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Abstract

Support Vector Machines (SVMs) perform pattern
recognition between two points classes by finding
a decision surface determined by certain points the
training set, termed Support Vectors (SV).

1 Introduction

Support Vector Machine (SVMs) have been intro-
duced for Vapnik V.N. as a new technique for solving
pattern recognition problem [CV95], [SV97], [FF97],
[SS98], function estimation [VC71], times series anal-
ysis [KV97] and variance analysis [WW97]. The SVM
algorithm is a nonlinear generalization of the Gener-
alized Portrait algorithm developed in Russia in the
sixties [VL63], [VC64]. What makes SVMs attractive
is (a) the ability to condense the information con-
tained in the training set, and (b) the use of families
of decision surfaces of relatively low VC-dimension.

In the linear, separable case the key idea of a SVM
can be explained in plain words. Given a training
set S which contains points of either of two classes,
a SVM separates the classes through a hyperplane
determined by certain points of S, termed support
vectors. In the separable case, this hyperplane maxi-
mizes the margin, or twice the minimum the distance
of the either class from the hyperplane, and all sup-
port vectors lie at the same minimum distance from

the hyperplane (and are thus termed support mar-
gin).

2 Theorical Overview

In this section, we recall the basic of the theory of
SVM [CV95] in both the linear and nonlinear case.

2.1 Optimal separating hyperplane

In what follows we assume we are given a set S of
points xi ∈ Rn with i = 1, 2, ..., N . Each point xi

belongs to either of two classes and thus is given a
label yi ∈ −1, 1. The goal is to establish of a hy-
perplane that divides S leaving all the point of the
same class on the same side while maximizing the
minimum distance between either of the two classes
and the hyperplane. To this purpose we need some
preliminary definitions.

Definition 1 : The set S is linearly separable if there
exist w ∈ Rn and b ∈ R such that:

{w ·xi+b ≥ 1, if yi = 1w·xi+b ≤ 1, if yi = −1
(1)

In compact notation, the two inequalities (1) can
be rewritten:

yi(w · xi + b) ≥ 1, i = 1, . . . , l (2)
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The pair (w, b) defines a hyperplane of equations:

w · x + b = 0 (3)

named separating hyperplane .If we denote with
‖w‖ the norm of w, the signed distance di of point xi

from the separating hyperplane (w, b) is given by:

di =
w · xi + b

‖w‖
(4)

Combining inequality (2) and equation (3), for all
xi ∈ S we have:

yidi ≥ 1/‖w‖ (5)

Therefore, 1/‖w‖ is the lower bound on the dis-
tance between the points xi and the separating hy-
perplane (w, b).

Definition 2 : Given a separating hyperplane (w, b)
for the linearly separable set S, the canonical repre-
sentation of the separating hyperplane is obtained by
rescaling the pair (w, b) into the pair (w′, b′) in such
a way that the distance of the closest point equals
1/‖w′‖.

In what follows we will assume that a separating
hyperplane is always given the canonical representa-
tion and thus write (w, b) instead of (w′, b′).

Definition 3 : Given a linearly separable set S, the
optimal separating hyperplane (OSH) is the separat-
ing hyperplane which maximizes the distance of the
closest point of S.

Since the distance of the closest point equals
1/‖w′‖, the OSH can be regarded as the solution of
the problem maximizing 1/‖w′‖ subject of constraint
(2), o:

Problem P1

Minimize 1
2w · w,

Subject yi(w · xi + b) ≥ 1, i = 1, 2, ..., N

If the pair (w, b) solve P1, then for at least one
xi ∈ S we have yi(w · xi + b) = 1. In particular,
the implies that the solution of P1 is always a sep-
arating hyperplane in the canonical representation.
Moreover, the parameter b enters in the constraints
but not in the function to be maximized

The quantity 2/‖w′‖, which measure the distance
between the two classes in the direction of w, is
named margen. Hence, the OSH can also be seen as a
separating hyperplane which maximizes the margin.

3 Linearly nonseparable case

If the set S is not linearly separable or one simply
ignore whether or not the set S is linearly separa-
ble, the problem of searching for an OSH is mean-
ingless. In this case, the previous analysis can be
generalized by introducing N nonnegative variables
ξ = (ξ1, ξ2, ..., ξN ) such that

yi(w · xi + b) ≥ 1− ξi (6)

for i = 1, 2, ..., N . If the point xi satisfies inequality
(2), the ξi are zero and (6) reduces to (2). Instead, if
the point xi does no satisfy inequality (2), the term
−ξi is added to the right hand side of (2) to obtain
inequality (6). The generalized OSH is then rearded
as the solution to:

Problem P2

Minimize 1
2w · w + C

∑
ξi

Subject yi(w · xi + b) ≥ 1− ξi ξ ≥ 0

The term C
∑

ξi, where the sum is for i = 1, ...N ,
can be thought of as some measure of the amount mis-
classification. Note that this term leads to a more ro-
bust solution , in the statistical sense, than the intu-
itively more appealing term C

∑
ξ2
i . In other words,

the term C
∑

ξi makes the OSH less sensitive to the
presence of outliers in the training set. The parame-
ter C can be regarded as a regularization parameter.
The OSH tends to maximize the minimum distance
1//‖w‖ for small C, and minimized the number of
misclassification points for large C. For intermediate
values of C the solution of problem P2 trade errors
for larger margin.

4 Nonlinear kernels

In most cases, linear separation in input space is a
too restrictive hypothesis to be of practical use. For-
tunately, the theory can be extended to nonlinear
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separating surfaces by mapping the input points into
feature points. If x ∈ Rn is a ponit, we let ϕ(x) be
the corresponding feature point with ϕ a mapping
from Rn to certain space Z. We denote with ϕi the
components of ϕ. Clearly, to an OSH in Z corre-
sponds a nonlinear separating surface in input space.
At first sight it might seem that this nonlinear sur-
face cannot be determined unless the mapping ϕ is
completely known. However, from the formulation of
problem P2 and the classification stage of equation
(6), sit follows that ϕ enters only in the dot product
between feature points in input, since

Dij = yiyjϕ(xi) · ϕ(xj) (7)

w̄ · ϕ(x) + b̄ =
∑

ᾱiyiϕ(xi) · ϕ(x) + b̄ (8)

If we find an expression for the dot product in feature
space which uses the points in input space only, that
is:

ϕ(xi) · ϕ(xj) = K(xi, xj) (9)

the full knowledge of ϕ is not necessary. The symmet-
ric function K is called kernel. The nonlinear sepa-
rating surface can be found as the solution of problem
P4 with Dij = yiyjK(xi, xj), while the classification
stage reduces to computing

sign(
∑

ᾱiyiK(xi, xj) + b̄) (10)

Therefore, the extension of the theory to the nonlin-
ear case is reduced to finding kernels with identify
certain families of decision surfaces and can be writ-
ten as in equation (9).

5 Experiments

We present the performances of the Support Vector
Machine and the best single classifiers in 12 database:
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