Extended Java-FFT Environment

Alberto Quinchanegua, Ivan Garcia Alsina
Advisor: Domingo Rodriguez

Electrical and Computer Engineering Department
University of Puerto Rico, Mayagiiez Campus
Mayagiiez, Puerto Rico 00681-5000
albertog@ece.uprm.edu, ivangarcia44(@hotmail.com

Abstract

This document presents a signal processing tool called
Java—FFT for the codification of Kronecker products
factors, called functional primitives, in language C. We
present mathematical preliminaries for the addition of
new functional primitives to a tool environment, which
assist a developer in the generation of new algorithms
based on Kronecker products algebra formulation. This
tool is made to aid the analysis, design, modification,
and implementation of Fast Fourier Transform (FFT)
algorithms. The tool was written as Java applets, so it
can be used with Internet browsers. The tool will be
modified to include specifically two new functional
primitives in the user interface. In the new version, the
tool will generate C code that run efficiently on
personal computers (PCs) by exploiting their
architecture features.

1. Introduction

The Java-FFT tool is an environment for automatic C-
language code generation for Fast-Fourier Transform
(FFT) algorithms. The tool is written in Java applets so
it can be accessed trough the Internet or stand-alone.
The purpose of developing this tool was to aid the
analysis, design, modification and implementation of
FFT algorithms. The Java-FFT environment uses
Kronecker based formulations to generate C-language
code. These formulations are composed of functional
primitive operators. The Figure 1 diagram shows the
steps of developing a program using the Java-FFT
environment. The tool was made because generating
manually Kronecker based formulations was too
difficult and expensive. The Java-FFT tool implements
the Kronecker User Interface Language Tool (KUILT)
to facilitate this process. Figure 2 shows the role of the
KUILT in the Application development environment of
the Computational Signal Processing Group. Actually
the KUILT generates C code, but in the future it will
generate code for Java. To generate source code in the
Java-FFT environment tool the following steps are
made: The algorithm is expressed in the matrix-vector
multiplication form. The matrix is factored into

Kronecker products of functional primitives. Finally,
the Java-FFT tool helps to identify the most useful
functional primitives and automatically generates the C
code.

Start
.‘—
| Select Pararneters |
h i
| FFTFomula |
¥
| Selected Primitives |
h J
| LoadCoode |
v
| C Code Generation |

Figure 1. C code generation process.

Tmaging Theory &
Conumunications

KUILT: Kronecker Signal Algebra’s User Interface
Language Tool

Figure 2. An example of a Simulink® model composed
of interconnected functional blocks.

In order to introduce the Java FFT tool we present the
mathematical formulations for the FFT, using a
Kronecker language, and then we describe the Java
FFT environment.

2. Mathematical Formulations

In this section a mathematical formulation of the FFT is
presented using a Kronecker products algebra
technique. First some definitions are presented before
description of FFT Kronecker formulation.

2.1 Kronecker Product

The Kronecker product between the matrices A and B
is definedas 4 ® B = [a(l.’j) : BJ; thus,

agyB - ag,)B
4®B = a(l,O)B a(l,x—l)B (1)
a, 0B oag B

where a(l. B is the entry in the i-th row and j-th colum

of the matrix

A= la(i,j)JOSKr

0<j,s
A®B=C=a,) |® b= e 2)
where C(t,u) = c(p,r;q,s) - Cl(p,q) * b(r,s)' Define the

mx1 vector U,, as U, :[ul,uz,u3,-~-,uM]T,where
Define / w as the
identity matrix of order M . Thus:

Uy =Uy =U3 =-—=U, =1.

(IM®FN):diag|_FN,O5FN,15"'5FN,M—1J (3)

(U/\T/l ®IN):[IN,O’IN,]’“"IN,M—I] “4)
2.2 Kronecker Formulation of the FFT

The traditional Cooley-Tukey algorithm for the fast
computation of the discrete Fourier transform (DFT)
can be represented in terms of Kronecker product
factors as follows:

FN:(FR ®[S)TN,S([R®FS)PN,R ()

where N is the size of the FFT, N=R.S, and P, is an

associated permutation matrix called stride
permutation. The expressions (2) allow us to identify
functional primitives or basic structures that compose
an algorithm. A functional primitive can be modeled as
a flow graph using the mathematical expression to
define the dataflow for the algorithm computation. For
example, consider the Kronecker factor (I, ® F,) that

represents a first stage in the 4-point FFT computation.
Graphically the data flow generated by the action of the

Kronecker factor over an input vector of length N=¢4
can be determined as follow:

(12®F2)-x:([(1) ﬂ@sz-x

F, 0
I, ®F,)-x=|2 X (6)
(2 2) |:0 F2:|
1 1
where F, =L _1]

The expression (6) below represents the parallel action
of matrices F, over segments of the input vector x. A

diagonal matrix Ty ¢ contains the twiddle factors.

2.3 Flow diagram of a Functional Primitive.

Each functional primitive is associated with a flow
diagram, simulating the algorithm data flow in every
stage of the FFT computation. The initial stage of the
FFT represented by the functional primitive (]) ®F2)
can be implemented as a butterfly stage as shows the
Figure 3.

a »(atb

b —»0 a-b

Figure 3. Data flow diagram of a single Butterfly
computation.

Other example of the data flow representation for the
computation of the functional primitive (U eI N) is
shown in the Figure 4.

x[0] —»O x[0]+x[2]
1] —»0O X[1]+x[3]
x[2]
x[3]

Figure 4. Data flow diagram for the computation of the
Kronecker factor (U eI,)

This Kronecker factor represents a linear combination
between elements of an input vector, taking the vector
indices as reference to obtain the sum of the odd and
the even elements separately. The elements of an input

vector can be readdressed using a permutation matrix in
order to generate a new parallel expression for this
linear combination as follow:

(UAT4 Q1): (IN ®UAT4)PMN,N (7

3. Java-FFT Environment

The tool was implemented in java because of the
portability of the language. The Java-FFT tool could be
used in a Java enabled browser, such as Netscape,
Microsoft Internet Explorer, and Hot Java. Java applets
where used to make the tool accessible through the
Internet. Java applets are applications made to run in
Internet browsers. The Java-FFT tool needs Java 2
SDK to run.

3.1 Java-FFT User Interface

The Java-FFT user interface is designed to enter the
Kronecker based formulation and all related
parameters. The user interface has two modes: analysis
and synthesis. In the analysis (default) mode the
Kronecker formulation is predefined by Cooley-Tukey
as follows:

FN:(FS ®IR)TN,S(]S ®FR)PN,S (®)

The radix parameter is used to select the size of the
basic Fourier transform factor. In the synthesis mode,
shown in Figure 5, the user uses primitive operators to
form the Kronecker formulation. The primitive operator
buttons can only be seen in this mode. After the
formulation is entered the user presses the See Code
button to display the generated code in a new window.

LTS

eI

=l

P

Figure 5. Java-FFT user interface (Synthesis mode).

3.2 User Interface Control Components:

. Method Selection: This control has two options:
analysis and synthesis.

e Primitive Operator Buttons: They are used to
add Kronecker primitive operators in the
formulation text area.

° Kronecker Based Formulation Text Area: A
text area shows the current combination of
Kronecker primitive operators.

. FFT Order Parameters: The FFT order
parameters are entered in text boxes. These are N,
S, and R for the one-dimension case and N1, S1,
R1, N2, S2, and R2 for the two-dimension case.

e Dimension Selection: Selection of one or two
dimensional FFT algorithms.

. Decomposition-Radix Selection: Currently
Cooley-Tukey is the only decomposition method,
since it is highly used and it is very efficient. The
user can also select from a drop-down menu the
radix.

e Fact Button: Generates the Kronecker based
formulation using Cooley-Tukey and the selected
radix. This button can only be seen in Analysis
mode.

e See Code Button: This button is used to generate
the code in C using the Kronecker formulation
specified in the text area. A new window is
opened to show the code. See Figure 4.

. Clear Button: Used to clear the Kronecker
formulation.

. R and S Text Areas: Display the factorization
used. These text areas can only be seen in
Analysis mode.

3.3 Code Generation

To generate the code, the environment creates a vector
that contains the functional primitives that form the
Kronecker based formulation. The elements of this
vector are obtained by parsing the string entered in the
formulation text area. The vector is used then to
generate the C code. The first step in generating the
code is to place a fixed header. Then the headers for
each function used are defined. The first code included
inside the main function is the declaration of the
variables used to store the matrices used in the
formulation. The matrices are then initialized and the
functional primitive’s matrices are initialized using the
respective function. The matrices then are multiplied
according to the order specified in the formulation. The
final matrix is then printed. The functions used to
declare the functional primitives and multiply matrices
are declared at the beginning of the code and their code
is placed at the end of the file. The code of these
functions is taken from external files. When using an
Internet browser, these files are retrieved from a

database through a web server. An example of the C
code generation is shown in the Figure 6.

=
&

Figure 6. C code generated by the Java-FFT tool.
3.4 Additions to the Java-FFT Environment

Two new functional primitives are going to be added to
the Java-FFT environment. They are the Kronecker
(UAT4 ®IN) and (IN ®UAT,,) presented
previously. These factors are wuseful for the
development of new signal processing algorithms for
the DFT Multi-Beamforming processing. To add these
functional primitives the first step is to create two
additional buttons for the synthesis mode. The code for
the Java-FFT tool has appending and parsing sections
for functional primitives, which are similar for all of
them. With careful study of this repeated code we can
add the new functional primitives. We also need to
create two additional C-language code files that include
the functions that create the functional primitives that
are going to be added.

factors

Another goal that we have is to make that the C code
generated by the Java-FFT tool execute efficiently in
personal computers (PCs). To achieve this we will
modify the code to make it exploit all features of the
architecture of PCs, such as a cache memory.

4. Conclusion

In this paper, we presented a Java-based programming
tool for the automatic generation of C code for the FFT
algorithms based on Kronecker products algebra
formulations. Since this tool was written as a Java
applet it can be accessed through the Internet. The tool
is going to be modified to include two new functional
primitives in the user interface and to generate code
that efficiently run in PCs.

5. Future Work

The following are modifications that we are
considering to make to the Java-FFT tool:

e Modify the user interface to improve its usability
and robustness.

e Allow the user to add custom functional primitives.

e Make the Java-FFT tool generate Java and C# code
in addition to the C code.

References

[Johnson90] J. R. Johnson, R. W. Johnson, D.
Rodriguez, R. Tolimieri, “A Methodology for
Designing, Modifying, and Implementing Fourier
Transform Algorithms on Various Architectures,”
IEEE Transactions on Circuits, Systems, and Signal
Processing, Vol. 9, No. 4, 1990.

[Rodriguez02] D. Rodriguez, A. Quinchanegua, H.
Nava. “Signal Operator Cores for SAR Real Time
Processing Hardware,” IEEE IGARSS 2002, Toronto,
Canada, July 2002.

[Rodriguez02] D. Rodriguez, D. Rueda, H. Nava, A.
Quinchanegua. “High Performance SAR Raw Data
Generation Algorithms for Remote-sensed Imaging
Applications,” IEEE IGARSS 2002, Toronto, Canada,
July 2002.

[Rodriguez91] Domingo Rodriguez, “ Tensor product
algebra as a tool for VLSI implementation of the
discrete Fourier transform,” ICASSP °91, Vol. 2,
pp-1025-1028. May 1991.

[Rodriguez00] M. Rodriguez, D. Rodriguez, “Java-
Based Tool Environment for Automatic
Multidimensional FFT Code Generation,” International
Conference on Signal Processing, Applications and
Tecnology, Orlando, Florida, Nov. 1999.

