Behavioral Analysisof Cilk Multithreading Programs
Running on Multiprocessor Computer Systems

Ivan A. David
Advisor: Jaime Seguel

Electrical and Computer Engineering Department
University of Puerto Rico, Mayaguez Campus
Mayaguez, Puerto Rico 00681-9042
ivan.david@ece.uprm.edu

Abstract

This paper describes the study about behavior of
multithreading ~ programming running over
multiprocessor computer systems and extraction of
data during multithreaded program executions for
posterior anaysis. The programming language
selected for implementation of agorithms and
study of work stealing scheduling method was
Cilk, where we expect to obtain rough data about

Collecting timing dtatistics and measuring
speedups is often insufficient for understanding
the right meaning of these results. This is because

in a sequentia program, we know the sequence of
events, whereas in a parallel program, not only is
the precise sequence of events unknown to us, but
it changes from one run to the next. In most cases,
we have some expectation of the rough sequence
of events, the overall "behavior" of the program.
However, in the paralel case it is very difficult to

multithreaded computations, perform data analysis
and finally obtained information from program
execution must be represented graphically in a
post mortem fashion to ease the programmer to
visudlize partialy how the written code is

processed.

1. Introduction

In programming languages and software

deduce from readily available Statistics whether
the program actualy behaved according to our
eXpectaions or not. A typical Situation 1S one in
speedups should occur, kut execution times (easy

g
is often not at all clear what to do next. [Foster et
a. 9g]

This study will need both research and

development it is very important to know the
behavior of codes during execution. This appears
to be essential for many software engineering
activities including program dlicing, testing,
debugging, reverse engineering and maintenance.
[Zhao99]

Parallel programming (in al languages, not just
logic languages) is till a highly experimenta
science jn which the design of both user and
system programs is undergoing Smultaneous
study. System implementors tune systems in
response to experimental data from users.
Furthermore, users try to understand the effects of
implementor’s decisions as well as the effects of
variations in the pardld agorithms being
executed by their programs. [Foster et al. 98]

rmplementation work:—The Tesearch wittbe into
the nature of useful multithreaded parallel program
behavior based on POSIX Threads, and
implementation to design and establish
mechanisms for incorporating application specific
events visuaization methods. We have observed

statistical reports from Cilk after running programs

and the expected amount of threads mismatch
from live execution.

reported by Cilk statlslcal opti ons, corr&spond to
programmer expected modd and its behavior
during execution. We have that enough new
information will be generated offering alternative
ways to understand and decide over pardld
programs implementations.

— Dele

Dele

2. The Cilk Language

algorithmic design that only focuses on work and
critica path. [Frigo 99].

‘Cikisan algorithmic multithreaded language. The
philosophy behind Cilk is that a programmer
should concentrate on structuring his/her program
to expose paralelism and exploit locality leaving
the runtime system with the responsbility of
scheduling the computation to run efficiently on a
given platform. Cilk’s runtime system takes care
of details such as load baancing and

2.1 Efficient parallelization for ANSI C

Cilk’s language support makes it easy to express
operations on shared memory. The user can
declare shared pointers and can operate on these
pointers with normal C operations, such as pointer
arithmetic and dereferencing. The type-checking __{Dele

communication protocols. Unlike other
multithreaded languages, Cilk is agorithmic in

preprocessor automatically generates code to
perform these operations. The user can aso __{Dele

that the runtime system’s scheduler guarantees

declare shared arrays which are dlocaied and

propably efficient and predictable performance. dedlocated automaticaly by the system. As an Dele
[Leiserson97] optimization, alSo provide register shared pointers, /@
. which are a version of shared pointers that are L
The basic Cilk language is extremely smple. It LForn

consists of C with the addition of three new
keywords to indicate pardldisn and
synchronization. A Cilk program when run on one
processor has the same semantics as the C
program that results when the Cilk keywords are
deleted. In addition, the Cilk system extends serial
C semantics in a naturd way for pardléd
execution. For example C's stack memory is
implemented as a “cactus’ stack in Cilk. [Cilk
5.3.2 Reference Manudl|

optimized for accesses to the same page.
[Bluemofe et a. 96]

2.2 Multithreading model

Cilk use a fully strict model for multithreaded
computations, which is an adaptation of theorems
of Brent and Graham on Directed Acyclic Graph
(DAG) scheduling. A multithreaded computation
is composed of a set of threads, each of which isa
sequentiad ordering of unit-time tasks. The tasks of
athread must execute in this sequential order from

Cilk is a smple extension of the C language with
fork/join parallelism. Portability of Cilk programs
derives from the observation, based on “Brent’s
theorem”, that any Cilk computation can be
characterized by two quantities. its work T1,
which is the total time needed to execute the
computation on one processor, and its critical- path
length T¥, which is the execution time of the
computation on a computer with an infinite
number of processors and a perfect scheduler
(imagine God's compuiter).

the first (Ieftmost) task to the last (rightmost) task.
In order to execute a thread, we dlocate for it a
chunk of memory, called activation frame, that the
tasks of the thread can use to store the values on
which they compute. [Blumofe et al. 94]

2.3 The Cilk runtime

The Cilk runtime system implements a gfficient
scheduling policy based on randomized work-
stealing. During the execution of a Cilk program,
when a processor runs out of work, it asks another __— Forn

Work “and critical-path are properties of the
computation jtself, and they do not depend on the

processor chosen a random for work to do.
Localy, a processor executes procedures in ___—{ Dele

number of processors executing the computation.
In previous work, Blumofe and Leiserson designed
a Cilk’s “work-stealing” scheduler and proved that
it executes a Cilk program on P processorsin time
Tp, where

T,£T,/P+O(T,)

ordinary serial order (just like C programs),
exploring the spawn tree in a depth-first manner.
When a child procedure is spawned, the processor
saves local variables of the parent on the bottom of
a stack and commences work on the child. (Here,
we use the convention that the stack grows
downward, and that items are pushed and popped

This equation suggests‘ both an efficient
implementation strategy for Cilk and an

from the "bottom™ of the stack.) When the child
returns, the bottom of the stack is popped (just like

C) and the parent resumes. When another
processor requests work, however, work is stolen
from the top of the stack, which is, from the end
opposite to the one normally used by the worker.
[Cilk 5.3.2 Reference Manual]

3. Scheduling Schema

An execution schedule for a multithreaded
computation determines which processor on a
parallel computer executes which tasks at each
step. An execution schedule depends on the
particular multithreaded computation and the
number of processors in the parallel computer. In
any given step of an execution schedule, each
processor executes at most one task. During the
course of its execution, a thread may create, or
spawn, other treads. Spawning a thread, where
spawned threads to be children of the thread that
did the spawning, and a thread can spawn as many
children as it desires. In this way, threads are
organized into an activation thread hierarchy
implemented over a Deque structure due to allow
insertion and extraction operations at top and
bottom of itself. [Blumofe 94]

3.1 Execution measur ements

Using the notion of parallelism, which is defined

as P=T/Ty The paaldism is the average
amount of work for every step along the critical

path. Whenever P << P that is, the actual number
of processors is much smaller than the parallelism
of the application, we have equivaently

thatTl/ P>> T¥. Thus, the modd predicts

thaIT > T/ P, and therefore the Cilk program is

predicted to run with admost perfect linear
speedup. The measures of work and critical- path
length provide an agorithmic basis for evaluating
the performance of Cilk programs over the entire
range of possible paralld machine sizes. [Cilk
5.3.2 Reference Manual|

3.2 Pthreadsimplementation

Threads are often called lightweight processes and
while this term is somewhat of an over
simplification, it is a good starting point. Threads

are cousins to UNIX processes though they are not
processes themselves. In UNIX, a process contains
both an executing program and a bundle of
resources such as the file descriptor table and
address space. Thus a thread is essentially a
program counter, a stack, and a set of registers; al
the other data structures belong to the task.
[Zdewski97]

4. General Project Steps

Considering implied compilation options by Cilk
language, to get statistical information gbout __{ Dele
program execution, taking care for wall clock
time, time elapsed, total work, total cumulative
work, critical path and pallelism, getting detailed __—{ Dele
information about each of obtained results. \@

Get intermediate real C |anguage code generated Dele
by the Cilk compiler during pre-compilation stage \@‘i'f
from Cilk user source code; this sequence of code \@
will be modified implementing a new layer where
new functions will be added to ease the generation
of events threads measurements. Acquired | Dele
information must be delivered to an automatic
mode to export data according execution real time

into a standardized format.

Design a graphical model where the user can to
visualize the program execution respects time,
threads and processors units involved during
process; thiswill be implemented into well known
graphica tool or developing a prototype graphical
tool.

4.1 I mplementation model

To get enough information about Cilk behavior we
have performed a dissection over the open source
Cilk Package; we observe that was not enough and
we have reoriented to intermediate C language
code generated during compilation of Cilk
programs.

We have developed a well structured framework
preserving the Unix/Linux file system style where
little applications can deliver specific information
about current hardware and operationa system
specifications and system variables. This

framework must be used by the usersto store their
own programs and get their executions results.

Using scripting languages like Bash, Kornshell

References

[Zhao99] Zhao, J. Multithreaded dependence

and Ruby we have done a set of scriptsto set some
needed system variables and separate the different
stages of Cilk programs compilations by means of
undocumented flags and options obtaining C files,
C files with libraries inclusions, Assembly code
files and object files, and finally executable files.

The intermediate C language source file includes a
massive number of declarations, data structures,
functions cals and numeroudly tags to be used by
Cilk runtime, we are currently studying what

Software Engineering for Paralel and
Distributed Systems, 1999. Proceedings.
International Symposium on, 1999. 13 -23

[Foster et a. 98] Foster, lan., Lusk, Ewing.,
Stevens, Rick. Performance Visualization (a
white paper) ~Mathematics and Computer Dele
Science Divison. Argonne National
L aboratory. 1998

means each of them.

5. Conclusions

The comprehension of kehavior of multithreading
programming appears as a very interesting topic at

Programming Parallel Applications in Cilk.
MIT Laboratory for Computer Science,
Cambridge, MA, USA. 1997.

[Cilk 5.3.2 Reference Manua] Cilk 5.3.2
Reference Manual. Supercomputing __—{ Dele

present, when multiprocessors systems and
clustering systems offers more flexibility and
expandability, the study of languages with

Technologies Group. MIT Laboratory for
Computer Science. November 2001
[onling]. Citing: The Cilk Language. __—{Dele

multithreading capabilities provides us a wide

Avalable from World Wide Weh: /,@

range for exploit efficiently the multiprocessing
and paralel programming.

After evaluating the Cilk package source code and

(http://supertech.lcs.mit.edu/cilk)

[Frigo 99] Frigo,Matteo. Portable High
Performance Programs,. Ph. D. Thesis, MIT ___{pele

studying detailed statistical results, the next step
has been to get specific execution measurements,

\\Ve have decided to implement as solution to this

Department of Electrical Engineering and Dele
Computer Science. June 1999. Dol

problem the modification of precompiled code
inserting specific function cals and appropriate
identifiers for every read or write access and
generate a log file taking care to cause a minimal
impact on the performance of program.

Getting multithreading events and their
interdependencies during execution respects the
time; offer us the opportunity of implementing a
visua component to display mechanism that
promotes reconstruction of the sequence of events
and an understanding of how it was caused by the
program specification bring out to a static or
dynamic graphica model; of course
implementation of such a program currently
involves decisons about graphics languages,
window systems and appropriate representation.

[Bluemofe et d. 96] Blumofe, R.D., Frigo, M. \(De'e
Joerg, C.F., Leiserson, C.E., Randall, K.H. Dele
DAG-consistent distributed shared memory.
Pardllel Processing Symposium, 1996.
Proceedings of IPPS '96, The 10th
International, 1996, 132 -141

[Blumofe et al. 94] Blumofe, R. D., Leiserson, C.
E. Scheduling multithreaded computations
by work stealing. Foundations of Computer
Science, 1994 Proceedings., 35th Annua
Symposium on , 1994

[Zalewski97] Zalewski, J. Pthreads Programming
[Book Review] JEEE Concurrency [seeaso __{ Dele
|IEEE Pardlel & Distributed Technology,
Volume: 5 Issue: 1, Jan.-March 199785-86 __{ Dele

