

Evolutionary Training of Morphological Neural Networks

Roberto C. Piñeiro Colón
Dr. Jorge L. Ortiz

Electrical and Computer Engineering Department

University of Puerto Rico, Mayagüez Campus
Mayagüez, Puerto Rico 00681
roberto.pineiro@ece.uprm.edu

jortiz@ece.uprm.edu

Abstract

This article describes the use of genetic algorithms as
a training tool for morphological neural networks
described by Ritter [Ritter96]. Morphological neural
networks are a new type of neural networks that
replace classical operations of multiplication and
addition by addition and maximum or minimum
operations. The method used to train the network
only one possible implementation, other
implementations can be used.

1. Introduction

Since a morphological neural network needs to be
trained, various methods have been proposed to train it.
One of them was the algorithm proposed by Ritter in
his article [Ritter99] in addition to a hybrid method
proposed by Lima [Lima01] who combines genetic
algorithms with a gradient technique.

This paper describes one possible implementation of a
genetic algorithm used to train a morphological neural
network. The encoding of the solution into a
chromosome, the crossover and mutation are explained
and an example of a possible run is given.

2. Genetic Algorithms

Genetic algorithm [Fogel94] and [Fogel97] is an
optimization technique based on Darwin’s theory about
evolution. In order to use genetic algorithms the
solution must be represented as a chromosome. The
encoding of the solution into a chromosome is the most
important step for the genetic algorithm, since different
encoding can affect the performance of the system and
the time needed reach the solution. A population of
possible solutions represented by organisms is created,
and then genetic operators such as crossover and
mutation are applied to evolve the population in order
to find the best solution.

3. Morphological Neural Networks

Morphological Neural Networks (MNN) are a new type
of neural network described by Ritter [Ritter96],
[Ritter98] and [Ritter99]. These types of neural
networks replace the classical operations of
multiplication and addition by addition and maximum
or minimum operations. The maximum and minimum
operations allow to perform a nonlinear operation
before the application of the activation or transfer
function. MNN utilize algebraic lattice operations
structure [Ritter96] known as semi -ring

)',,,,(++∧∨ℜ ∞± , different from traditional neural
networks that are based on the algebraic structure

known as ring (R,+,×). The operations ? and ? denote
binary operations of minimum and maximum,
respectively. The algebra of matrices over ∞±ℜ
provides for an elegant way to express the total input
effect on a morphological neural network layer.

Figure 1. Example of a morphological perceptron.

4. Evolving Training

The usage of genetic algorithms as a learning tool for a
morphological neural network was introduced by Lima
[Lima01]. He used the evolving training to improve a
gradient technique.

The proposed algorithm identifies the weights for all
the defined class in order to train a morphological
neural network. In general the algorithm can train the
network for two classes at the same time. In order to
train the network for multiples classes the test patterns
that do not belong to the class that is going to be trained
must be regrouped into a temporary class. If a system
with m classes is going to be trained, then the weights

 x1

 x2
r2

r1
w1

w2

for a class Ci must be identified, where 0 < i < m,
therefore a temporary class Ct must be used. The class
Ct contains all the test patterns from all the classes
without including the test patterns from class Ci.

In a two dimensional space the training of the system
could be visualized as the search for groups of patterns
that can be enclosed by rectangular regions. The
borders of these rectangular regions are the decision
boundaries.

4.1 Encoding of the Organism into a Chromosome

The way the problem is encoded into the chromosome
affects the performance of the system. There are
different ways to encode a problem into a chromosome.
The binary encoding is the most common way to
encode the data into a chromosome. In this case the
encoding used is order-based encoding.

The chromosome is built of two parts: the first part is
built by the index of each test pattern that belongs to the
class Ci and the second part contains the way these test
patterns are grouped. Assuming the class Ci contains n
test patterns, then the chromosome has n+1 entries.
Each of the first n entries contains a unique value
between 0 and n-1 that represent a particular test
pattern. The values for the entries can not be repeated.

For example, given the class C0 = {p0 = (-2,4), p1 =
(1,4), p2 = (2,4), p3 = (2,5), p4 = (-1,2), p5 = (-2,1), p6 =
(-1,1)}, C1 = {p7 = (0,1), p8 = (0,2), p9 = (0, 3)}, y C2 =
{p10 = (1,2), p11 = (2,2), p12 = (3,2), p13 = (3,3)}. In the
fist iteration, le t s Ci be equal to the class C0. The
remaining test patterns from the classes C1 y C2 have to
be regrouped into the temporary class Ct = {(0,1), (0,2),
(0, 3), (1,2), (2,2), (3,2), (3,3)}. The index of each of
the test patterns from the class Ci is placed on the first n
entries of the chromosome.

Figure 1 shows an example of a chromosome generated
randomly. The indexes of the test patterns from the
class Ci are encoded within the chromosome in the first
n entries and the order was randomly selected. At the
end of the chromosome a value d is randomly
generated. The meaning of d is discussed in the next
paragraph. See Figure 2.

Figure 2. Randomly generated values encoded into the chromosome

The way the groups are established is specified in the
second part of the chromosome. At the end of the
chromosome a binary number of n-1 bits, where n is the
number of test patterns contained in the class Ct, known

as d, where d(j) represent the bit at the position n-j. The
value of d represents the subgroups in the class Ci. The
test pattern in the entry k of the chromosome, where 0 ≤
k < n-1, is in the same groups as the test pattern in the
entry k+1 if and only if d(k) = 0. In case d = 0, this
means all the test patterns belongs to the same group.
See figure 3.

Figure 3. Representation of the second part of the chromosome.

For each group of test patterns, a rectangular region that
includes all the test patterns is defined. The lower left
corner and the upper right corner of these rectangular
regions represent the weights to be used in the
configuration of the morphological neural network. In
the case one of the dimensions is equal to zero then it
must be expanded in a way that the region includes all
test patterns of the group but without including any test
pattern from the class Ct.

4.2 Crossover

The crossover between two organisms produces two
new offspring that have characteristics from the two
parents. After the organisms are evaluated two parents
are selected randomly. The genetic information from
one parent is combined to the genetic information from
the other parent to create a child that has characteristics
from both parents.

Figure 4. Crossover of two organisms.

This is a possible approach of the implementation of a
crossover and it is based on the order-based crossover.
Figure 4 shows the two parents before the crossover,
parent p0 and p1 and the offspring o0 and o1. For the
crossover used in this algorithm two indexes must be
selected randomly, index c0 and index c1, where 0 ≤ c0 <
n-1 and c0 < c1 ≤ n-1. In order to apply the crossover to
the parent p0 over the parent p1 all the elements in the
entries between c0 and c1 are reordered according the
way they appear on parent p1. Finally the value of d0 is
copied from parent p0 to offspring o0. This process
produces offspring o0. In order to apply the crossover to
the parent p1 over the parent p0 all the elements in the
entries between c0 and c1 are reordered according the

 c0 c1 3 2 6 1 5 4 0

5 1 0 4 2 3 6 2 1 5 4 0 3 6

5 1 2 3 6 4 0

parent p0

parent p1

offspring o0

offspring o1

c
r
o
s
s
o
v
e
r

0 1 2 3 4 5 6 7

d1

d0 d0

d1

 3 2 6 1 5 4 0 36
100100

 0 1 2 3 4 5 6 7

 1 0 0 1 0 0 d

3 2 6 1 5 4 0

 d(0) d(1) d(2) d(3) d(4) d(5)

d

(2,5) (2,4) (-1,1) (1,4) (-2,1) (-1,2) (-2,4)

 0 1 2 3 4 5 6 7

3 2 6 1 5 4 0

 0 1 2 3 4 5 6 7

9

dd

3 2 6 1 5 4 0

9

way they appear on parent p0. Finally the value of d1 is
copied from parent p1 to offspring o1. This process
produces offspring o1. In this implementation of the
crossover the groups do not change, they are copied
from the parents to the offspring.

4.3 Mutation of the Chromosome

Mutation is the process where the genetic information
of an organism is changed in order to add some
diversity to the population, adding some characteristics
that could improve for the population.

The mutation used in the implementation of this
algorithm is random binary mutation and this mutation
is applied only in the last part of the chromosome, that
is, the part where the groups of test patterns are
specified. Each one of the bits in the value d is changed
according to a probability of mutation pM. In the figure
5 the original chromosome is on the left side, at the
bottom is the binary representation of the d before the
mutation. After the mutation is applied the d value has
changed, resulting in a change of the subdivisions.

Figure 5. Mutation of the genetic information of an organism

The mutation in this example, see Figure 6, change how
the groups of test patterns are composed. This is done
by changing the number of groups or by adding
elements to a group or removing it from a group.

Figure 6. Test pattern’s groups before and after the mutation

4.4 Fitness Function

Each organism must be evaluated according to the
characteristics it has. Only the organisms that have the
desired characteristics can mate other organisms and
transmit their own characteristics to the offspring.

When an organism is evaluated, two factors are very
important: the number of test patterns that classify
incorrectly, known as K and the number of groups
represented by L. To smaller number of patterns
classified incorrectly, better it is the evaluation. To
smaller number of groups, better it is the evaluation.
The fitness function is defined as follow: f = (K+1)2*L.

4.5 Selection of the Parents

Not all the organisms in the population are the able to
transmit their characteristics to the new generation. A
selection process is used to allow organisms who have
higher fitness to transmit their characteristics with
higher probability than the ones who have a lower
fitness.

The selection process used in this genetic algorithm was
roulette wheel selection. In the roulette wheel selection
the probability an organism is selected to mate another
organism is equal to the fitness of the organism divided
by the total fitness all the organisms.

5. Example

Let define given the class C0 = {(-1,4), (1,4), (1,3),
(0,4)}, C1 = {(-1,3), (0,2), (0,3), (-2,4)}, C2 = {(1,2),
(2,2), (2,3), (2,4)}. See figure 7. Let’s use the notation
Ci(n) is the test pattern of the class Ci at the index n.

Figure 7. Test patterns for the example used in this section, where *
represent class C0, x represents class C1 and # represents class C2.

In the first iteration i=0 then Ci = C0 and Ct = {(-1,3),
(0,2), (0,3), (-2,4), (1,2), (2,2), (2,3), (2,4)}
The initial random population of chromosomes could
be:

CR0 = [3,1,2,0,0], CR1 = [0,1,3,2,6]
CR2 = [1,3,0,2,3], CR3 = [2,0,3,1,7]

First, the chromosomes must be evaluated using f =
(K+1)2*L:

f(CR0) = 9, f(CR1) = 8, f(CR2) = 18, f(CR3) = 4,
Crossover and mutation:
The crossover of the parent CR3 and CR1, with the
index points c0 = 0, c1 = 2:
 crossover after mutation

CR3 = [2,0,3,1,7] => O0 = [0,3,2,1,7] => O0 = [0,3,2,1,6]
CR1 = [0,1,3,2,6] => O1 = [0,3,1,2,6] => O1 = [0,3,1,2,6]

The crossover of the parent CR3 and CR0, with the
index points c0 = 1, c1 = 2:
 crossover after mutation

CR3 = [2,0,3,1,7] => O2 = [2,3,0,1,7] => O2 = [2,3,0,1,5]
CR0 = [3,1,2,0,0] => O3 = [3,2,1,0,0] => O3 = [3,2,1,0,4]

The final population is:
CR0 = [0,3,2,1,6], CR1 = [0,3,1,2,6]
CR2 = [2,3,0,1,5], CR3 = [3,2,1,0,4]

3 1 2 6 5 4 0

1 0 0 1 0 0

3 1 2 6 5 4 0

0 0 1 0 1 1

 36

 d(0) d(1) d(2) d(3) d(4) d(5)

d d

 11

4
6 5

4

0
3

1 2 0 1 2
3

*
* * *

x

x

x

x # #

6 5

Figure 8. A possible final configuration that classify test point for the

class C0

The process is repeated until the best solution is found.
In this case the best solution could be [0,3,1,2,1], but
there are other possible solutions. This process usually
converges in 5-6 generations for this number of test
patterns.

Figure 9. A possible configuration for the morphological neural

network.

In the second iteration i=1 and the class C1, is the class
to be trained, then Ct = {(-1,4), (1,4), (1,3), (0,4), (1,2),
(2,2), (2,3), (2,4)} and in the last iteration i=2 and the
class C2 is the class to be trained, then Ct = {(-1,4),
(1,4), (1,3), (0,4), (-1,3), (0,2), (0,3), (-2,4)}. The final
result of the training could be similar to Figure 10.
Figure 9 shows a possible configuration for the
morphological neural network that classifies the
system. Table 1 shows the meaning of the outputs O0,
O1 and O2.

O0 O1 O2
0 0 0 none
1 0 0 C0
0 1 0 C1
0 0 1 C2

Table 1 . Interpretation of the results from the outputs O0, O1 and O2
of the network.

Figure 10. A possible final result of the syst em.

6. Conclusions

This paper describes one implementation of the training
method for a morphological neural network. There are
many other implementations of the crossover and
mutation operations that can be applied to this method.
Also the solution can be encoded in another way. This
method work well

7. References

[Fogel94] Fogel, D.B., “An introduction to simulated

evolutionary optimization” Neural Networks,
IEEE Transactions on, Volume: 5 Issue: 1,
Jan. 1994 Page(s): 3-14

[Fogel97] Fogel, D.B. “Evolutionary Computation: A
New Transactions” Evolutionary Computation,
IEEE Transactions on, Volume: 1 Issue: 1,
April 1997 Page(s): 1-2

[Lima01] Lima, C.A.M., Coelho, A.L.V., Silva, M.E.S.,
Gudwin, R.R. and Von Zuben, F.J.: Hybrid
Training of Morphological Neural Networks:
A Comparative Study, Procs. of National
Meeting of Artificial Intelligence (ENIA),
Congress of Brazilian Computing Society

*
* * *

x

x

x

x # #

*
* * *

x

x

x

x # #

 X1

 X2

 X3

 X4

 X5

 X6

 X7

 X8

-

-

+

+

-

-

+

+

4.5

-1.5

3.5

1.5

 X9

X10

X11

X12

X13

X14

X15

X16

-

-

+

+

-

-

+

+

4.5

-2.5

3.5

0.5

3.5

0.5

2.5

-1.5

3.5

-1.5

1.5

0

0

0

0

0

0

0

0

0

0

0

0

X17

X18

X19

X20

X21

X22

X23

X24

-

-

+

+

-

-

+

+

4.5

1.5

2.5

2.5

2.5

2.5

0.5

1.5

0

0

0

0

0

0

+

+

O0
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

O1

O2

+

1.5

(SBC), pp. 1499-1507, Fortaleza, Brazil, July-
August 2001

[Ritter96] Ritter, G.X.; Sussner, P. “An introduction to
morphological neural networks”, Pattern
Recognition, 1996. Proceedings of the 13th
International Conference on, Volume: 3, 1996
Page(s): 709 - 717 vol.4

[Ritter98] Ritter, G.X.; Beaver, T.W. “Morphological
perceptrons” Neural Networks, 1999. IJCNN
'99. International Joint Conference on,
Volume: 1, 1999, Page(s): 605-610 vol.1

[Ritter99] Ritter, G., Beavers, T.W. “An introduction to
morphological perceptrons”, ANNIE ’99
Proceedings of the, Nov. 1999, Page(s): 1-6

[Sussner98] Sussner, P. “Morphological perceptron
learning” Intelligent Control (ISIC), 1998.
Held jointly with IEEE International
Symposium on Computational Intelligence in
Robotics and Automation (CIRA), Intelligent
Systems and Semiotics (ISAS), Proceedings of
the 1998 IEEE International Symposium on,
1998 Page(s): 477-482

[GA] – The Genetic Algorithm Optimization Toolbox
(GAOT) for Matlab 5, North Carolina State
University.

