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Introduction  
 In 1994 Peter Shor published the 
first algorithm that proved the 
superiority of quantum computers over 
classical computers for solving certain 
types of problems.  His algorithm did 
something that had been considered 
impossible for quite some time: 
factorizing a very big number in very 
little time.  As we shall see, there are 
two main characteristics for this 
factorizing algorithm: (a) it is 
probabilistic, meaning that it can 
sometimes fail, and, (b) it is quantum, in 
the sense that the main step relies on 
performing operations to superposed 
states.  To understand the impact of such 
achievement, we study how the quantum 
computer excels at factorization of large 
numbers and why it can be dangerous 
and profitable.  This brings us to study in 
detail the most popular form of 
encryption - the RSA public key crypto-
system- and how we can break it using 
Shor's factorization algorithm.  To do so, 
we discuss an important result from 
number theory that relates periodic 
functions with factors.   
 
1.RSA Crypto-System 
 The history starts in 1977 when 
Ronald Rivest, Adi Shamir and Leonard 
Adleman proposed an encryption 
method that could be realized without 

secret meetings and without having to be 
periodically revised for key renovation.  
This system has the receiver of 
encrypted messages broadcast openly an 
encryption key, that can be used by 
anyone to encrypt a message and that 
only enables the recipient to understand 
the contents. This organization is called 
the "public key" protocol.  The 
advantages of public key protocols are 
the anonymity and fast exchanges. These 
two accomplishments are also the 
requirements of auspicious commerce 
over collective environments like 
telephony and the internet.  Separating 
the intended receiver of the message and 
an uninvited one, is the difficult task, 
which is closely related with the 
factorization of big numbers.  As we see 
on figure 1, which describes the RSA 
encryption method. If an eavesdropper 
can "break" our number, then he can 
calculate the private key the same way 
the true recipient does, and defeat the 
security of the communication channel.  
This is why a working implementation 
of Shor's Algorithm could foil most of 
modern communication channels, banks 
and governments included.  But before 
delving into the advantages and threats 
of the Shor’s algorithm, we introduce the 
proper definitions, for factorization and 
size, and also, we provide an encryption 



example using the RSA method, detailed 
in figure2 
 

1.Compute the product, n, of two large 
primes: p and q. 
 
2.Select an integer d, that is coprime 
with (p-1)(q-1).  Coprime means that the 
greatest common divisor between the 
numbers is 1. 
 
3.Compute e, from the congruence:      
            ed≡1mod(p-1)(q-1). 
 
4.Broadcast to the world {e, n}.  This is 
the public key. 
 
5.To send a message, the emitter 
represents first this message as a 
sequence of numbers each in the range 1 
to n.  This takes the message {Mtext} 
and transforms it to {Mint}. 
  
6.Now the emitter uses the public key to 
encrypt each {Mint}.  Using: 
 nME e

ii mod=  

 
 7.The receiver can decrypt the massage 
using the private key which only he has.  
Thus, 
 nEM d

ii mod=  

 
8.The final step transforms {Mint} into 
the original set of {Mtext}, which can be 
read in plain letters.     

Figure 1. RSA Encryption Scheme 
 
Factorization: 
 
 By factorization we mean the 
splitting of a number into its prime 
factors.  That is, if number n is divisible 
by an integer then the factorization of n 
means to express n in the following 
manner: 

 
...321 pppn ⋅⋅=                                 

where ip  are primes such that their 

product is n. 
 
Size: 
 
 When we measure the "size" of a 
number, we specifically refer to the 
number of bits needed to store that 
number in a register.  Size is important 
to us because it enables us to have a way 
of measuring and estimating 
computation time for mathematical 
processes running on a computer. 
 
 
2.Example Using RSA Encryption     
   Scheme  
 
 
1.First the person wishing to receive the 
messages (us)  makes the set of keys 
{e,n} and  {d,n}. 
  
 a)We select p=9999991 and 
q=9986783. n = pq = 99867740118953. 
  
 b)We select integer d, such that 
gcd(d,k)=1, where k=(p-1)(q-1). 
     k=99867720132180,            
               d=5133716671 
 

c)We compute integer e from 
ked mod1≡  

e=1277225732 
   
 d)Now we can broadcast to the   
             world the public key:  
pub={1277225732, 99867740118953} 
              keeping secret our private key: 
 priv= {5133716671, 99867740118953}. 
  
2.  If someone wished to send us a 
secure greeting, {'H', 'E', 'L', 'L', 'O'} for 
example, first we transform to numbers: 



{'H', 'E', 'L', 'L', 'O'}→{8,5,12,12,15} 
 
3.Now we encrypt using :  
{    

9...mod5  8953,9986774011mod8 12772257321277225732

} 
 
{'H', 'E', 'L', 'L', 'O'}→{big, big . . .} 
 
4.  To understand what has been 
received, we decrypt the set of numbers 
by applying: 
 {big, big. . .}→   
      
{

...,89539986774011mod ...51
2

5133716671
1 bigbig

.}  
                 →{8, 5, 12, 12, 15} 
5.  Finally we reconvert the integers 
{8,5,12,12,15} to the original alphabet: 
{8, 5, 12, 12, 15}→{'H', 'E', 'L', 'L', 'O'}     
 
 
 
3.Intractability 
  
 Mathematical processes are 
considered intractable when the steps 
required to produce an output can be 
explicitly detailed but the number of 
iterations or errors  grows exponentially 
or super-polynomially with respect to 
some parameter of the input.  The time 
response of the best known (classical) 
factoring algorithms has the following 
form:   
 

    )))(exp(()( 33 LogLLLT =  

 
Where L is the size of the input -Hence 
we assume that the problem of 
factorization for large numbers is 
intractable.  What this means is that 
when feeding a (classical) factoring 
algorithm it is not realistic to expect to 

see a correct output anytime in the near 
future.  Illustrating the difficulty of 
factoring a 2000 digit number, Professor 
Umesh Vazirani of the University of 
California Berkeley said: "It's not just a 
case that all the computers in the world 
today would be unable to factor that 
number.  It's really much more 
dramatic... Even if you imagine that 
every particle in the Universe was a 
computer and was computing at full 
speed for the entire life of the Universe, 
that would be insufficient to factor that 
number." 
 
 
 
 
4.Shor's Factoring Algorithm -     
   Number Theory Result 
 
 In Peter Shor's factoring 
algorithm we will use an important result 
from number theory that directly relates 
the period of a special function we create 
to the factors of a number we used in the 
creation of this function.  Specifically 
we will be using the following 
transformation:Construct the function 
               ( ) nXaF a

n mod=  

where n is the number to be factored,  X 
is a randomly chosen number that has to 
be coprime to n, and a is the independent  
variable.  Coprime means that the 
greatest common divisor between these 
two numbers is 1; i.e.  gcd(X, n)=1.  The 
interesting property this new function 
exhibits is that it is periodic with a 
particular period, r.  r is important to us 
because using the gcd operator we can 
get two factors of n.  That is:   

pnX
r

=− ),1gcd( 2                 and 

qnX
r

=+ ),1gcd( 2    such that pq=n.  
 



 This is  still does not solve the 
intractability problem because for big 
numbers detecting the period or 
repetition of outputs from the ( )aFn  

function is  difficult and time consuming 
as the original factorization problem.  
This is what we call the Conservation Of 
Misery principle.    
 Yet, the benefits of quantum 
computation are such that exploiting 
parallelism and coherence we can 
successfully turn this result into an 
efficient way of calculating the factors of 
a number.    
                         
5.Shor's Factoring Algorithm - The 
Quantum Approach 
 
The following steps describe the 
application of Shor's algorithm for 
factoring number n. 
 
1.  Select number q.  This number as we 
will see later, defines our limit in our 
search for factors of n.  We can think of 
q as the scope of our search.  To be 
efficient, we should select an integer q 
such that: 22 32 nqn ≤≤    
 
2.  Select a random integer x, so that x 
and q are coprime. 
 
3.  Repeat the following steps using the 
same x, every time. 
 
 a)  Create one big quantum 
register and partition the q-bits in two 
sets.  the state of the  register should be 

2,1 regreg  if reg1 describes the state of 

the q-bits in the first set and reg2 
describes the state of the q-bits in the 
second set.  Remember that these two 
partitions are part of the same register. 
 

 b)  Load register 1 with a 
superposition of all the integers between 
0 and (q-1).  Load  register 2 with 
zeros.  The state of the register is now:  
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 c)  Now transform each number 
in register 1, using ( ) nxaF a

n mod= , 

and place the results in  register 2.  
The register is now described by: 
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 d)  Measure the state of register 2 
obtaining some result k.  This will 
project register 1 into taking a 
superposition of just those values that 

knx a =mod .  The whole register is 
now: 
 
  

 ∑
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 where A= {a : knx a =mod }  
and  A  is the number of elements in 

this set.. 
 
 e)  Next compute the discrete  
Fourier Transform of register 1.  This 
has the effect of mapping the just 
projected state in register 1 into a 
superposition given by: 
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 f)  Next we measure the state of 
register 1.  This produces some positive 

integer c, where 
rq

c λ
=   for some 

positive integer λ , r being the desired 
period.  What this step does is to sample 
the discrete Fourier transform. 
 
 g)  Estimate λ  using a continued 
fraction expansion.  This is done after 
repeating steps from (a) to (f) a few 
times.  One samples from the transform 
until getting a sequence of the form 

...,,
1 21

rrr

λλ
. for various integers iλ .  

After  estimating λ  we can guess 
period r. 
 
4.  Now that we have period r, we can 
obtain two factors of number n using: 
  

pnX
r

=− ),1gcd( 2  and 

qnX
r

=+ ),1gcd( 2   
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