
Factorization and Quantum Computing

Hector A. Del Manzano
Advisor: Dr. Lev Steinberg

Mathematics &

Electrical and Computer Engineering Department
University of Puerto Rico, Mayaguez Campus

Mayaguez, Puerto Rico 00681-5000
xzano@hotmail.com

Introduction
 In 1994 Peter Shor published the
first algorithm that proved the
superiority of quantum computers over
classical computers for solving certain
types of problems. His algorithm did
something that had been considered
impossible for quite some time:
factorizing a very big number in very
little time. As we shall see, there are
two main characteristics for this
factorizing algorithm: (a) it is
probabilistic, meaning that it can
sometimes fail, and, (b) it is quantum, in
the sense that the main step relies on
performing operations to superposed
states. To understand the impact of such
achievement, we study how the quantum
computer excels at factorization of large
numbers and why it can be dangerous
and profitable. This brings us to study in
detail the most popular form of
encryption - the RSA public key crypto-
system- and how we can break it using
Shor's factorization algorithm. To do so,
we discuss an important result from
number theory that relates periodic
functions with factors.

1.RSA Crypto-System
 The history starts in 1977 when
Ronald Rivest, Adi Shamir and Leonard
Adleman proposed an encryption
method that could be realized without

secret meetings and without having to be
periodically revised for key renovation.
This system has the receiver of
encrypted messages broadcast openly an
encryption key, that can be used by
anyone to encrypt a message and that
only enables the recipient to understand
the contents. This organization is called
the "public key" protocol. The
advantages of public key protocols are
the anonymity and fast exchanges. These
two accomplishments are also the
requirements of auspicious commerce
over collective environments like
telephony and the internet. Separating
the intended receiver of the message and
an uninvited one, is the difficult task,
which is closely related with the
factorization of big numbers. As we see
on figure 1, which describes the RSA
encryption method. If an eavesdropper
can "break" our number, then he can
calculate the private key the same way
the true recipient does, and defeat the
security of the communication channel.
This is why a working implementation
of Shor's Algorithm could foil most of
modern communication channels, banks
and governments included. But before
delving into the advantages and threats
of the Shor’s algorithm, we introduce the
proper definitions, for factorization and
size, and also, we provide an encryption

example using the RSA method, detailed
in figure2

1.Compute the product, n, of two large
primes: p and q.

2.Select an integer d, that is coprime
with (p-1)(q-1). Coprime means that the
greatest common divisor between the
numbers is 1.

3.Compute e, from the congruence:
 ed≡1mod(p-1)(q-1).

4.Broadcast to the world {e, n}. This is
the public key.

5.To send a message, the emitter
represents first this message as a
sequence of numbers each in the range 1
to n. This takes the message {Mtext}
and transforms it to {Mint}.

6.Now the emitter uses the public key to
encrypt each {Mint}. Using:
 nME e

ii mod=

 7.The receiver can decrypt the massage
using the private key which only he has.
Thus,
 nEM d

ii mod=

8.The final step transforms {Mint} into
the original set of {Mtext}, which can be
read in plain letters.

Figure 1. RSA Encryption Scheme

Factorization:

 By factorization we mean the
splitting of a number into its prime
factors. That is, if number n is divisible
by an integer then the factorization of n
means to express n in the following
manner:

...321 pppn ⋅⋅=

where ip are primes such that their

product is n.

Size:

 When we measure the "size" of a
number, we specifically refer to the
number of bits needed to store that
number in a register. Size is important
to us because it enables us to have a way
of measuring and estimating
computation time for mathematical
processes running on a computer.

2.Example Using RSA Encryption
 Scheme

1.First the person wishing to receive the
messages (us) makes the set of keys
{e,n} and {d,n}.

 a)We select p=9999991 and
q=9986783. n = pq = 99867740118953.

 b)We select integer d, such that
gcd(d,k)=1, where k=(p-1)(q-1).
 k=99867720132180,
 d=5133716671

c)We compute integer e from
ked mod1≡

e=1277225732

 d)Now we can broadcast to the
 world the public key:
pub={1277225732, 99867740118953}
 keeping secret our private key:
 priv= {5133716671, 99867740118953}.

2. If someone wished to send us a
secure greeting, {'H', 'E', 'L', 'L', 'O'} for
example, first we transform to numbers:

{'H', 'E', 'L', 'L', 'O'}→{8,5,12,12,15}

3.Now we encrypt using :
{

9...mod5 8953,9986774011mod8 12772257321277225732

}

{'H', 'E', 'L', 'L', 'O'}→{big, big . . .}

4. To understand what has been
received, we decrypt the set of numbers
by applying:
 {big, big. . .}→

{

...,89539986774011mod ...51
2

5133716671
1 bigbig

.}
 →{8, 5, 12, 12, 15}
5. Finally we reconvert the integers
{8,5,12,12,15} to the original alphabet:
{8, 5, 12, 12, 15}→{'H', 'E', 'L', 'L', 'O'}

3.Intractability

 Mathematical processes are
considered intractable when the steps
required to produce an output can be
explicitly detailed but the number of
iterations or errors grows exponentially
or super-polynomially with respect to
some parameter of the input. The time
response of the best known (classical)
factoring algorithms has the following
form:

)))(exp(()(33 LogLLLT =

Where L is the size of the input -Hence
we assume that the problem of
factorization for large numbers is
intractable. What this means is that
when feeding a (classical) factoring
algorithm it is not realistic to expect to

see a correct output anytime in the near
future. Illustrating the difficulty of
factoring a 2000 digit number, Professor
Umesh Vazirani of the University of
California Berkeley said: "It's not just a
case that all the computers in the world
today would be unable to factor that
number. It's really much more
dramatic... Even if you imagine that
every particle in the Universe was a
computer and was computing at full
speed for the entire life of the Universe,
that would be insufficient to factor that
number."

4.Shor's Factoring Algorithm -
 Number Theory Result

 In Peter Shor's factoring
algorithm we will use an important result
from number theory that directly relates
the period of a special function we create
to the factors of a number we used in the
creation of this function. Specifically
we will be using the following
transformation:Construct the function
 () nXaF a

n mod=

where n is the number to be factored, X
is a randomly chosen number that has to
be coprime to n, and a is the independent
variable. Coprime means that the
greatest common divisor between these
two numbers is 1; i.e. gcd(X, n)=1. The
interesting property this new function
exhibits is that it is periodic with a
particular period, r. r is important to us
because using the gcd operator we can
get two factors of n. That is:

pnX
r

=−),1gcd(2 and

qnX
r

=+),1gcd(2 such that pq=n.

 This is still does not solve the
intractability problem because for big
numbers detecting the period or
repetition of outputs from the ()aFn

function is difficult and time consuming
as the original factorization problem.
This is what we call the Conservation Of
Misery principle.
 Yet, the benefits of quantum
computation are such that exploiting
parallelism and coherence we can
successfully turn this result into an
efficient way of calculating the factors of
a number.

5.Shor's Factoring Algorithm - The
Quantum Approach

The following steps describe the
application of Shor's algorithm for
factoring number n.

1. Select number q. This number as we
will see later, defines our limit in our
search for factors of n. We can think of
q as the scope of our search. To be
efficient, we should select an integer q
such that: 22 32 nqn ≤≤

2. Select a random integer x, so that x
and q are coprime.

3. Repeat the following steps using the
same x, every time.

 a) Create one big quantum
register and partition the q-bits in two
sets. the state of the register should be

2,1 regreg if reg1 describes the state of

the q-bits in the first set and reg2
describes the state of the q-bits in the
second set. Remember that these two
partitions are part of the same register.

 b) Load register 1 with a
superposition of all the integers between
0 and (q-1). Load register 2 with
zeros. The state of the register is now:

∑
−

=

=Ψ
1

0

0,
1 q

a

a
q

 c) Now transform each number
in register 1, using () nxaF a

n mod= ,

and place the results in register 2.
The register is now described by:

∑
−

=

=Ψ
1

0

mod,
1 q

a

a nxa
q

 d) Measure the state of register 2
obtaining some result k. This will
project register 1 into taking a
superposition of just those values that

knx a =mod . The whole register is
now:

 ∑
∈′

′=Ψ
Aa

ka
A

,
1

 where A= {a : knx a =mod }
and A is the number of elements in

this set..

 e) Next compute the discrete
Fourier Transform of register 1. This
has the effect of mapping the just
projected state in register 1 into a
superposition given by:

∑ ∑
∈′

−

=

′

=Ψ
Aa

q

c

q

c
ja

kce
qA

1

0

2

,
11 π

 f) Next we measure the state of
register 1. This produces some positive

integer c, where
rq

c λ
= for some

positive integer λ , r being the desired
period. What this step does is to sample
the discrete Fourier transform.

 g) Estimate λ using a continued
fraction expansion. This is done after
repeating steps from (a) to (f) a few
times. One samples from the transform
until getting a sequence of the form

...,,
1 21

rrr

λλ
. for various integers iλ .

After estimating λ we can guess
period r.

4. Now that we have period r, we can
obtain two factors of number n using:

pnX
r

=−),1gcd(2 and

qnX
r

=+),1gcd(2

References

[1] Barenco, A., “Quantum Physics
 and computers”, Contemporary
 Physics, Vol.37, No.5,1996
[2] Ekert, A., Jozsa, R., “Quantum
 Computation and Shor’s factoring
 algorithm”, Reviews of Modern
 Physics, Vol. 68, No. 3, July 1996
[3] Levine, A., “Discovering Higher
 Mathematics”, Academic Press
 2000
[4] Steane, A.M. “Error Correcting
 Codes in Quantum Theory”,
 Physical Review Letters, Vol.77,
 No.5, July 1996
[4] Williams, C.P., Clearwater, S.H.,
 “Explorations in Quantum
 Computing”, Springer- Verlag
 New York, Inc 1997.

