
Application of Uniform Quantization and Huffman Coding to the
Iterated Block Matching Fractals for Image Compression

Rolando J González & Paul G Román

Advisor: Dr. Hamed Parsiani

Laboratory for Applied Remote Sensing and Image Processing
Electrical and Computer Engineering Department

University of Puerto Rico, Mayagüez Campus
Mayagüez, Puerto Rico 00681-5000

rolandog@larsip.uprm.edu / roman_paul@hotmail.com

ABSTRACT

The concept of Fractals dates back to
Mandelbrot [1]. Improvements were
achieved by other researchers such as
Barnsley and Jaquin [2],[3]. In this work, the
Iterated Block Matching Fractals (IBMF) [4]
software is being coded using Uniform
Quantization (UQ) and Huffman Coding
(HC). Theoretical description of each coding
method is presented using examples. The
IBMF output parameters are coded using the
cascaded UQ/HC method. The compression
achieved for the Lena image is 8.5 at the
Peak Signal to Noise Ratio (PSNR) of 33.7.
The objectivity of this result was preserved
by not including the Lena image parameters
in determination of the UQ and HC tables.
However, for tutorial purposes an image of a
baby, which was included in the Huffman
table creation, was used as the input image
to be compressed by the IBMF. The result
was as expected a higher compression of 14
at the PSNR of 37.8. Therefore, the limits of
compression of a given image are very much
related to being totally a part of the pool at
one extreme or being totally out at the other
extreme.

1. INTRODUCTION

Uniform Quantization and Huffman Coding
theory and their implementation to the

IBMF software is explained in details and
compression tests are presented with
numerical results. The purpose of UQ is to
code the parameters of the IBMF output,
assuming equally sized bins for the
parameters to be coded. On the other hand,
the purpose of HC is to achieve a higher
compression ratio by compressing the UQ
output by assigning shorter bit patterns to
the most frequent symbols. The cascading
of UQ and HC will permit a higher
compression ratio. However, the cascading
of a Non-UQ and a HC will not lead to any
higher compression, because the symbols
generated by the Non-UQ have equally
likely probabilities of occurrence, and
Huffman will not cause any compression to
take place.

For testing purposes, a pool of images was
used to construct Huffman tables. The last
part of this report contains pictures and
conclusions with results from the software.

2. UNIFORM QUANTIZATION

Quantization is the conversion of a
continuous signal into a discrete signal. The
value of each signal sample is represented
by a value selected from a finite set of
possible values. The difference between the
unquantized input and the quantized output
is called quantization error. Uniform

1

1

10
0

0

A B C D

Quantization can be implemented to any
type and number of inputs, but it is more
efficient if it is a multiple of 2N. To build a
uniform quantizer, subtract the minimum
value from the maximum value, and then
divide it by the compression ratio desired.
For example, in a 16 (from 0 to 15) discrete
variable input with a desired compression
ratio of 4, a 4 (from 0 to 3) variable output is
produced which are quantization indices
representing the input values.

Figure 1. Uniform Quantization with a

compression ratio of 4.

Fig. 1 presents an example of uniform
quantization with the desired compression
ratio of 4.

Figure 2. 16 variable input quantized to give a 4

variable output.

It can be seen how after applying
quantization, the input changes from a 4 bit
representation (A B C D) to a 2 bit (A B)

representation giving a compression ratio of
4, Fig. 2. As discussed previously, HC
achieves compression if some symbols are
more likely to occur than others are.

3. HUFFMAN CODING

Huffman coding is a lossless data
compression algorithm. The Huffman (or
variable length coding) method is based on
the fact that some symbols have a higher
frequency of occurrence than others. These
symbols are encoded in fewer bits than the
fixed length coding producing in average a
higher compression. The idea behind HC is
to use shorter bit patterns for more frequent
symbols. To achieve that goal, Huffman
algorithm needs the probability of
occurrence of each symbol. These symbols
(stored in nodes), Fig. 3, are then sorted in
ascending order of their probability value.

Figure 3. Huffman tree representation for a four

symbols data.

The algorithm selects two nodes (children)
with the smaller probabilities and constructs
a new node (parent) with a probability value
equals to the addition of the probabilities of
its children. This process ends when the
node with probability equal to 1 is
constructed. The result of this algorithm is a
binary tree data structure with the root being
the node with probability equal to 1, and the
last nodes (leaves) represent the original
symbols. This binary tree is then traversed

0, 1, 2, 3

4, 5, 6, 7

8, 9, 10, 11

12, 13, 14, 15

0

1

2

3

A B C D A B

.125 .125 .25

.25

.5

.5

1

0 3 7 11 15
0

1

2

3

Input

Quantizer
indices

to reach its leaves when a certain symbol is
needed. Moving to a right child insert a 1 in
the bit pattern of the symbol, while moving
to a left child insert a 0. The result is a
unique bit pattern for each symbol that can
be uniquely decoded. This is because no
code word can be a prefix of any larger-
length code word.

Table 1. Code before Huffman Coding

Table 2. Code after Huffman Coding

4. APPLICATION OF UNIFORM

QUANTIZATION AND HUFFMAN
CODING TO THE IBMF FOR
IMAGE COMPRESSION

The IBMF blocks are divided into three
types: shades, mid-ranges, and edges. For
each of these types different parameters
need to be encoded with different number of
bits as in Table 3, [4].

Table 3. Number of bits per parameter

As an example, Alpha values are real
numbers (4 bits) from 0.0 to 2.0 and Mean
values are integers (6 bits) from 0 to 255. In
order to achieve these quantization results
(table 3), UQ is implemented. After these
parameters are quantized HC compresses
them into shorter bit patterns according to
their probabilities. Later when the decoder
receives a bit pattern, it compares it with the
Huffman tables looking for the symbol
representing this bit pattern. Decoding can
be uniquely achieved for each symbol, since
no Huffman Code is a prefix of another
longer length code.

5. GENERATING HUFFMAN TABLES USING

A POOL OF IMAGES

To implement the techniques described
previously, look-up tables were created
using a pool of 15 images. A varied
selection of images was used like faces,
landscapes, diverse objects, and LANDSAT
satellite images. The idea behind this is to
do a statistical analysis on a large sample of
data. The pool of images was fed to the
IBMF encoder and the output parameters
were used as inputs to the Uniform
Quantizer. The output files of the UQ for
the 15 images were combined along with
their respective probabilities and fed into a
Huffman table generator. And, a table of
Huffman code is generated for each of the
parameters to be coded. Then, the outputs
of these algorithms are the look-up tables
that the IBMF will use later to code any
image. Later, a new image to be processed
is then encoded accordingly by the tables.
Higher compression is achieved with
images, which happens to be a part of the
original pool of images chosen. And, lesser
compression is produced for the images,
which do not have many similarities with
the pool of images. This is why if more
images were used to create these tables, a

Character Code Frequency Total Bits
A 00 16 32
B 01 8 16
C 10 4 8
D 11 4 8
 Total 64

Character Code Frequency Total Bits
A 0 16 16
B 10 8 16
C 110 4 12
D 111 4 12
 Total 56

Parameter Shades Mid Ranges Edges
Type 2 bits 2 bits 2 bits
Mean 6 bits 6 bits 6 bits
Alpha 4 bits 4 bits

Domain X 6 bits 6 bits
Domain Y 6 bits 6 bits
Isometry 3 bits

Total 8 bits 24 bits 27 bits

better compression at higher quality would
be achieved.

6. CONCLUSION

Higher compressions at similar or better
qualities are produced for IBMF with
UQ/HC compression method. Lena image
(512 x 512), Fig. 4, was not a part of the 15
images involved in the creation of the tables.
Lena was coded using the tables, giving
compression ratio of 8.5 at PSNR of 33.7.
On the other hand, the Baby image (384 x
384), Fig. 5, was part of the tables, so when
coded with the IBMF software a higher
compression ratio of 14 at PSNR of 37.8
was achieved.

ACKNOWLEDGEMENT
Work supported by NASA grant NCC 5-252

REFERENCES
[1] B. Mandelbrot, “The Fractal Geometry of

Nature”. San Francisco, CA: Freeman, 1982.
[2] M. F. Barnsley and S. Demko, “Iterated function

systems, and global construction of
fractals,” Proc. Roy. Soc. London, vol. A399, pp.

243-275, 1985.
[3] A. E. Jacquin, “Fractal Image Coding: A

Review,” Proceedings of the IEEE, vol. 81, No.
10, Oct. 1993.

[4] Hamed Parsiani, Andres Fuentes, “Fast Near
lossless Iterated Block Matching Fractals Image
Compression”, Proceedings of the IASTED
International Conference, Signal and Image
Processing , SIP’98, Oct. 28-31, 98, Las Vegas,
Nevada.

Figure 4a. Original image of Lena

Figure 5a. Original image of baby

Figure 4b. Reconstructed image of Lena

Figure 5b. Reconstructed image of baby

