
Signal Processing Implementations Using Simulink®

Alberto Quinchanegua, William Sánchez
Advisor: Domingo Rodríguez

Electrical and Computer Engineering Department

University of Puerto Rico, Mayagüez Campus
Mayagüez, Puerto Rico 00681-5000

albertoq@ece.uprm.edu, william.david@ece.uprm.edu

Abstract

This document presents a methodology for the
implementation of signal processing applications based
in a Kronecker product language to map a mathematical
formulation in an algorithm formulation, and
Simulink®, which is a dynamic system and simulation
software based in MATLAB for modeling and high
level simulation. Simulink® adds many features specific
to dynamics systems while retaining all MATLAB
general purpose functionality. A mathematical
formulation can be expressed in terms of functional
modules with defined input and output ports that can be
interactively interconnected using Simulink in order to
reduce the algorithm development and implementation
time-line. Two important signal processing applications
such as FIR filters and fast Fourier Transform are
treated here as systems, that were implemented in
hardware using a system generator toolbox, which
translate a Simulink model in a hardware description
language (HDL) for FPGA implementations.

1. Introduction

Simulink® is a dynamic system and simulation software
that offers an interactive scientific and engineering
environment for system modeling, analysis, and
simulation. This environment is useful for the rapid
implementation of a digital signal processing
application in terms of functional blocks, and provides
a high-level simulation. A functional block is a basic
structure that can represent a function, or a specialized
system, with defined input and output ports and
customized parameters. In this work we concentrated in
the implementation of digital signal processing
algorithms using block diagrams for the data flow
modeling, and algorithm testing and implementation.
For this purpose, we introduce a methodology for the
DSP algorithm development and hardware
implementation, based in a Kronecker product
language, in order to assist to a developer in the
generation of hardware prototype systems. We define
an algorithm development and implementation
environment as an aggregated of the following tools:

Simulink®, DSP microprocessors, and FPGA
computing structures. We first introduce the
mathematical formulations for two important
applications in digital signal processing, such as FIR
filters, and the fast Fourier transform; thus we proceed
to map the mathematical formulations in algorithms
expressed as interconnected functional blocks that can
be translated in C code for DSP microprocessor
implementations, or in VHDL code using a System
Generator for FPGA implementations. Hardware
implementation results of our methodology are
presented using a Xilinx Virtex-II FPGA computing
unit.

2. Modeling DSP Applications

Simulink® uses a set of libraries for signal processing
to represent dynamic systems. The standard block
library is organized into several subsystems, grouping
blocks according with the behavior and it contributes
with the design of new blocks by a developer, for
increase the modularity of the applications. On the
other hand, the reconfigurability of a developed model
is not complicated because the “cut”, “copy”, and
“paste” commands are available to include blocks by
software. The Figure 1 shows an example of a
Simulink® model built with functional blocks.

Figure 1. An example of a Simulink® model composed
of interconnected functional blocks.

In order to introduce the methodology for the model
generation and the implementation of DSP applications
we introduce the mathematical formulations for FIR
filters and the FFT, using a Kronecker products
language, and then we present the procedure to
describe an algorithm in terms of functional blocks for
testing, simulation, and code generation for hardware
implementation.

2.1 Mathematical Formulations

2.2.1 FIR Filters

A simplest FIR system or operator, apart from the
trivial system, i.e., the system represented by the
identity operator IN, is the system

{ }1hT Tδ= , which

turns into the shift operator SN . This system is
sometimes called the unit delay system because its
digital electronics hardware implementation may be
accomplished by using a single delay element, which
acting on the unit sample signal { }1δ results in

{ } { }[]T j S S S
j Z

N
j

N
N

δ δ
1 1

1= = =
∈
∑ . The matrix

representing the shift operator SN is obtained by
allowing the vector representation (with respect to the

standard basis set { }{ }δ k Nk Z: ∈) of the signal

{ } { }{ }T k Zk Nδ δ
1

, ,∈ become the columns of the

matrix. An important property of the SN operator matrix
is that any cyclic FIR system Th may be represented by
a matrix HN which can be written as a sum of powers
of the matrix SN pre-multiplied by a diagonal matrix

[]Dh j , as follow:

 [] []()∑ ∑
∈ ∈

⊗==
N NZj Zj

j
N

j
NjhN SjhSDH . (1)

2.2.2 Fast Fourier Transform

The Fourier matrix can be factorized in terms of sparse
matrices represented by Kronecker products factors,
which play an important role in the development and
implementation of Fourier Transform algorithms. For
example, the traditional Cooley-Tukey algorithm for
the fast computation of the Fourier Transform can be
represented in terms of Kronecker products factors as
follows:

() () RNSRSNSRN PFITIFF ,, ⊗⊗= (2)

where N is the size of the FFT, N=R.S, and IN is an
identity matrix. In this case, N is a power of two. A

new variant for the expression of the matrix NF is
derived using Kronecker product properties in order to
compute a N-Point FFT, where N can be a non-power
of two. The new mathematical formulation can be
written as follows:

() () SNpSLp
T

N PFUITIFUF ,222,222 ⊗⊗⊗⊗= (3)

where pN 4= , and p is a prime. The expressions (2)
and (3) allow us to identify functional primitives or
basic structures that compose an algorithm. These
functional primitives can be modeled as block
diagrams, using the mathematical expression to define
the data flow for the algorithm computation. For
example, consider the Kronecker factor
()222 FUI p ⊗⊗ that represents a first stage in the
FFT computation. Graphically we can determine the
data flow generated by the action of the Kronecker
factor over an input vector of length 4p, being p=1;
then:

() xFxFUI ⋅






 ⊗



⊗



=⋅⊗⊗ 2222 1

1
10
01 (4)

() x

F
F

F
F

xFUI ⋅
















=⋅⊗⊗

2

2

2

2

222

0
0

0
0

 (5)

where 





−
= 11

11
2F .

The expressions (4) and (5) below represent the action
of matrices 2F over segments of the input vector x ,
where the operations over a same segment are
duplicated, generating a data scattering stage. This
scattering represents a parallel processing stage that
permits to organize the stages of Twiddle factors
present in the traditional Cooley-Tukey algorithm in a
single parallel stage of Hadamard products. A diagonal
matrix SLT , contains the twiddle factors. The same
procedure explained below is carried out to identify the
dataflow generated by the factor ()p

T IFU 222 ⊗⊗ ,
which is translated in a final stage of data gathering.

2.2. Functional Blocks

2.2.1 FIR Model:

In a real life a designer has to do the mapping from the
mathematical representation of a FIR filter, to symbolic
representation in Simulink®. From the mathematical
formulation previously presented in the expression (1),

the designer can observe the implicit mathematical
operations such as Add, Multiplication, and Delay and
translate these in Simulink® functional blocks. For a 4-
tap FIR filter implementation, Simulink offers the
Delay Blocks, Multiplication Blocks, and Additions
Blocks that the designer can interconnect to obtain the
FIR filter structure for simulation and implementation
as shows the Figure 2.

Figure 2. Simulink model of a 4-tap FIR Filter.

Notice in the figure below that the FIR filter structure
has a repetitive structure conformed by a delay block, a
multiplication block, and an adder block as shows the
Figure 3. After the model simulation, the designer can
make new functional blocks, creating new libraries
with defined input and output ports, to be used in future
applications.

Figure 3. Identification of a new functional block for

the implementation of a FIR filter.

2.2.2. 4p-FFT Model

The 4p-FFT algorithm can be represented in Simulink®,
in terms of interconnected fuctional blocks for analysis
and simulation. Each functional block is associated
with a functional primitive, simulating the algorithm
data flow in every stage of the FFT computation. The
initial stage of the FFT can be implemented as a
butterfly stage followed by a scattering stage as shows
the Figure 4. A functional block representing the
dataflow for the butterfly is shown in the Figure 5.

-1

a

b

a+b

a-b

a+b

a+b

a-b

a-b

Figure 4. Flow graph of a Butterfly followed by a
scattering stage.

a

b
a+b

a

b
a-b

In_Port_1

In_Port_2

Out_Port_1

Out_Port_2

Figure 5. Butterfly functional block for the

implementation of the factor ()222 FUI p ⊗⊗ .

The others stages of the FFT computation are the
Hadamard product or point-by-point multiplications,
and the data gathering. Thus, the complete 4p-FFT
algorithm can be modeled as shows the Figure 6.

D
A

TA
SC

A
TT

ER
IN

G

H
A

D
D

A
M

A
R

D
PR

O
D

U
C

T
W

IT
H

TW
ID

D
LE

 F
A

C
TO

R
S

D
A

TA
G

A
TH

ER
IN

G

4p-FFT Dataflow Model

INPUT OUTPUT

Fi
gure 6. Data flow model for the 4p FFT computation.

3. Hardware Implementations

This section presents preliminary results of the FPGA
hardware implementation of a 4-tap FIR filter, and a
new variant of the traditional Cooley-Tukey FFT
algorithm for lengths that are not necessarily power of
two. The FIR filter previously presented in the
Figure 2 was implemented in a Virtex-II FPGA using a
System Generator toolbox for the generation of VHDL
code. The implementation results of the FIR filter are
compared with a previous implementation of the same
4-tap FIR filter in a TI-C6711 DSP microprocessor and
summarized in the Table 1.

Table 1. Hardware implementation results
 of a 4-Tap FIR filter.

ITEM Virtex-II

FPGA
TI-C6711 DSP
µ-Processor.

Data Bus
Input

1~n* Bits
Fixed Point

32 Bits Floating
Point.

Data Bus
Output

1~n* Bits
Fixed Point

32 Bits Floating
Point.

System Clock
Period

10 nanoseconds
(max. 100

MHz)

6.7 nanoseconds
(150 MHz)

Latency 1 clock cycle** 49 clock cycles
Simulation Logic Devices,

Bit stream.
Registers, Bytes,

Words.
Programming

Language
VHDL C, assembly

Scalability Data Bus
Width

Fixed
architecture.

* n≤ 32 using Xilinx Logic Cores.
** Initial latency: 11 clock cycles.

 The 4p-FFT algorithm is based in a Kronecker
formulation that permits to organize the stages of
Twiddle factors present in the traditional Cooley-Tukey
algorithm in a single parallel stage of Hadamard
products, reducing the latency time generated by every
multiplication stage. The algorithm was simulated in
Simulink® and the model translated in a hardware
description language (VHDL) using a System
Generator Core for FPGA implementation. The Figure
7 shows a block diagram of the developed hardware
structure composed of interconnected functional
blocks.

HADAMARD

Z-1

ADD
 &

SUB

Z-2

ADD

CONTROL

F
I
F
O

SCATTERING GATHERING

ADD
 &

SUB

4p-FFT CORE
N=4p

Fixed Point

16-BIT
COMPLEX

xA

16-BIT
COMPLEX

xB

32

32

16-BIT
COMPLEX

X[k]

X[0]

X[1]

X[2]

X[N-1]

32

32

32

32

.

.

.

.

.

.

1

2

3

N/2

Figure 7 Block diagram of the 4p- FFT hardware
structure.

The 4p-FFT model was implemented in hardware using
a Xilinx Virtex-II FPGA and the results are presented
in the Table 2.

Table 2. FPGA implementation results of the
4p-FFT model.

N-
Complex

Point

Slice
Consumption

Initial
Latency

Time
(Cycles)

System
Clock
Period

8 1198 16 10.287ns
12 2516 19 10.287ns
16 4165 22 10.287ns

4. Conclusion

We presented a methodology for the formulation of
computing methods for digital signal processing, based
in a Kronecker products decomposition technique that
allow us to map a computing method in the form of
algorithm formulations, and to find new variants to
adapt the algorithm to specific hardware computing
architecture. We represented the algorithms in terms
of functional blocks for modeling and simulation using
Simulink®. The modeled DSP applications were
implemented in a FPGA using a system generator that
translated a Simulink model in a Hardware description
language for FPGA implementation. Also, a
Developer’s Kit for Texas Instruments toolbox can be
used to generate machine code for a TI-C6000 DSP
Processor from a Simulink® model.

References
[Johnson90] J. R. Johnson, R. W. Johnson, D. Rodríguez, R.
Tolimieri, “A Methodology for Designing, Modifying, and
Implementing Fourier Transform Algorithms on Various
Architectures,” IEEE Transactions on Circuits, Systems, and
Signal Processing, Vol. 9, No. 4, 1990.

[Rodriguez02] D. Rodríguez, A. Quinchanegua, H. Nava.
“Signal Operator Cores for SAR Real Time Processing
Hardware,” IEEE IGARSS 2002, Toronto, Canada, July
2002.

[Rodriguez91] Domingo Rodriguez, “ A new FFT algorithm
and its implementation on the DSP96002,” ICASSP ’91, Vol.
3, pp. 2189-2192, May 1991.

[Rodriguez91] Domingo Rodriguez, “ Tensor product algebra
as a tool for VLSI implementation of the discrete Fourier
transform,” ICASSP ’91, Vol. 2, pp.1025-1028:May 1991.

[Reyneri01] L.M. Reyneri, F. Cuccinotta, A. Serra, L.
Lavagno. “A Hardware/Software Co-design Flow and IP
Library Based of SimulinkTM,” Design Automation
Conference, pp. 2101-2106, Vol. 4. 2001.

[Xilinx03] Xilinx, Inc, http://www.xilinx.com

[Math03] The Mathworks, Inc, http://www.mathworks.com

[TI03] Texas Instruments Inc, http://dspvillage.ti.com

