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Abstract 
 
This article describes the use of genetic algorithms as 
a training tool for morphological neural networks 
described by Ritter [Ritter96]. Morphological neural 
networks are a new type of neural networks that 
replace classical operations of multiplication and 
addition by addition and maximum or minimum 
operations. The method used to train the network 
only one possible implementation, other 
implementations can be used. 
 
1. Introduction 
 
Since a morphological neural network needs to be 
trained, various methods have been proposed to train it. 
One of them was the algorithm proposed by Ritter in 
his article [Ritter99] in addition to a hybrid method 
proposed by Lima [Lima01] who combines genetic 
algorithms with a gradient technique. 
 
This  paper describes one possible implementation of a 
genetic algorithm used to train a morphological neural 
network. The encoding of the solution into a 
chromosome, the crossover and mutation are explained 
and an example of a possible run is given. 
 
2. Genetic Algorithms  
 
Genetic algorithm [Fogel94] and [Fogel97] is an 
optimization technique based on Darwin’s theory about 
evolution. In order to use genetic algorithms the 
solution must be represented as a chromosome. The 
encoding of the solution into a chromosome is the most 
important step for the genetic algorithm, since different 
encoding can affect the performance of the system and 
the time needed reach the solution. A population of 
possible solutions represented by organisms is created, 
and then genetic operators such as crossover and 
mutation are applied to evolve the population in order 
to find the best solution.  

 
3. Morphological Neural Networks 
 
Morphological Neural Networks (MNN) are a new type 
of neural network described by Ritter [Ritter96], 
[Ritter98] and [Ritter99]. These types of neural 
networks replace the classical operations of 
multiplication and addition by addition and maximum 
or minimum operations. The maximum and minimum 
operations allow to perform a nonlinear operation 
before the application of the activation or transfer 
function. MNN utilize  algebraic lattice operations 
structure [Ritter96] known as semi -ring 

)',,,,( ++∧∨ℜ ∞± , different from traditional neural 
networks that are based on the algebraic structure 

known as ring (R,+,×). The operations ?  and ?  denote 
binary operations of minimum and maximum, 
respectively. The algebra of matrices over ∞±ℜ  
provides for an elegant way to express the total input 
effect on a morphological neural network layer. 
 

 
Figure 1. Example of a morphological perceptron. 

 
4. Evolving Training 
 
The usage of genetic algorithms as a learning tool for a 
morphological neural network was introduced by Lima 
[Lima01]. He used the evolving training to improve a 
gradient technique. 
 
The proposed algorithm identifies the weights for all 
the defined class in order to train a morphological 
neural network. In general the algorithm can train the 
network for two classes at the same time. In order to 
train the network for multiples classes the test patterns 
that do not belong to the class that is going to be trained 
must be regrouped into a temporary class. If a system 
with m classes is going to be trained, then the weights 
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for a class Ci  must be identified, where 0 < i < m, 
therefore a temporary class Ct must be used. The class 
Ct contains all the test patterns from all the classes 
without including the test patterns from class Ci. 
 
In a two dimensional space the training of the system 
could be visualized as the search for groups of patterns 
that can be enclosed by rectangular regions. The 
borders of these rectangular regions are the decision 
boundaries. 
 
4.1 Encoding of the Organism into a Chromosome 
 
The way the problem is encoded into the chromosome 
affects the performance of the system. There are 
different ways to encode a problem into a chromosome. 
The binary encoding is the most common way to 
encode the data into a chromosome. In this case the 
encoding used is order-based encoding. 
 
The chromosome is built of two parts: the first part is 
built by the index of each test pattern that belongs to the 
class Ci and the second part contains the way these test 
patterns are grouped. Assuming the class Ci contains n 
test patterns, then the chromosome has n+1 entries. 
Each of the first n entries contains a unique value 
between 0 and n-1 that represent a particular test 
pattern. The values for the entries can not be repeated. 
 
For example, given the class C0 = {p0 = (-2,4),  p1 = 
(1,4),  p2 = (2,4), p3 = (2,5), p4 = (-1,2), p5 = (-2,1), p6 = 
(-1,1)}, C1 = {p7 = (0,1), p8 = (0,2), p9 = (0, 3)}, y C2 = 
{p10 = (1,2), p11 = (2,2),  p12 = (3,2), p13 = (3,3)}. In the 
fist iteration, le t s  Ci be equal to the class C0. The 
remaining test patterns from the classes C1 y C2 have to 
be regrouped into the temporary class Ct = {(0,1), (0,2), 
(0, 3), (1,2), (2,2),  (3,2), (3,3)}. The index of each of 
the test patterns from the class Ci is placed on the first n 
entries of the chromosome.  
 
Figure 1 shows an example of a chromosome generated 
randomly. The indexes of the test patterns from the 
class Ci are encoded within the chromosome in the first 
n entries and the order was randomly selected. At the 
end of the chromosome a value d is randomly 
generated. The meaning of d is discussed in the next 
paragraph. See Figure 2. 

 
Figure 2. Randomly generated values encoded into the chromosome 

 
The way the groups are established is specified in the 
second part of the chromosome. At the end of the 
chromosome a binary number of n-1 bits, where n is the 
number of test patterns contained in the class Ct, known 

as d, where d(j) represent the bit at the position n-j. The 
value of d represents the subgroups in the class Ci. The 
test pattern in the entry k of the chromosome, where 0 ≤ 
k < n-1, is in the same groups as the test pattern in the 
entry k+1 if and only if d(k) = 0. In case d = 0, this 
means all the test patterns belongs to the same group. 
See figure 3. 

 

 
Figure 3. Representation of the second part of the chromosome. 

 
For each group of test patterns, a rectangular region that 
includes all the test patterns is defined. The lower left 
corner and the upper right corner of these rectangular 
regions represent the weights to be used in the 
configuration of the morphological neural network. In 
the case one of the dimensions is equal to zero then it 
must be expanded in a way that the region includes all 
test patterns of the group but without including any test 
pattern from the class Ct. 
 
4.2 Crossover 
 
The crossover between two organisms produces two 
new offspring that have characteristics from the two 
parents. After the organisms are evaluated two parents 
are selected randomly. The genetic information from 
one parent is combined to the genetic information from 
the other parent to create a child that has characteristics 
from both parents. 

 
Figure  4. Crossover of two organisms. 

 
This is a possible approach of the implementation of a 
crossover and it is based on the order-based crossover. 
Figure 4 shows the two parents before the crossover, 
parent p0 and p1 and the offspring o0 and o1. For the 
crossover used in this algorithm two indexes must be 
selected randomly, index c0 and index c1, where 0 ≤ c0 < 
n-1 and c0 < c1 ≤ n-1. In order to apply the crossover to 
the parent p0 over the parent p1 all the elements in the 
entries between c0 and c1 are reordered according the 
way they appear on parent p1. Finally the value of d0 is 
copied from parent p0 to offspring o0. This process 
produces offspring o0. In order to apply the crossover to 
the parent p1 over the parent p0 all the elements in the 
entries between c0 and c1 are reordered according the 
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way they appear on parent p0. Finally the value of d1 is 
copied from parent p1 to offspring o1. This process 
produces offspring o1. In this implementation of the 
crossover the groups do not change, they are copied 
from the parents to the offspring. 
 
4.3 Mutation of the Chromosome  
 
Mutation is the process where the genetic information 
of an organism is changed in order to add some 
diversity to the population, adding some characteristics 
that could improve for the population. 
 
The mutation used in the implementation of this 
algorithm is  random binary mutation and this mutation 
is applied only in the last part of the chromosome, that 
is, the part where the groups of test patterns are 
specified. Each one of the bits in the value d is  changed 
according to a probability of mutation pM. In the figure 
5 the original chromosome is on the left side, at the 
bottom is the binary representation of the d before the 
mutation. After the mutation is applied the d value has 
changed, resulting in a change of the subdivisions. 
 

 
Figure 5. Mutation of the genetic information of an organism  

 
The mutation in this example, see Figure 6, change how 
the groups of test patterns are composed. This is done 
by changing the number of groups or by adding 
elements to a group or removing it from a group. 
 

 
Figure  6. Test pattern’s groups before and after the mutation 

 
4.4 Fitness Function 
 
Each organism must be evaluated according to the 
characteristics it has. Only the organisms that have the 
desired characteristics can mate other organisms and 
transmit their own characteristics to the offspring. 
 
When an organism is evaluated, two factors are very 
important: the number of test patterns that classify 
incorrectly, known as K and the number of groups 
represented by L. To smaller number of patterns 
classified incorrectly, better it is the evaluation. To 
smaller number of groups, better it is the evaluation. 
The fitness function is defined as follow: f = (K+1)2*L. 
 

4.5 Selection of the Parents 
 
Not all the organisms in the population are the able to 
transmit their characteristics to the new generation. A 
selection process is used to allow organisms who have 
higher fitness to transmit their characteristics with 
higher probability than the ones who have a lower 
fitness. 
 
The selection process used in this genetic algorithm was 
roulette wheel selection. In the roulette wheel selection 
the probability an organism is selected to mate another 
organism is equal to the fitness of the organism divided 
by the total fitness all the organisms. 
 
5. Example 
 
Let define given the class C0 = {(-1,4), (1,4), (1,3), 
(0,4)}, C1 = {(-1,3), (0,2), (0,3),  (-2,4)}, C2 = {(1,2), 
(2,2), (2,3), (2,4)}. See figure 7. Let’s use the notation 
Ci(n) is the test pattern of the class Ci at the index n. 
 

 
Figure 7. Test patterns for the example used in this section, where * 
represent class C0, x represents class C1 and # represents class C2. 

 
In the first iteration i=0 then Ci = C0 and Ct = {(-1,3), 
(0,2), (0,3), (-2,4), (1,2), (2,2), (2,3), (2,4)} 
The initial random population of chromosomes could 
be: 

CR0 = [3,1,2,0,0], CR1 = [0,1,3,2,6] 
CR2 = [1,3,0,2,3], CR3 = [2,0,3,1,7] 

First, the chromosomes must be evaluated using f = 
(K+1)2*L: 

f(CR0) = 9, f(CR1) = 8, f(CR2) = 18, f(CR3) = 4, 
Crossover and mutation: 
The crossover of the parent CR3 and CR1, with the 
index points c0 = 0, c1 = 2: 
                           crossover                      after mutation 

CR3 = [2,0,3,1,7] => O0 = [0,3,2,1,7] => O0 = [0,3,2,1,6] 
CR1 = [0,1,3,2,6] => O1 = [0,3,1,2,6] => O1 = [0,3,1,2,6] 

The crossover of the parent CR3 and CR0, with the 
index points c0 = 1, c1 = 2: 
                           crossover                      after mutation 

CR3 = [2,0,3,1,7] => O2 = [2,3,0,1,7] => O2 = [2,3,0,1,5] 
CR0 = [3,1,2,0,0] => O3 = [3,2,1,0,0] => O3 = [3,2,1,0,4] 

The final population is: 
CR0 = [0,3,2,1,6], CR1 = [0,3,1,2,6] 
CR2 = [2,3,0,1,5], CR3 = [3,2,1,0,4] 
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Figure 8. A possible final configuration that classify test point for the 

class C0 

 
The process is repeated until the best solution is found. 
In this case the best solution could be [0,3,1,2,1], but 
there are other possible solutions. This process usually 
converges in 5-6 generations for this number of test 
patterns.  
 
 

 
Figure 9. A possible configuration for the morphological neural 

network. 

 
In the second iteration i=1 and the class C1, is the class 
to be trained, then Ct = {(-1,4), (1,4), (1,3), (0,4), (1,2), 
(2,2), (2,3), (2,4)} and in the last iteration i=2 and the 
class C2 is the class to be trained, then Ct = {(-1,4), 
(1,4), (1,3), (0,4), (-1,3), (0,2), (0,3), (-2,4)}. The final 
result of the training could be similar to Figure 10. 
Figure 9 shows a possible configuration for the 
morphological neural network that classifies the 
system. Table 1 shows the meaning of the outputs O0, 
O1 and O2. 
 

O0 O1 O2  
0 0 0 none 
1 0 0 C0 
0 1 0 C1 
0 0 1 C2 

Table 1 .  Interpretation of the results from the outputs O0, O1 and O2 
of the network. 

 

 
Figure 10. A possible final result of the syst em. 

 
6. Conclusions 
 
This paper describes one implementation of the training 
method for a morphological neural network. There are 
many other implementations of the crossover and 
mutation operations that can be applied to this method. 
Also the solution can be encoded in another way. This 
method work well 
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