
Instruction Level Power Profile for the PowerPC
Microprocessor

Oscar Acevedo Patiño

Advisor: Dr. Manuel Jimenez

Electrical and Computer Engineering Department
University of Puerto Rico, Mayagüez Campus

Mayagüez, Puerto Rico 00681-5000
oscara@ece.uprm.edu

Abstract

Power consumption is an important aspect in the
design of modern embedded systems. The embedded
system hardware and software should be evaluated in
term of power metrics to verify if a design meets its
specified power constraints. An instruction level power
profile will help to determine the program power
consumption and what consideration should be done
for power reduction. This paper presents the
methodology adopted to generate the instruction power
profile for the PowerPC 603e microprocessor, which
will be used to generate software techniques to reduce
power consumption.

1. Introduction

Power reduction is a requirement in the design of
modern applications principally to improve portable
equipment autonomy and circuits efficiency.

Microprocessor power reduction can be achieved by
low-power circuitry design (low level), and using
optimized software compilation techniques (high
level). Each instruction program activates specific
parts of the microprocessor, which generates different
power consumption based on the instruction type and
the amount of instructions executed. Therefore, good
instruction management can achieve power reduction.
This is the premise for the software power reduction
techniques.

To generate software techniques for power reduction, it
is necessary a tool that estimates the microprocessor
power consumption based on the program-executed
instructions. This tool requires a power profile, where a
power consumption value is assigned to each
microprocessor instruction.

Two main methods have been reported to generate the
instruction power profile. The first method, proposed
by Tiwari et al. [Tiwari94], directly measures the
current drawn by the processor as it repeatedly
executes each instruction. The second method is based
on a simulation of the microprocessor under test. The
effect of the instruction set execution (power
consumption) is then measured from the simulation
model [Tiwari94]. A drawback of this method is that
detailed information of the CPU circuitry must be
available to do the simulation.

The Instruction power profile is a methodology used to
generate average power consumption values for each
instruction of a given microprocessor. It is a one-time
process and requires a special test bench to generate
the results. This paper presents the methodology
adopted to generate the instruction power profile for
the PowerPC 603e microprocessor, which is the first
step to generate software power reduction techniques
for this microprocessor.

2. Experimental Methodology

2.1 Background

The basic idea of generating the instruction power
profile is to measure the current drawn by the
microprocessor when it executes a specific instruction.
Current measurement is enough to determine the
power consumption since it is directly related to power
by the equation:

P = Vcc * Imicro (1)

where Vcc is the supply voltage (constant), and I is the
current drawn by the microprocessor (measured). The
instruction execution time is too short for a direct
current measurement; therefore, it is necessary several
instances of the instruction under test enclosed in a

loop to assure an accurate current measurement
[Tiwari94].

2.2 Test Bench

The test bench is composed by the hardware and the
equipment required to generate the instruction power
profile. It includes a test board with the microprocessor
under test, power supplies, an ammeter and a computer
for the ammeter readings. Figure 1 shows a basic
schematic for the test bench.

RAM PORTS
COMPUTER

Data Adquisition

DIGITAL
AMMETER

POWER
SUPPLY

CPU

Figure 1. Test Bench Schematic

To realize the measurement, a standard ammeter was
used which, includes an RS232 protocol for remote
control and reading, which is used for data acquisition
with a computer and a control program. The hardware
includes the microprocessor under test and its support
devices (memory, controllers, ports, etc.).

2.3 Test Program

The test program is code downloaded to the
microprocessor under test that assures the execution of
a unique instruction for current measurement. The
algorithm used for the test program includes a random
argument selection for each instruction, and a loop for
the instruction under test [Russel98]. Several instances
of the same instruction enclosed in a loop generate a
stable signal to be read by the current meter.
Furthermore, it assures each pipeline stage executes the
same instruction, obtaining a current measurement
only by the processing of the instruction under test
[Tiwari94]. Unfortunately, some instructions require a
variation in the test program in order to generate
variation in their arguments. Figure 2 presents the
general algorithm for the test program [Sridhar97]
[Chakrabarti99].

The test program should be the only one executed by
the microprocessor. This is because other instructions
may introduce deviations for the power consumption,
introducing errors in the measurements.

Generate
Random
Values

Upload
Random
Values

Activate
Start Loop
Indicator

100 x
Instruction
under test

Loop
finished?

Deactivate
Start Loop
Indicator

Figure 2. General Test program Algorithm

2.4 Profiling Algorithm

An application program executes different instruction
combinations to generate a specific result. This
instruction mixture generates conditions that change
the microprocessor current consumption. These
conditions, as the cache miss, stall, switching activity,
etc. should be measured in order to generate an
accurate power prediction [Tiwari95].

To determine the amount of current generated by these
states, three different tests are required: The first was
described in the section 2.3, generates the current base
cost; the current consumed by the execution of a
specific instruction. The second test combines two
different instructions in order to measure the current
variation due to the execution of different instructions.
This test is known as overhead state, and it is based on
which states was the microprocessor before the
instruction execution. The third test generates cache
misses, stalls and other states to measure the current
variation caused by these microprocessor states
[Tiwari95].

The final result is an average current base for each
instruction, a current offset for each pair of instructions

and a current offset for the different microprocessor
states described before. The sum of each component
generates the average current value for each
microprocessor instruction. Only average current
values are used due to real data and address can be
known only at run-time.

2.5 Software Calculator

The software calculator group the results obtained by
the different test program. This information is used to
analyze a given program in order to determine its
power consumption.

3. Results

This section presents current measurem ent tests done
to some integer arithmetic instructions. The results
presented here correspond to the current base cost,
which is the first test to determine the current
consumption without considering other effects.

Table 1 presents the current variation versus the
register value variation. Based on the measurements, a
linear relation is observed between the amount of ones
in the registers rA & rB and the microprocessor
current consumption. Table 2 presents the equation
generated (based on information in Table 1), and the
maximum error obtained.

Table 1. Current consumption (mA) per argument

The results presented in Table 2 show a similar
equation form for the instructions presented. The error
generated is lower than 1%, which indicated that
presume a linear variation is a good choice for the
current variati on.

 Table 2. Equation generated for current consumption

(mA) versus amount of “ones” (B).

Table 3 presents the variation in current consumption
when the registers used in the instruction are changed.
The results observed indicate that when the registers
used are different, the current consumption is
approximately constant, but when the same register is
used as argument and destination, the current
consumption tends to grow. However, the current
variation is not considerable except for the ADD
instruction, where the variation is large r than 5%.

Table 3. Average current consumption (mA) per

register variation

Table 4 present the error obtained when the average
value in table 3 is taken as reference value for different
measurements. The variation is short, therefore, to
assume these values as average is a good choice.

Table 4. Maximum e rror presented by register
variation

4. Future Work

The first step is to generate the instruction power
profile for the complete PowerPC instruction set. Once
this step is finished, a power calculator will be created
in order to estimate the power consumption of a given
program without physical measurement.

The information obtained will be used to generate
software power reduction techniques, which will be
applied to a compiler, in order to generate optimized
programs for the PowerPC microprocessor.

5. Summary

The power consumption is an important constrain in
the microprocessor system design. The Instruction
Power Profile is a tool that enables to generate power
measurements for the application programs and will
give “clues” to optimize the programs done for the
PowerPC microprocessor, in order to reduce the its
power consumption.

 Amount of “ones”
Instruction 0 32 64

AND rD,rA,rB 746.5 715.6 684.2
XOR rD,rA,rB 750.7 719.0 686.5
OR rD,rA,rB 715.4 719.1 688.6

ADD rD,rA,rB 815.0 782.0 749.0
SUBF rD,rA,rB 747.4 718.7 683.2

Instruction Equation Error
(%)

AND rD,rA,rB I=-0.97344*B+746.5 0.08

XOR rD,rA,rB I=-1.003*B+750.7
0.14

OR rD,rA,rB I=-0.98125*B + 751.4
0.12

ADD rD,rA,rB I=-1.0312*B+815 0.2

SUBF rD,rA,rB I=-1.003*B+747.4 0.4

Instruction rD?rA?rB rD=rA?rB rD=rA=rB
AND rD,rA,rB 697.6 707.5 711.0
XOR rD,rA,rB 702.6 790.7 749.6
OR rD,rA,rB 701.5 711.7 715.0

ADD rD,rA,rB 758.1 857.6 800
SUBF rD,rA,rB 696.1 728.5 746.4

Instruction rD?rA?rB rD=rA?rB rD=rA=rB
AND rD,rA,rB <2% <2% <2%
XOR rD,rA,rB <2% <2% <2%
OR rD,rA,rB <2% <2% <2%

ADD rD,rA,rB <2% <2% <2%
SUBF rD,rA,rB <2% <2% <2%

References

[Chakrabarti99] Chakrabarti, C.; Gaiton de, D.

“Instruction level power model of
microcontrollers”. . Proceedings of the 1999 IEEE
International Symposium on Circuits and Systems,
ISCAS '99. Volume: 1 , Page(s): 76 -79 vol.1

[Russel98] Russell, J.T.; Jacome, M.F. “Software

power estimation and optimization for high
performance, 32-bit embedded processors”.
Proceedings, 1998 International Conference on
Computer Design: VLSI in Computers and
Processors. ICCD '98. Page(s): 328 –333

[Sridhar97] Sridhar, R.; Schindler, K. “Instruction

level power model and its application to general
purpose processors”. Conference Record of the
Thirty-First Asilomar Conference on Signals,
Systems & Computers, 1997., Volume: 1. Page(s):
753 –756.

[Tiwari94] Tiwari, V.; Malik, S.; Wolfe, A , "

Power analysis of embedded software: a first step
towards software power minimization ," Very Large
Scale Integration (VLSI) Systems, IEEE
Transactions on , Volume: 2 Issue: 4 , Dec. 1994
Page(s): 437 –445.

[Tiwari95], V.; Tien -Chien Lee, M. “Power analysis of

a 32-bit embedded microcontroller”. Proceedings of
the IFIP ASP-DAC '95/CHDL '95/VLSI. Asian and
South Pacific Design Automation Conference,
1995. Page(s): 141 –148.

