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Abstract 
 
This work deals with discrete cross-ambiguity function 
modeling and simulation for the study of characteristics 
of SAR point spread functions (PSF) and associated 
spatial unit cell resolution, when subjected to active 
microwave radiation for prescribed scientific and 
engineering applications such as synthetic aperture 
radar (SAR) systems . A model for Point Spread 
Function (PSF) simulation and SAR Raw Data 
generation is presented. This model is used to analyzes 
the characteristics of PSF, also known as point target 
response functions, in a time-frequency context, 
through the cross-ambiguity function computation, in 
order to contribute to the on going work on spatial cell 
resolution enhancements for fine resolution image 
formation operations. Simulations have been performed 
on a Symmetric Multiprocessor System (SMP) using 
computational methods. Recent results are presented of 
large-scale algorithms computations. The overall terrain 
surface reflectivity is study through multidimensional 
weighted correlation operations. 
 
  
1. Introduction 
 
This work is concentrated on the modeling and 
simulation of imaging radar systems. We give special 
attention to synthetic aperture radar (SAR) systems as 
opposed to real aperture imaging radar systems (RAR). 
The differences between these two imaging radar 
systems reside in their spatial resolution capability. The 
spatial resolution of any imaging radar system can be 
defined as its ability to resolve smallest distance 
between two or more point targets that are sufficiently 
separated so as allow individual data measurements 
among them. This important feature of the imaging 
radar systems is characterized by its point spread 
function (PSF) or impulse response function.  
 

 
One of the original contributions of this work is the 
modeling and simulation of ambiguity function as PSF 
of imaging radar systems. This work follows the 
theoretical formulations on imaging radar systems 
presented by R. Blahut on his work on remote 
surveillance algorithms [Blahut91]. According with 
these formulations, the expected output of an imaging 
radar system can be viewed as a two-dimensional 
convolution operation of the point reflectivity density 
function with the radar ambiguity function. For the 
particular case of SAR processing, we present a model 
for PSF simulations and SAR raw data generation (see 
Figure 1).   
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 1. SAR Raw Data Generation Model 
 
 
In this work, modeling is defined as a set of 
mathematical structures and equations designed to 
correspond to a physical system or entity based on a set 
of prescribed assumptions [Rodríguez02]. A system in 
general is defined as a set of elements and its 
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interrelationships. Simulation is defined here as the 
execution of a modeling system through computer 
programming [Rodriguez02]. Complex and large scale 
simulations require high performance computers.   
 
 
2. Theoretical Formulations  
 
As is established by R. Blahut in [Blahut91], an 
imaging radar system can be viewed as a device for 
forming a two-dimensional convolution of the 
reflectivity density function of an illuminated scene 
with the ambiguity function of the radar waveform. 
This filtering operation describes the output of the 
system preprocessor. The radar ambiguity function 
plays the role of the point spread function of the 
imaging radar system. 
 
2.1. Discrete Ambiguity Function (DAF)  
 
The discrete ambiguity function (DAF) defined in  this 
work can be viewed as a generalized signal 
autocorrelation tool to simultaneously estimate time 
delay and Doppler frequency offset parameters between 
a transmitted signal and its returned echo. This function 
accepts the transmitted and received signal as input and 
generates a two-dimensional surface, one dimension 
being time and the other frequency. This simultaneous 
parameters determination allows for a time -frequency 
representation of this tool.  These parameters can, in 
turn, be used to estimate, through basic algebraic 
transformations, range and cross-range (azimuth) 
parameters in a spatial object domain. The combined 
range and cross-range differentials or parameter 
increments determine a given unit resolution cell for a 
particular point in the spatial object domain. Fourier 
transform methods are normally used to study the 
properties of the associated spatial spectral domain.  
 
2.2. DAF Derivation 

 
Let )(tst  be the transmitted signal of a radar system 

given by: tfj
t

cetuts π2)()( −= , where )(tu is 

some modulating signal. After a time dτ , the signal 

arrives at the receiver. If the target was moving with 
respect to the antenna, the received signal will have a 
frequency shift df due to the Doppler effect. Then, a 

unit response can be modeled by the received signal as 
follows: ))((2)()( ddc tffj

dr etuts τπτ −−−−= . We can 

rewrite )(tsr
 as: 

 )(2)(2)()( dddc tfjtfj
dr eetuts τπτπτ −−−−=            (1) 

 

 
After the demodulation process, the received signal 
becomes: 

)(2)()( dd tfj
dr etuts τπτ −−=                           (2) 

 
Once the transmitted signal is sampled, its discrete-time 
representation can be expressed as: 

][][][ dd nnj
dr ennuns −−= ω                              (3) 

   
For a zero Doppler shift, we can obtain dn  by 

performing a correlation between ][nsr
 and the 

discrete-time version of the original modulating signal 
][nu . The index at which the magnitude of the 

correlation is a maximum is the discrete-time delay 

dn . This correlation is performed as follows:   
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We can rewrite the above expression as follows: 
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From this equation it can be noticed that the maximum 
correlation will occur when dnm = .  

If a Doppler shift is present the correlation between 

][nu  and ][nsr  becomes: 
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Since this new correlation results in a complex 
function, no guarantee can be made that the maximum 
magnitude will occur when 

dnm = . To resolve this 

problem we generate a new function to try to cancel out 
the effect of the exponential. The new function is: 
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Where the notation ),[ fmG is used to indicate that f 
is a continuous variable. The first complex exponential 
can be separated into two exponentials and (7) can be 
rewritten as: 

nffj

n
d
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We can notice that when 
dff = , the magnitude of 

),[ fmG  is maximum at dnm = . To determine the 

parameters df and dn , we only need to find the m and 

f  that make the magnitude of ),[ fmG  a maximum.  
For a length N sequence ][nu , the function 

),[ fmG then becomes: 
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Since f is a continuous variable, there is a problem in 

computing ),[ fmG and finding its maximum 
magnitude. To avoid this problem, the variable f is 
approximated by Nk / . Now the function becomes: 
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2.3. Discrete Ambiguity Function Definition 
 

 For a transmitted signal )(2
Nt Zls ∈  and a 

received signal )(2
Nr Zls ∈ , where }1...,2,1,0{ −= NZN

 

and )(2
NZl  is the Hilbert space of discrete complex 

signals of length ,N  the discrete finite cross-ambiguity 

function of ts  and rs  can be defined as the absolute 

value of the following expression: 
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Where 
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2.4. DFT Method for DAF Computation 
 
This method allows us to compute the cross-ambiguity 
function directly by means of the discrete Fourier 
transform (DFT), as follows: 
                      

NNrm Zmmnsn ∈>+<=  ];[][β                      (12)  
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Finally, the DAF can be computed by means of 
multiple one-dimensional Fourier transforms: 
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Figure 2 shows the algorithm to implement the DFT 
method for the ambiguity function computation.  
 

 

 

 

 

 

Figure 2.  DFT Method Algorithm for DAF 
Computation 

 
 

3. Modeling and Simulation Results  
 
To study the physical properties of a particular terrain 
we need a set of calibrated images of that terrain. These 
images are obtained from raw data through image 
formation algorithms (See Figure 3). The attributes of 
the PSF of a SAR system determine, to a great extent, 
the better quality of the image formation process. 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. SAR Image Formation Process  

 
Large scale algorithm implementations for point spread 
functions computation were implemented with Fortran 
and C codes and tested for several signals lengths in a 
Symmetric Multiprocessor (SMP) architecture 
composed of four UltraSPARC IITM processors running 
at 400 MHz each, with 4 MB of local, high-speed 
external cache memory, running the Solaris v. 8 
(UNIX) operating system. Serial implementations 
results are shown in Tables 1 and 2. Figure 4 shows run 
times of both implementations for comparison: 
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Table 1.  Timing Measurements of PSF 
Implementation in Fortran 

 
Signal 
Length 

Real Execution 
Time (sec) 

User 
Time (sec) 

System 
Time (sec) 

64 0.006 0.010 0.01 
128 0.006 0.100 0.010 
256 0.426 0.400 0.020 
512 1.458 1.350 0.090 
1024 5.906 5.410 0.420 
2048 22.402 20.230 1.850 
4096 92.220 82.870 7.650 

 
 
 

 
Table 2. Timing Measurements of PSF 

 Implementation in C language 
 

Signal 
Length 

Real Execution 
Time (sec) 

User 
Time (sec) 

System 
Time (sec) 

64 0.052 0.040 0.01 
128 0.134 0.110 0.010 
256 0.397 0.340 0.020 
512 1.354 1.190 0.090 
1024 5.144 4.500 0.420 
2048 20.993 16.720 1.850 
4096 101.481 65.220 7.650 
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Figure 4. Running Times Comparison 

 
 
Graphical representations of the results were obtained 
using Matlab. For a transmitted chirp (LFM) signal the 
ambiguity function surface is shown in Figure 5. We 
give special attention to the chirp signal and its fine 
resolution capability, giv ing rise to pulse compression 
techniques in a matched filter setting. For a transmitted 
rectangular pulse and cosine signals the ambiguity 
surface is depicted in Figure 6. 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 5.  PSF of a Linear Frequency   
Modulated (LFM) Signal 

 
 
 
 
 
 
 
 
 
 

 
Figure 6.  PSF of a Rectangular Pulse Signal (left) and 

Cosine signal (right) 
 
 
3. Conclusion 
 

A model for SAR raw data generation was presented, 
which we are using to study the characteristics of 
Point Spread Functions (PSF), in a time -frequency 
context, through the efficient computation of the 
discrete ambiguity function. A large scale algorithm 
for Point Spread Functions (PSF) computation using 
the DFT (Discrete Fourier Transform) method has 
been implemented in FORTRAN and C languages. 
Due to the nature of the large-scale computation 
involve in this type of modeling and simulation the 
PSF simulations have been performed in an advanced 
computer architecture based on symmetric 
multiprocessor system. Profiling and performance 
tuning tools were use to enhance the processing 
effort. Our continuing work will concentrate on 
developing more efficient algorithms for cross-
ambiguity function and parallel implementations. 

 
References 
 
[Rodríguez02] D. Rodríguez, “Computational Signal 

Processing and Sensor Array Signal Algebra. A 
Representation Development Approach”, first book 
draft, Sept. 2002. 

 
[Blahut91] R. E. Blahut, "Theory of Remote Surveillance  

Algorithms,” Radar and Sonar, Part I, Springer-Verlag, 
(New York, 1991). 

 


