2(
1Z

)2(
3Z

)2(
2Z

)2(
7Z

)2(
6Z

)3(
0Z

)3(
4Z

)3(
2Z

)3(
1Z

)3(
5Z

)3(
7Z

)3(
6Z

)3(
3Z

)4(
0Z

)4(
4Z

)4(
5Z

)4(
1Z

)4(
3Z

)4(
2Z

)4(
7Z

)4(
6Z

)6(
0Z

)6(
4Z

)6(
5Z

)6(
1Z

)6(
3Z

)6(
2Z

)6(
7Z

)6(
6Z

)7(
0Z

)7(
4Z

)7(
2Z

)7(
1Z

)7(
5Z

)7(
7Z

)7(
6Z

)7(
3Z

Send Send Send
Send

Send Send Send Send

P0 P6 P5P4P3P2 P1 P7

)5(
1Z

)5(
5Z

)5(
7Z

)5(
3Z

)0(
0Z

)0(
4Z

)0(
2Z

)0(
6Z

)1(
1Z

)1(
5Z

)1(
7Z

)1(
3Z

)2(
0Z

)2(
4Z

)2(
2Z

)2(
6Z

)3(
1Z

)3(
5Z

)3(
7Z

)3(
3Z

)4(
0Z

)4(
4Z

)4(
2Z

)4(
6Z

)6(
0Z

)6(
4Z

)6(
2Z

)6(
6Z

)7(
1Z

)7(
5Z

)7(
7Z

)7(
3Z

Send

Send

Send

Send

Send

Send

Send

Send

P0 P6P5P4 P3P2P1 P7

)5(
1Z

)5(
5Z

)0(
0Z

)0(
4Z

)1(
1Z

)1(
5Z

)2(
2Z

)2(
6Z

)3(
7Z

)3(
3Z)4(

0Z
)4(

4Z

)6(
2Z

)6(
6Z

)7(
7Z

)7(
3Z

Send

Send

Send

Send

Send

Send

Send

Send

)5(
5X

)0(
0X

)1(
1X

)2(
2X

)3(
3X

)4(
4X

)6(
6X

)7(
7X

P0 P6P5P4 P3P2P1 P7

P0 P6P5P4P3P2P1 P7

Communication strategy 
- Spatial locality in communication

4
Np

8
Np

2
Np

Figure 2.  Communication Strategy, spatial locality in 
communication, using butterfly and bit-reversal models. 

3. Results and conclusions 

The programs were executed in a cluster of 8 SMPs. 
The SMPs are conformed by Pentium III 650 MHz 
dual, Cache 256 KB, RAM 256 MB.  The nodes and 
server are interconnected by a switch CentreCOM 
FS716 with 16 ports.  The software used on these tests 
are OSCAR 1.2.1, LAM 6.5.6. 
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Figure 3.  Structure of a hypercube of 8 processes with its 
Karnaugh map. 

The program was evaluated for problem sizes from 12167 
(Λ=24, Q=263) to 30080231 (Λ=312, 48359) elements, 
and processes from 2 to 8, such as of them are in the 
Table 1.  The parallel program was executed with the 
following line:  “mpirun –np p filename Λ Q –

nolocal”, where p is the number of processes, filename 
is the name of the parallel program to be executed, Λ is 
the number of segments of the problem, and Q is the 
number of elements of each segment, and nolocal is a 
conditional flag which executes the program out of the 
server node.  The execution time is taken at the beginning 
and at the final of the programs. 
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Figure 4.  Execution times of PCFFT (hypercube method), 

PCFFT (MPI_Reduce_scatter) for 2, 4, 8 processors, Λ=200. 

We compare the PCFFT program implemented with our 
hypercube method with the PCFFT program 
implemented with MPI collective communications 
(MPI_Reduce_scatter).  Part of the information is in the 
Table 1. 
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Figure 5.  Execution times of PCFFT (hypercube method), 
PCFFT (MPI_Reduce_scatter) for 2, 4, 8 processors, Λ=312. 

In many cases the PCFFTW with our hypercube 
method is faster than PCFFTW with MPI collective 
communication (Figure 4, Figure 5, Table 1).  This 
difference increases when the problem size increases.  

Table 1.  Execution times of PCFFT (hypercube method), 
PCFFT (MPI Native function). 

Λ Q P Hypercube MPI_Collective 

  2 8.379 8.692 

200 19799 4 4.700 4.909 

  8 3.018 3.572 

  2 9.306 9.386 

224 24863 4 5.360 5.546 

  8 3.572 4.223 

  2 14.840 14.742 

240 28559 4 8.183 8.385 

  8 5.184 5.924 

  2 44.403 39.043 

264 34583 4 17.332 17.757 

  8 10.336 10.939 

  2 42.715 29.612 

272 36719 4 8.767 9.526 

  8 5.803 6.762 

  2 141.870 150.935 

312 48359 4 89.265 90.565 

  8 77.259 85.756 

The implementation of PCFFT with our hypercube 
method allows us to overlap computation and 
communication using additional MPI functions.  In 
future work, we will study the computation and 
communication overlapping and evaluates the program 
in a cluster of 64 dual SMPs. 
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