A Comparison of a Rule Definition Language (RDL)
and the JAVA Object Oriented Language for
| mplementing a Distributed System

Amarilis Cuaresma Zevallos
Advisor: Dr. Néstor Rodriguez
Software Sciences and Engineering Group
Electrical and Computer Engineering Department
Puerto Rico University, Mayagliez Campus
Mayaglez, Puerto Rico 00681-5829
amarilis@ece.uprm.edu

Abstract

The Event Rule Framework ERF was
created for supporting the development of
distributed systems with services and tools
that specify the system behavior in a top
level of abstraction based on events and
rules. Through the Rule Definition
Language (RDL) end users have the
capability to define events, rules and event
services. In this paper we present a study
that compares RDL with JAVA for
implementing distributed systems. The
results of the study indicate that RDL
requires significantly less code and less time
to implement distributed systems
applications based on events and rules.

1. Introduction

A Didtributed System (DS) is a collection of
autonomous computers with dissimilar
platforms linked by a computer network and
supported by software standards that enable
the collection to operate as an integrated
facility. These standards still lack of levels
of abstraction, services and tools that enable
to design, implement, monitor, debug and
maintain a DS. They aso lack of behavior
specification. The existing environments do
not allow incorporating changes in behavior
dynamically. Any change in the behavior

will involve changes in the implementation of
functions or methods, which requires
recompilation.

The Event Rule Framework (ERF) project has
been developed in order to support the
specification of behavior of DSs, in terms of
how their components react to events.
Behavior in a DS can be defined in terms of
events and how the system reacts to their
occurrences. These events can represent a
change in the state of objects of an entire
system. The rules are a high-level abstraction
for specifying behavior in terms of events,
conditions and actions. The heart of ERF is
RUBIES (Rule Based Intelligent Event
Service). RUBIES handles events using rules,
which are used to specify, at a high level of
abstraction, the behavior of a DS. In addition
of handling events, this event service has the
capabilities of creating and specifying events
and rule properties, posting events, scheduling
rules (e.g. active or inactive), and registering
and notifying interested clients. Through the
Rule Definition Language (RDL) end users
have the capability to define events, rules and
event services.

It is reasonable to expect that RDL be a better
programming language than object oriented
Java language for specifying behavior for DS.
However, it is important to demonstrate how

much improvement RDL offers for
specifying behavior through events and
rules, how easy is it to use, how much time
it takes to implement rules, how many lines
of code are required and how much
acceptance does it have with real users.

2. ERF: Event Rule Framework

ERF is a framework that provides a set of
abstractions for specifying the behavior of
DS in terms of events and rules, similar to
CORBA, DCOM and Java RMI. ERF has an
object-oriented model in which system
components are treated as objects, however,
in ERF, events and rules are also treated as
objects. ERF is designed to support multiple
standards for distributed system
environments (e.g. CORBA, Java RMI) and
has an open architecture that allows
extensions for supporting new standards as
well.

The ERF architecture [Arroyo02a] consists
of two main structures. A static structure,
which holds the objects that represent
definitions (event types and rules); and a
dynamic structure, which holds the objects
that encapsulate the behavior of a distributed
system at run time. One of these dynamic
structures is a Rule Based Intelligent Event
Service (RUBIES) [Arroyo01], the heart of
ERF, which provides services for rules
gpecification, service registration and event
handling using rules.

A Rule Definition Language (RDL) has
been created to specify the behavior of DS
in terms of how distributed components
react to the occurrence of eventsin a system.
In RDL, a rule can be viewed as an
agorithm that is executed due to the
occurrence of events. The rule specifies the
actions or alternative actions to be taken if
the necessary events occur. How and when a
rule is evaluated are issues of the

computational model of the RDL
[Arroyo02b]. A rule compiler is integrated to
ERF in order to validate rules syntax and
generating standard representation to be used
by RUBIES.

3. RTFAS

A “Rea-Time Flood Alert System” (RFTAS)
was selected for this study because it has ideal
characteristics of a DS, it comprises many
applications which reside in dissmilar
platforms, requires the processing of many
simultaneous events, requires rea-time
processing of events, requires the processing
of different sets of rules which may involve
multiple distributed event services and needs
continuous monitoring for debugging and
validation purposes.

The flood detection and alert system relies on
two maor networks: ALERT and USGS. The
first network is a cooperative flood-warning
system called Automated Local Evaluation in
Real Time (ALERT) maintained by the Civil
Defense. This system maintains 40 real time
gage dations that report rainfal
measurements. The other network is
maintained by the U.S. Geological Survey. It
maintains about 123 real time gaging stations
that report rainfall, discharge and stage
measures.

The Mgjor aerts generated by the system are:
risk watch, moderate risk, high risk, low event
in progress, high event in progress, and
extraordinary event in progress. These aerts
are generated from the triggering process of
rainfall events.

4. Theexperiment

For this experiment 10 participants were
asked to implement a subset of the RTFAS
domain problem using RDL and JAVA. The
participants had experience programming in

JAVA but no experience programming in
RDL and no knowledge of RTFAS. The task
of the participants was concentrated on the
development of algorithms to generate some
specific flood aerts using as input a real
time sequence of rainfal events. The
modules that handled the input, and output
of events and the evauation of the rules
were preprogrammed to alow the
participants to focus their effort on the
implementations of the agorithms to
generate the derts.

The experiment followed a within subjects
design. The participants were asked to
perform the same task with the two
programming languages. To compensate for
the learning effect the participants were
divided in two groups. Group A
implemented the RDL version first and then
the JAVA version. Group B implemented
the JAVA version first and then the RDL
version.

The details of the experiment were
explained to al the participants in an
orientation session. A tutorial on the RDL
language was given to al the participants
before they sarted with the RDL
implementation. After completing each
implementation the participants were asked
to answer a cognitive dimension
guestionnaire [Green96] and [Blackwell00].

The variables measured for the experiment
were: time needed to complete each
implementation, number of lines of code
generated, and the cognitive dimensions
variables.

5. Reaults

In table 1 we present a summary of the
results in terms of the average number of
lines of code generated for each
implementation by each group.

Table1l. Average number of lines of code

generated.
RDL JAVA
Implementation | Implementation
Group A 85 398
Group B 136 469
Overall 111 434

Overal the JAVA implementation required
3.9 times the lines of codes than it was
required to complete the RDL
implementation. An interesting finding was
that the participants that implemented the
RDL version first (Group A) generated fewer
number of lines of codes than the participants
that implemented the RDL version second
(Group B). It seems that the knowledge of the
problem acquired by Group B from the JAVA
implementation had a negative influence on
their implementation of the RDL
implementation.

In table 2 we present a summary of the results
in terms of the average number of time
required to complete each implementation by
each group.

Table 2. Average time to complete each
implementation.

RDL JAVA
Implementation | Implementation
Group A 8.1 18.3
Group B 7.0 30.5
Overall 7.6 24.4

Overal the JAVA implementation required
3.2 times the overall time required to
complete the RDL implementation.

A summary of the most relevant comments
made by the participants for each of the
cognitive dimension variables follows.

Abstraction: It is easy to abstract the ideas in
terms of events and rules with RDL. RDL
operators and operations are very intuitive.

Closeness of mapping: RDL lets the user
represent system dynamic behavior in a
natural way and the results obtained are the
expected ones.

Consistency: RDL operators and operations
are easy to use and to infer for specifying
system behavior.

Viscosity. RDL requires little effort to make
changes.

Diffuseness:. RDL syntax is smple and
short; rules only need very few lines of
code.

Error-proneness. The RDL compiler does
not provide appropriate error messages, and
it creates error-proneness in users.

Hard mental operations. No hard mental
effort is required to specify rules using RDL.

Premature commitment: RDL forces to
users to think in terms of events and rules to
specify behavior.

Progressive evaluation: RDL language does
not have a tool to verify and debug events at
run-time

Role-expressiveness. It is easy to infer the
meaning of any rule implemented using
RDL.

Secondary notation: RDL lets the user to
add comment lines; they are indispensable in
any programming language.

6. Conclusion

In this work we demonstrated that RDL is a
better paradigm for implementing
distributed systems applications based on
events and rules. Distributed applications are
developed easily, in less time, with less code

and with greater user satisfaction with RDL
than with JAVA.

In general the participants expressed that
RDL was easier to learn than Java, that rules
specifications was easier and natural even for
modifying existing rules or adding new ones.
The participants also expressed that RDL
does not provide good error messages and that
the messages provided were not enough to
verify the state of the events and attributes at
run-time.

7. References

[Arroyo01] Arroyo, J, Moulier E. "A Rule-
Based Intelligent Event Service (RUBIES)",
Proceedings of the Computing Research
Conference 2001, University of Puerto Rico,
Mayagiiez Campus, March 2001.

[Arroyo02a] Arroyo J., Borges. J., Rodriguez
N., Moulier E., Rivas M., Cuaresma A.,
Yeckle J,, “An Event/Rule Framework (ERF)
for specifying the Behavior of Distributed
Systems’, 3rd International Workshop on
Software Engineering and Middleware, 2002,
pp 59— 71

[Arroyo02b] Arroyo J.,, Moulier E., Yeckle J,
“RDL: A Rule Definition Language for
Specifying the Behavior of Distributed
Systems’, Electricd and Computer
Engineering Department University of Puerto
Rico, Mayaglez Campus Mayagiiez, Puerto
Rico, 2002.

[BlackwellO0] Blackwell, A.F. & Green, T.R.G.
(2000)., “A Cognitive Dimensions
guestionnaire optimised for users’. In A.F.
Blackwell & E. Bilotta (Eds.) Proceedings of
the Twelth Annual Meeting of the
Psychology of Programming Interest Group,
137-152.

[Green9g] Green, T. R. G. & Petre, M.
1996, “Usability analysis of visua
programming environments. a ‘cognitive
dimensons framework.” J. Visu
Languages and Computing, 1996, 7, 131-
174.

