
An Efficient Implementation of the Parallel Prime Edge-
length Crystallographic FFT

Daniel Alberto Burbano
Advisor: Jaime Seguel

Electrical and Computer Engineering Department

University of Puerto Rico, Mayaguez Campus
Mayagüez, Puerto Rico

dburbano@ece.uprm.edu

Abstract

This paper implements a parallel multidimensional
crystallographic FFT of prime edge-length, and reports
its run times on a cluster of eight SMPs.

1. Introduction

The present works implements the Parallel prime edge-
length Crystallographic FFT (PCFFT). This
implementation is organized in four phases (Figure 1).
The first and last are computation phase which are
implemented using Fastest Fourier Transform in the
West (FFTW). The second phase develops the
Hadamard product and it uses bit permutation to
rearrange data. The third phase develops a hypercube
communication based on Karnaugh map using
Message Passing Interface (MPI).

This article is organized as follows: Section 2 provides
a detailed description of PCFFT and implementation
phases of PCFFT. Section 3 summarizes the results of
the experiment of PCFFT for hypercube model and for
MPI collective communication.

2. Background

The core computations of PCFFT are represented in

[Seguel02b] asU . The vector U is composed by Q-

point segments denoted sa IaU ∈, . This is
represented by Equation 1 from [Seguel02b]. We
assume that the processors are power of two that
divides Л. We denote the ratio by P/Λ=ρ . We
decompose V in P processor groups of size Qρ and

denote the set of indices of the i-th group by iP . Thus,
processor i receives the collection of input vector

segments
b
V with iPb∈ . A pre-computed array of size

QΛ contains the diagonal entries of ()()
ba

H
,

∆ , it is

stored in the processor i. This array is denoted by
b
D .

For a Q-point vector Y, we define YD
b
⋅ as the

Hadamard product of the vector formed by
concatenating Λ copies of Y and

b
D .

()()











∆= ∑

∗∈

−−

sIb
bQbaQa VFHFU 1

,
1 Equation 1

Using these conventions, the PCFFT is represented by
the Figure 1, where the computation set is represented by
the FFTW phase (phase 1) that is denoted as

aQa
VFY 1−= , Hadamard product (phase 2) that is

denoted as
aaa
YDZ ⋅= , and a sub-phase inside of

communication phase that is denoted as

∑ ∈
=

iPa ai ZX . The previous phases do not require

inter-processor communication.

In the communication phase, for each processor peer
(i,j), the processor i sends the upper segment of Xi to
processor j, and processor j sends the lower segment of
Xj (Figure 2). Then the processor i adds the lower
segment of Xj with its lower segment Xi and stores the
result in a new half size vector Xi ; while processor j adds
the upper segment of Xi with its upper segment of Xj and
stores the result in a new half size vector Xj.

At the end of the communication phase, the core
computation is completed by performing

)(1 i
aQa
XFU −= for each iPa∈ (Phase 4).

P0 P6P5P4P3P2P1 P7

)0(
0D

)0(
1D

)0(
5D

)0(
4D

)0(
6D

)0(
2D

)0(
7D

)0(
3D

)1(
0D

)1(
1D

)1(
2D

)1(
4D

)1(
5D

)1(
7D

)1(
3D

)1(
6D

)3(
0D

)3(
1D

)3(
2D

)3(
4D

)3(
5D

)3(
7D

)3(
3D

)3(
6D

)7(
0D

)7(
1D

)7(
2D

)7(
4D

)7(
5D

)7(
7D

)7(
3D

)7(
6D

)2(
0D

)2(
1D

)2(
5D

)2(
4D

)2(
6D

)2(
2D

)2(
7D

)2(
3D

)4(
0D

)4(
1D

)4(
5D

)4(
4D

)4(
6D

)4(
2D

)4(
7D

)4(
3D

)6(
0D

)6(
1D

)6(
5D

)6(
4D

)6(
6D

)6(
2D

)6(
7D

)6(
3D

)1(Y)3(Y)5(Y)7(Y)0(Y)2(Y)4(Y)6(Y

[])()()(]][[p
N

p
Np

p
Np YkBDkX ⋅=

)5(
0D

)5(
1D

)5(
2D

)5(
4D

)5(
5D

)5(
7D

)5(
3D

)5(
6D

)5(
0Z

)5(
4Z

)5(
2Z

)5(
1Z

)5(
5Z

)5(
7Z

)5(
6Z

)5(
3Z

)0(
0Z

)0(
4Z

)0(
5Z

)0(
1Z

)0(
3Z

)0(
2Z

)0(
7Z

)0(
6Z

)1(
0Z

)1(
4Z

)1(
2Z

)1(
1Z

)1(
5Z

)1(
7Z

)1(
6Z

)1(
3Z

)2(
0Z

)2(
4Z

)2(
5Z

)2(
1Z

)2(
3Z

)2(
2Z

)2(
7Z

)2(
6Z

)3(
0Z

)3(
4Z

)3(
2Z

)3(
1Z

)3(
5Z

)3(
7Z

)3(
6Z

)3(
3Z

)4(
0Z

)4(
4Z

)4(
5Z

)4(
1Z

)4(
3Z

)4(
2Z

)4(
7Z

)4(
6Z

)6(
0Z

)6(
4Z

)6(
5Z

)6(
1Z

)6(
3Z

)6(
2Z

)6(
7Z

)6(
6Z

)7(
0Z

)7(
4Z

)7(
2Z

)7(
1Z

)7(
5Z

)7(
7Z

)7(
6Z

)7(
3Z

)1(V)3(V)5(V)7(V)0(V)2(V)4(V)6(V

1. FFTW PHASE “ Forward”

3. COMMUNICATION PHASE “Hypercube Method”

)5(
5X

)0(
0X)1(

1X
)2(

2X
)3(

3X)4(
4X

)6(
6X

)7(
7X

P0 P6P5P4 P3P2P1 P7

4. FFTW PHASE “Forward”

2. HADAMARD PRODUCT PHASE “Bit Reversal Permutation”

)5(
5U

)0(
0U)1(

1U
)2(

2U
)3(

3U)4(
4U

)6(
6U

)7(
7U

P0 P6P5P4 P3P2P1 P7

Figure 1. PCFFT structure for 8 processes.

The parallel communication of PCFFT is implemented
by our hypercube topology; this topology performs the
communication in Plog steps (Figure 3). Also, the
parallel prime edge-length symmetric FFT introduced
in “A new Prime Edge Length Crystallographic FFT”
[Seguel02] involves O(n2) communications. By using a
hypercube method, we have managed to reduce the
communication to O(n).

Where the problem size is given by pNM .= ; p is the
number of processes and N is the number of elements
in the Vector V. The number of communication
stages in the butterfly structure is given by plog , and
each processes transfers the half of information on
each stage (Figure 2). Based on these characteristics,
we conclude that the communications with the
hypercube method in the parallel Prime Edge Length
Crystalographic FFT are less than Np (Equation 3).

NpNpNpNp
p

p

i

p

i
ii ≤






 −==∑ ∑

= =
log

log

1

log

1 2
11

2
1

2
 Equation 3

The hypercube method is conformed by two strategies:
First, hypercube communication which is implemented

by MPI; and second, data rearrangement which uses bit
reversal permutation.

First strategy, the hypercube method bases on Karnaugh
map [Karnaugh53] for selects the process peers (Figure
3). This method selects the processes whose id changes
from one to another in a bit.

Second strategy, bit reversal permutation rearranges the
data to reduce the communications and auxiliary buffers
(Figure 2).

The parallel program developed in this research
implements the Equation 1. The Equation 2 is a matrix
notation representation of Equation 1. In the Equation
2, the expression)(p

NV defines a column vector V with N
elements belonging at the process p. The notation

)(p
NpD defines a column vector D with N*p elements

belonging at the process p.][kB is the bit reversal
permutation. And)(p

NpZ is the Hadamard product of D
and V belonging at the process p with N*p elements. To
simplify the equation, the size of the vector Z depends on
number of processes, and the size of the vectors V are
homogenous in every processes. Each process has a
different vector V and D created randomly.

[])()()(]][[p
N

p
Np

p
Np VkBDkX ⋅= Equation 2

In the hypercube method, the Hadamard product is
executed before the communications, which it is the
product of a bit-reversal permutation of D with V.
The bit-reversal permutation rearranges the data
(Figure 2) to allow process communicates data without
jumps or auxiliary buffers. That information is storages
in Z.

As soon as it is storages, each process sends the half of
Z vector to its peer process. Depend on specified flag,
the process sends the upper half or the lower half of
the Z vector. When the information is received by peer
entity, the peer process sums it with the its half section
that was not send and storages in X.

The process pairs for each communication epoch are
identified by its rank binary number, from Less
Significant Bit (LSB) to the Most Significant Bit (MSB).
That means, the LSB identifies the process peers of the
first communication epoch, the second bit identifies
the process peers of the second epoch, and so on
(Figure 3).

)5(
0Z

)5(
4Z

)5(
2Z

)5(
1Z

)5(
5Z

)5(
7Z

)5(
6Z

)5(
3Z

)0(
0Z

)0(
4Z

)0(
5Z

)0(
1Z

)0(
3Z

)0(
2Z

)0(
7Z

)0(
6Z

)1(
0Z

)1(
4Z

)1(
2Z

)1(
1Z

)1(
5Z

)1(
7Z

)1(
6Z

)1(
3Z

)2(
0Z

)2(
4Z

)2(
5Z

)2(
1Z

)2(
3Z

)2(
2Z

)2(
7Z

)2(
6Z

)3(
0Z

)3(
4Z

)3(
2Z

)3(
1Z

)3(
5Z

)3(
7Z

)3(
6Z

)3(
3Z

)4(
0Z

)4(
4Z

)4(
5Z

)4(
1Z

)4(
3Z

)4(
2Z

)4(
7Z

)4(
6Z

)6(
0Z

)6(
4Z

)6(
5Z

)6(
1Z

)6(
3Z

)6(
2Z

)6(
7Z

)6(
6Z

)7(
0Z

)7(
4Z

)7(
2Z

)7(
1Z

)7(
5Z

)7(
7Z

)7(
6Z

)7(
3Z

Send Send Send
Send

Send Send Send Send

P0 P6 P5P4P3P2 P1 P7

)5(
1Z

)5(
5Z

)5(
7Z

)5(
3Z

)0(
0Z

)0(
4Z

)0(
2Z

)0(
6Z

)1(
1Z

)1(
5Z

)1(
7Z

)1(
3Z

)2(
0Z

)2(
4Z

)2(
2Z

)2(
6Z

)3(
1Z

)3(
5Z

)3(
7Z

)3(
3Z

)4(
0Z

)4(
4Z

)4(
2Z

)4(
6Z

)6(
0Z

)6(
4Z

)6(
2Z

)6(
6Z

)7(
1Z

)7(
5Z

)7(
7Z

)7(
3Z

Send

Send

Send

Send

Send

Send

Send

Send

P0 P6P5P4 P3P2P1 P7

)5(
1Z

)5(
5Z

)0(
0Z

)0(
4Z

)1(
1Z

)1(
5Z

)2(
2Z

)2(
6Z

)3(
7Z

)3(
3Z)4(

0Z
)4(

4Z

)6(
2Z

)6(
6Z

)7(
7Z

)7(
3Z

Send

Send

Send

Send

Send

Send

Send

Send

)5(
5X

)0(
0X

)1(
1X

)2(
2X

)3(
3X

)4(
4X

)6(
6X

)7(
7X

P0 P6P5P4 P3P2P1 P7

P0 P6P5P4P3P2P1 P7

Communication strategy
- Spatial locality in communication

4
Np

8
Np

2
Np

Figure 2. Communication Strategy, spatial locality in
communication, using butterfly and bit-reversal models.

3. Results and conclusions

The programs were executed in a cluster of 8 SMPs.
The SMPs are conformed by Pentium III 650 MHz
dual, Cache 256 KB, RAM 256 MB. The nodes and
server are interconnected by a switch CentreCOM
FS716 with 16 ports. The software used on these tests
are OSCAR 1.2.1, LAM 6.5.6.

Hypercube Diagram

0 1

2 3

4 5

6 7First Epoch

Se
co

nd
 E

po
ch

Se
co

nd
 E

po
ch

Se
co

nd
 E

po
ch

Third
 Epoch

First Epoch

First Epoch

Third
 Epoch

Third
 Epoc

h

Third
 Epoc

h

Se
co

nd

 E

po
ch

First Epoch

p6p7p5p4
1

p2p3p1p0
0

10110100
y z

x

Karnaugh Map

Figure 3. Structure of a hypercube of 8 processes with its
Karnaugh map.

The program was evaluated for problem sizes from 12167
(Λ=24, Q=263) to 30080231 (Λ=312, 48359) elements,
and processes from 2 to 8, such as of them are in the
Table 1. The parallel program was executed with the
following line: “mpirun –np p filename Λ Q –

nolocal”, where p is the number of processes, filename
is the name of the parallel program to be executed, Λ is
the number of segments of the problem, and Q is the
number of elements of each segment, and nolocal is a
conditional flag which executes the program out of the
server node. The execution time is taken at the beginning
and at the final of the programs.

Paralle Prime-length Crystallographic FFT (PCFFT)
Λ = 200, Q=19799

0.000 2.000 4.000 6.000 8.000 10.000

2

4

8

Pr
oc

es
so

rs

Time (s)

MPI_Colective
Hypercube

Figure 4. Execution times of PCFFT (hypercube method),

PCFFT (MPI_Reduce_scatter) for 2, 4, 8 processors, Λ=200.

We compare the PCFFT program implemented with our
hypercube method with the PCFFT program
implemented with MPI collective communications
(MPI_Reduce_scatter). Part of the information is in the
Table 1.

Paralle Prime-length Crystallographic FFT (PCFFT)
Λ = 312, Q=48359

0.000 20.000 40.000 60.000 80.000 100.000 120.000 140.000 160.000

2

4

8

Pr
oc

es
so

rs

Time (s)

MPI_Colective
Hypercube

Figure 5. Execution times of PCFFT (hypercube method),
PCFFT (MPI_Reduce_scatter) for 2, 4, 8 processors, Λ=312.

In many cases the PCFFTW with our hypercube
method is faster than PCFFTW with MPI collective
communication (Figure 4, Figure 5, Table 1). This
difference increases when the problem size increases.

Table 1. Execution times of PCFFT (hypercube method),
PCFFT (MPI Native function).

Λ Q P Hypercube MPI_Collective

 2 8.379 8.692

200 19799 4 4.700 4.909

 8 3.018 3.572

 2 9.306 9.386

224 24863 4 5.360 5.546

 8 3.572 4.223

 2 14.840 14.742

240 28559 4 8.183 8.385

 8 5.184 5.924

 2 44.403 39.043

264 34583 4 17.332 17.757

 8 10.336 10.939

 2 42.715 29.612

272 36719 4 8.767 9.526

 8 5.803 6.762

 2 141.870 150.935

312 48359 4 89.265 90.565

 8 77.259 85.756

The implementation of PCFFT with our hypercube
method allows us to overlap computation and
communication using additional MPI functions. In
future work, we will study the computation and
communication overlapping and evaluates the program
in a cluster of 64 dual SMPs.

4. References

[Foster95] Ian Foster, “Design and Building Parallel
Programs”, Addison-Wesley, 1995.

[Frigo98] M. Frigo and S. G. Johnson, "FFTW: An
Adaptive Software Architecture for the FFT", in
proceedings of the International Conference on
Acoustic Speech and Signal Processing, ICASSP
1998, vol. 3, pp. 1381-1384.

[Karnaugh53] Karnaugh, M, “A Map Method for
Synthesis of Combinational Logic Circuits” Trans.
AIEE, Comm. And Electronics, Vol. 72, Part I,
November 1953.

[NCSA02] National Computational Science Alliance,
“Introduction to MPI”,
http://foxtrot.ncsa.uiuc.edu:8900/webct/public/ho
me.pl, December 2002.

[Seguel02] Jaime Seguel, D. Bollman, and E. Orozco, “A
new prime Edge Length Crystallographic FFT”,
Lecture Notes of Computer Science, Vol. 2330, pp.
548-557, 2002.

[Seguel02b] Jaime Seguel and Daniel Burbano, “A
Parallel Prime Edge-length Crystallographic FFT”, in
proceedings of the International Conference on
Computational Science and Its Applications, ICCSA
2003, May 2003.

[Snir98] Marc Snir, Steve Otto, Steven Huss-Lederman,
David Walker, Jack Dongarra, “MPI –The Complete
Reference Volume 1, The MPI Core”, 1998.

