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Abstract

This work deals with discrete cross-ambiguity function
modeling and simulation for the study of characteristics
of SAR point spread functions (PSF) and associated
spatial unit cell resolution, when subjected to active
microwave radiation for prescribed scientific and
engineering applications such as synthetic aperture
radar (SAR) systems. A model for Point Spread
Function (PSF) simulation and SAR Raw Data
generation is presented. This model is used to analyzes
the characteristics of PSF, also known as point target
response functions, in a time-frequency context,
through the cross-ambiguity function computation, in
order to contribute to the on going work on spatial cell
resolution enhancements for fine resolution image
formation operations. Simulations have been performed
on a Symmetric Multiprocessor System (SMP) using
computational methods. Recent results are presented of
large-scale algorithns computations. The overall terrain
surface reflectivity is study through multidimensional
weighted correlation operations.

1. Introduction

This work is concentrated on the modeling and
simulation of imaging radar systems. We give special
attention to synthetic aperture radar (SAR) systems as
opposed to real aperture imaging radar systems (RAR).
The differences between these two imaging radar
systems reside in their spatial resolution capability. The
spatial resolution of any imaging radar system can be
defined as its ability to resolve smallest distance
between two or more point targets that are sufficiently
separated so as allow individual data measurements
among them. This important feature of the imaging
radar systems is characterized by its point spread
function (PSF) or impulse response function.

One of the original contributions of this work is the
modeling and simulation of ambiguity function as PSF
of imaging radar systems. This work follows the
theoretical formulations on imaging radar systems
presented by R. Blahut on his work on remote
surveillance algorithms [Blahut91]. According with
these formulations, the expected output of an imaging
radar system can be viewed as a two-dimensional
convolution operation of the point reflectivity density
function with the radar ambiguity function. For the
particular case of SAR processing, we present a model
for PSF simulations and SAR raw data generation (see
Figure 1).
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Figure 1. SAR Raw Data Generation Model

In this work, modeling is defined as a set of
mathematical structures and equations designed to
correspond to a physical system or entity based on a set
of prescribed assumptions [Rodriguez02]. A system in
general is defined as a set of elements and its



interrelationships. Simulation is defined here as the
execution of a modeling system through computer
programming [Rodriguez02]. Complex and large scale
simulations require high performance computers.

2. Theoretical Formulations

As is established by R. Blahut in [Blahut9l], an
imaging radar system can be viewed as a device for
forming a two-dimensional convolution of the
reflectivity density function of an illuminated scene
with the ambiguity function of the radar waveform.
This filtering operation describes the output of the
system preprocessor. The radar ambiguity function
plays the role of the point spread function of the
imaging radar system.

2.1. Discrete Ambiguity Function (DAF)

The discrete ambiguity function (DAF) defined in this
work can be viewed as a generalized signa
autocorrelation tool to simultaneously estimate time
delay and Doppler frequency offset parameters between
atransmitted signal and its returned echo. This function
accepts the transmitted and received signal as input and
generates a two-dimensional surface, one dimension
being time and the other frequency. This simultaneous
parameters dcetermination allows for a time-freguency
representation of this tool. These parameters can, in
turn, be used to estimate, through basic algebraic
transformations, range and cross-range (azimuth)
parameters in a spatial object domain. The combined
range and cross-range differentials or parameter
increments determine a given unit resolution cell for a
particular point in the spatial object domain. Fourier
transform methods are normally used to study the
properties of the associated spatial spectral domain.

2.2. DAF Derivation

Let S (t) be the transmitted signal of a radar system
given by: s, (t) = u(t)e """ where u(t)is
some modulating signal. After atime t,, the signal

arrives at the receiver. If the target was moving with
respect to the antenna, the received signal will have a
frequency shift f, due to the Doppler effect. Then, a
unit response can be modeled by the received signal as
follows: s, (t) =u(t -t 4)e 1% ) we can
rewrite g (t) as:

Sr(t) =u(t- td)e-12pfc(t—td)eJ2pfd(t-td) (1)

After the demodulation process, the received signal
becomes:

s (1) =u(t-t,)e?Plts 2

Once the transmitted signal is sampled, its discrete-time
representation can be expressed as:

s,[n] =u[n- n, el 3

For a zero Doppler shift, we can obtain N, by
performing a correlation between s[n] and the
discrete-time version of the original modulating signal
u[n]. The index a which the magnitude of the
correlation is a maximum is the discrete-time delay
N, . This correlation is performed as follows:

clml = & uln]s, [n+m] (4

n=-

We can rewrite the above expression as follows:

C[m] = éu[n]u*[mm- n,] ©)
n=¥

From this equation it can be noticed that the maximum

correlation will occur when m=n, .

If a Doppler shift is present the correlation between

u[n] and S [N] becomes:

¥
Clm] = & u[nju[n+ m- n,Je 2Pl na] (6)
n=-¥

Since this new correlation results in a complex
function, no guarantee can be made that the maximum
magnitude will occur when m = n, . To resolve this

problem we generate a new function to try to cancel out
the effect of the exponential. The new functionis:

¥ . .
G[m, f) = § ulnu[n+m- n,Je rdrmulgizn
¥ (7)

Where the notation G[m, f ) is used to indicate that f
is a continuous variable. The first complex exponential
can be separated into two exponentials and (7) can be
rewritten as:

G[m f)ze-infa[n‘r"d] g_t{n]L{n+m- nd]ejZD(fﬂ-f)n (8)

n=-¥



We can notice that when f = f, the magnitude of

G[m, f) ismaximumat m = n, . To determine the

parameters f, and N, weonly need to find the Mand

f that make the magnitudeof G[m, f) amaximum.
For a length N sequence u[n], the function
G[m, f ) then becomes:

g1 . i
G[m, f) =@ s[nls, [n+ m]e’*" ©)
n=0
Since f isacontinuous variable, thereis aproblemin
computing G[m, f ) and finding its maximum
magnitude. To avoid this problem, thevariable f is
approximated by k / N . Now the function becomes:

GIm, kI = & s[nls, [n+men (10

n=0

2.3. Discrete Ambiguity Function Definitian

For a transmitted signa s 1 17(Z,) and a
received signa s 11%(z,), whereZ ={012.,N-3
and |1?(Z,,) is the Hilbert space of discrete complex
signals of length N, the discrete finite cross-ambiguity

function of § and S can be defined as the absolute
value of the following expression:

As,s Jfmk]=

%1 kn
a (g[n]sr*[<n+m>N]WN (11)
n=0

Where <n+m> denotes the remainder of the

quotient éam;mg and W, =exp{- j2p /N}.
é 2

2.4. DFT Method for DAF Computation

This method allows us to compute the cross-ambiguity
function directly by means of the discrete Fourier
transform (DFT), as follows:

b [n=s[<n+m>];ml Z (12)

v [n]=s[n]lb [n]; nT Z (13)

Finally, the DAF can be computed by means of
multiple one-dimensional Fourier transforms:

Als,,s }[m, k]= Nﬁlvm[n]ka” =V, [K] (14)

n=0

Figure 2 shows the algorithm to implement the DFT
method for the ambiguity function computation.
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3. Modeling and Simulation Results

To study the physical properties of a particular terrain
we need a set of calibrated images of that terrain. These
images are obtained from raw data through image
formation algorithms (See Figure 3). The attributes of
the PSF of a SAR system determine, to a great extent,
the better quality of the image formation process.
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Figure 3. SAR Image Formation Process

Large scale dgorithm implementations for point spread
functions computation were implemented with Fortran
and C codes and tested for several signals lengthsin a
Symmetric  Multiprocessor QM P)  architecture
composed of four UltraSPARC I1™ processors running
a 400 MHz each, with 4 MB of local, high-speed
external cache memory, running the Solaris v. 8
(UNIX) operating system. Seria implementations
results are shown in Tables 1 and 2. Figure 4 shows run
times of both implementations for comparison:



Table 1. Timing Measurements of PSF
Implementation in Fortran

Signal Real Execution User System
Length Time (sec) Time (sec) | Time (sec)
64 0.006 0.010 0.01
128 0.006 0.100 0.010
256 0.426 0.400 0.020
512 1.458 1.350 0.090
1024 5.906 5.410 0.420
2048 22.402 20.230 1.850

4096 92.220 82.870 7.650

Table 2. Timing Measurements of PSF
Implementation in C language

Signal Real Execution User System
Length Time (sec) Time (sec) | Time (sec)
64 0.052 0.040 0.01
128 0.134 0.110 0.010
256 0.397 0.340 0.020
512 1.354 1.190 0.090
1024 5.144 4.500 0.420
2048 20.993 16.720 1.850

4096 101.481 65.220 7.650

s

] T

£ & Fortran
g

127x64 2553128 511256 1023x512  2047x1024  4095x2048  B191x4096
Image Size

Figure4. Running Times Comparison

Graphical representations of the results were obtained
using Matlab. For a transmitted chirp (LFM) signal the
ambiguity function surface is shown in Figure 5. We
give special attention to the chirp signal and its fine
resolution capability, giving rise to pulse compression
techniques in a matched filter setting. For a transmitted
rectangular pulse and cosine signals the ambiguity
surface is depicted in Figure 6.
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Figure 5. PSF of aLinear Frequency
Modulated (LFM) Signal

@D 4 B0 80 100 120 140

Figure 6. PSF of a Rectangular Pulse Signal (left) and
Cosine signa (right)

3. Conclusion

A model for SAR raw data generation was presented,
which we are using to study the characteristics of
Point Spread Functions (PSF), in a time-frequency
context, through the efficient computation of the
discrete ambiguity function. A large scale algorithm
for Point Spread Functions (PSF) computation using
the DFT (Discrete Fourier Transform) method has
been implemented in FORTRAN and C languages.
Due to the nature of the large-scale computation
involve in this type of modeling and simulation the
PSF simulations have been performed in an advanced
computer  architecture based on  symmetric
multiprocessor system. Profiling and performance
tuning tools were use to enhance the processing
effort. Our continuing work will concentrate on
developing more efficient algorithms for cross-
ambiguity function and parallel implementations.
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