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Abstract 
 
This document presents a methodology for the 
implementation of signal processing applications based 
in a Kronecker product language to map a mathematical 
formulation in an algorithm formulation, and 
Simulink®, which is a dynamic system and simulation 
software based in MATLAB for modeling and high 
level simulation. Simulink® adds many features specific 
to dynamics systems while retaining all MATLAB 
general purpose functionality. A mathematical 
formulation can be expressed in terms of functional 
modules with defined input and output ports that can be 
interactively interconnected using Simulink in order to 
reduce the algorithm development and implementation 
time-line. Two important signal processing applications 
such as FIR filters and fast Fourier Transform are 
treated here as systems, that were implemented in 
hardware using a system generator toolbox, which 
translate a Simulink model in a hardware description 
language (HDL) for FPGA implementations. 
 
1. Introduction 
 
Simulink® is a dynamic system and simulation software 
that offers an interactive scientific and engineering 
environment for system modeling, analysis, and 
simulation. This environment is useful for the rapid 
implementation of a digital signal processing 
application in terms of functional blocks, and provides 
a high-level simulation. A functional block is a basic 
structure that can represent a function, or a specialized 
system, with defined input and output ports and 
customized parameters. In this work we concentrated in 
the implementation of digital signal processing 
algorithms using block diagrams for the data flow 
modeling, and algorithm testing and implementation. 
For this purpose, we introduce a methodology for the 
DSP algorithm development and hardware 
implementation, based in a Kronecker product 
language, in order to assist to a developer in the 
generation of hardware prototype systems. We define 
an algorithm development and implementation 
environment as an aggregated of the following tools: 

Simulink®, DSP microprocessors, and FPGA 
computing structures.  We first introduce the 
mathematical formulations for two important 
applications in digital signal processing, such as FIR 
filters, and the fast Fourier transform; thus we proceed 
to map the mathematical formulations in algorithms 
expressed as interconnected functional blocks that can 
be translated in C code for DSP microprocessor 
implementations, or in VHDL code using a System 
Generator for FPGA implementations.  Hardware 
implementation results of our methodology are 
presented using a Xilinx Virtex-II FPGA computing 
unit. 
 
2. Modeling DSP Applications 
 
Simulink® uses a set of libraries for signal processing 
to represent dynamic systems. The standard block 
library is organized into several subsystems, grouping 
blocks according with the behavior and it contributes 
with the design of new blocks by a developer, for 
increase the modularity of the applications. On the 
other hand, the reconfigurability of a developed model 
is not complicated because the “cut”, “copy”, and 
“paste” commands are available to include blocks by 
software. The Figure 1 shows an example of a 
Simulink® model built with functional blocks. 
 

 
 

Figure 1. An example of a Simulink® model composed 
of interconnected functional blocks. 



In order to introduce the methodology for the model 
generation and the implementation of DSP applications 
we introduce the mathematical formulations for FIR 
filters and the FFT, using a Kronecker products 
language, and then we present the procedure to 
describe an algorithm in terms of functional blocks for 
testing, simulation, and code generation for hardware 
implementation. 
 
2.1 Mathematical Formulations 
 
2.2.1 FIR Filters 
 
A simplest FIR system or operator, apart from the 
trivial system, i.e., the system represented by the 
identity operator IN, is the system 

{ }1hT Tδ= , which 

turns into the shift operator SN . This system is 
sometimes called the unit delay system because its 
digital electronics hardware implementation may be 
accomplished by using a single delay element, which 
acting on the unit sample signal { }1δ  results in 
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allowing the vector representation (with respect to the 
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matrix. An important property of the SN operator matrix 
is that any cyclic FIR system Th may be represented by 
a matrix HN  which can be written as a sum of powers 
of the matrix SN pre-multiplied by a diagonal matrix 

[ ]Dh j , as follow: 
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2.2.2 Fast Fourier Transform 
 
The Fourier matrix can be factorized in terms of sparse 
matrices represented by Kronecker products factors, 
which play an important role in the development and 
implementation of Fourier Transform algorithms. For 
example, the traditional Cooley-Tukey algorithm for 
the fast computation of the Fourier Transform can be 
represented in terms of Kronecker products factors as 
follows: 
 

( ) ( ) RNSRSNSRN PFITIFF ,, ⊗⊗=                                 (2) 

 
where N is the size of the FFT, N=R.S, and IN  is an 
identity matrix.  In this case, N is a power of two.  A 

new variant for the expression of the matrix NF  is 
derived using Kronecker product properties in order to 
compute a N-Point FFT, where N can be a non-power 
of two. The new mathematical formulation can be 
written as follows: 
 

( ) ( ) SNpSLp
T

N PFUITIFUF ,222,222 ⊗⊗⊗⊗=             (3) 
 
where pN 4= , and p is a prime. The expressions (2) 
and (3) allow us to identify functional primitives or 
basic structures that compose an algorithm. These 
functional primitives can be modeled as block 
diagrams, using the mathematical expression to define 
the data flow for the algorithm computation. For 
example, consider the Kronecker factor 
( )222 FUI p ⊗⊗  that represents a first stage in the 
FFT computation.   Graphically we can determine the 
data flow generated by the action of the Kronecker 
factor over an input vector of length 4p, being p=1; 
then: 
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The expressions (4) and (5) below represent the action 
of matrices 2F  over segments of the input vector x , 
where the operations over a same segment are 
duplicated, generating a data scattering stage. This 
scattering represents a parallel processing stage that 
permits to organize the stages of Twiddle factors 
present in the traditional Cooley-Tukey algorithm in a 
single parallel stage of Hadamard products. A diagonal 
matrix SLT ,  contains the twiddle factors. The same 
procedure explained below is carried out to identify the 
dataflow generated by the factor ( )p

T IFU 222 ⊗⊗ , 
which is translated in a final stage of data gathering.  
 
2.2. Functional Blocks 
 
2.2.1 FIR Model: 
 
In a real life a designer has to do the mapping from the 
mathematical representation of a FIR filter, to symbolic 
representation in Simulink®. From the mathematical 
formulation previously presented in the expression  (1), 



the designer can observe the implicit mathematical 
operations such as Add, Multiplication, and Delay and 
translate these in Simulink® functional blocks. For a 4-
tap FIR filter implementation, Simulink offers the 
Delay Blocks, Multiplication Blocks, and Additions 
Blocks that the designer can interconnect to obtain the 
FIR filter structure for simulation and implementation 
as shows the Figure 2. 

 

Figure 2.  Simulink model of a 4-tap FIR Filter. 
 
Notice in the figure below that the FIR filter structure 
has a repetitive structure conformed by a delay block, a 
multiplication block, and an adder block as shows the 
Figure 3.  After the model simulation, the designer can 
make new functional blocks, creating new libraries 
with defined input and output ports, to be used in future 
applications. 
 

 
Figure 3. Identification of a new functional block for 

the implementation of a FIR filter. 

 
2.2.2. 4p-FFT Model 
 
The 4p-FFT algorithm can be represented in Simulink®, 
in terms of interconnected fuctional blocks for analysis 
and simulation. Each functional block is associated 
with a functional primitive, simulating the algorithm 
data flow in every stage of the FFT computation. The 
initial stage of the FFT can be implemented as a 
butterfly stage followed by a scattering stage as shows 
the Figure 4. A functional block representing the 
dataflow for the butterfly is shown in the Figure 5. 
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Figure 4. Flow graph of a Butterfly followed by a 
scattering stage. 

 

a

b
a+b

a

b
a-b

In_Port_1

In_Port_2

Out_Port_1

Out_Port_2

 
Figure 5. Butterfly functional block for the 

implementation of the factor ( )222 FUI p ⊗⊗ . 

The others stages of the FFT computation are the 
Hadamard product or point-by-point multiplications, 
and the data gathering. Thus, the complete 4p-FFT 
algorithm can be modeled as shows the Figure 6. 
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Fi
gure 6. Data flow model for the 4p FFT computation. 

 
3. Hardware Implementations 
 
This section presents preliminary results of the FPGA 
hardware implementation of a 4-tap FIR filter, and a 
new variant of the traditional Cooley-Tukey FFT 
algorithm for lengths that are not necessarily power of 
two. The FIR filter previously presented in the    
Figure 2 was implemented in a Virtex-II FPGA using a 
System Generator toolbox for the generation of VHDL 
code.  The implementation results of the FIR filter are 
compared with a previous implementation of the same 
4-tap FIR filter in a TI-C6711 DSP microprocessor and 
summarized in the Table 1. 
 



Table 1. Hardware implementation results 
 of a 4-Tap FIR filter. 

  
ITEM Virtex-II 

FPGA 
TI-C6711 DSP 
µ-Processor. 

Data Bus 
Input 

1~n* Bits 
Fixed Point 

32 Bits Floating 
Point. 

Data Bus 
Output 

1~n* Bits 
Fixed Point 

32 Bits Floating 
Point. 

System Clock 
Period 

10 nanoseconds 
(max. 100 

MHz) 

6.7 nanoseconds 
(150 MHz) 

Latency 1 clock cycle** 49 clock cycles 
Simulation Logic Devices, 

Bit stream. 
Registers, Bytes, 

Words. 
Programming 

Language 
VHDL C, assembly 

Scalability Data Bus 
Width 

Fixed 
architecture. 

* n≤ 32 using Xilinx Logic Cores. 
** Initial latency: 11 clock cycles. 
 
 The 4p-FFT algorithm is based in a Kronecker 
formulation that permits to organize the stages of 
Twiddle factors present in the traditional Cooley-Tukey 
algorithm in a single parallel stage of Hadamard 
products, reducing the latency time generated by every 
multiplication stage. The algorithm was simulated in 
Simulink® and the model translated in a hardware 
description language (VHDL) using a System 
Generator Core for FPGA implementation. The  Figure 
7 shows a block diagram of the developed hardware 
structure composed of interconnected functional 
blocks.  
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Figure 7 Block diagram of the 4p- FFT hardware 
structure. 

 
The 4p-FFT model was implemented in hardware using 
a  Xilinx Virtex-II FPGA and the results are presented 
in the Table 2.  
 
 
 

Table 2. FPGA implementation results of the  
4p-FFT model. 

N-
Complex 

Point 

Slice 
Consumption 

Initial 
Latency 

Time 
(Cycles) 

System 
Clock 
Period 

8 1198 16 10.287ns 
12 2516 19 10.287ns 
16 4165 22 10.287ns 

 
4. Conclusion 
 
We presented a methodology for the formulation of 
computing methods for digital signal processing, based 
in a Kronecker products decomposition technique that 
allow us to map a computing method in the form of 
algorithm formulations, and to find new variants to 
adapt the algorithm to specific hardware computing 
architecture.   We represented the algorithms in terms 
of functional blocks for modeling and simulation using 
Simulink®. The modeled DSP applications were 
implemented in a FPGA using a system generator that 
translated a Simulink model in a Hardware description 
language for FPGA implementation. Also, a 
Developer’s Kit for Texas Instruments toolbox can be 
used to generate machine code for a TI-C6000 DSP 
Processor from a Simulink® model. 
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