
Denis Caromel 1

Denis Caromel, et al.
www.inria.fr/oasis/ProActive

INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis, IUF
Sept. 30 2004

Being

About Adaptive Grid Middleware

1. ’’Being Adaptive’’: Generalities
2. ProActive: Adaptive Features
3. Adaptive Genes: Active Objects-Components vs. MPI

Denis Caromel 2

A Few
Generalities

on
’’Adaptive’’

Denis Caromel 3

Dictionary Definitions
Adaptive, Adaptative:

Having a capacity for adaptation;
’’The adaptive coloring of a chameleon”

==> An entity adapting to the environment
’’Auto-adaptive’’: … No ! Pleonasm, already by definition

How to be adaptive?
Adaptable ==> Parameterized
First: Good Parameterized Strategies and Protocols

– Design
– Model, Performance Evaluation, Simulation, Emulation, Benchmarks

Configurable ==> then can become: Effectively Adaptive

Denis Caromel 4

Dictionary Definitions (2)

ANTONYM: Maladaptive
Showing faulty adaptation

=> dysfunctional, nonadaptive -- of a trait or condition
Failing to serve an adjustive purpose;

==> Dysfunctional behavior
==> Poorly adjusted

So, if your Middleware is adaptive, it can indeed be
Maladaptive!

Denis Caromel 5

Adaptive
Grids
in pictures

Denis Caromel 6

What ’’Adaptive Grids’’ used to be

Denis Caromel 7

Zooming

Numerical Dendritic Growth (NDG):
Modeling Solidification using Phase-Field Equations
Solved by Adaptive Grid Methods

Denis Caromel 8

Adaptation in Grid applications:
Not only the middleware is being Adaptive

Many applications require adaptive strategies, e.g.:

• Adaptive Numerical Method ==> Mesh Refinement

• Adaptive Multi-scale Bio-simulation

• Adaptive Discretisation Schemes

• …
How to make sure

Adaptive Applications do not confuse Adaptive Middelwares ?
ending up into … Maladaptive Grid !

Denis Caromel 9

What ’’Adaptive Grids’’ are now

Adaptive Middleware for
Distributed Sensor Environments

Xingbo Yu, Koushik Niyogi,
Sharad Mehrotra, Nalini
Venkatasubramanian

University of California, Irvine
IEEE Distributed System Online
May 2003

Denis Caromel 10

’’Adaptive Grids’’ are complex systems

Adaptive
Communication
Control
Middleware
"CSC"

NTT
Cyber
Communication
Laboratory

Denis Caromel 11

Adaptation in Grid Middleware:
Adaptive strategies at many locations:

• Communication transports and strategies
• Discovery, Localization, Routing
• Fault-Tolerance
• Managing Disconnections
• Security
• Buffering
• Scheduling, Load Balancing
• …

How to make sure
Adaptive Strategy N do not confuse Adaptive Strategy M ?

ending up into … Maladaptive Grid !

Denis Caromel 12

2. Adaptivity in
ProActive
Programming

Composing
Deploying

W r a p p i n g

Denis Caromel 13

A uniform framework: An Active Object pattern
A formal model behind: Determinism (POPL’04)

Programming Model:
• Remote Objects (Classes, not only Interfaces, Dynamic)
• Asynchronous Communications, Wait-By-Necessity
• Groups, Mobility, Components, Security
Environment:
• XML Deployment Descriptors
• Interfaced with: rsh, ssh, LSF, PBS, Globus, Jini, SUN Grid Engine

• Graphical Visualization and monitoring: IC2D
In the www. ObjectWeb .org Consortium

(Open Source LGPL)

ProActive:
A Java API + Tools for Parallel, Distributed Computing

Denis Caromel 14

ProActive model
Java RMI (Remote Method Invocation = Object RPC = o.foo(p))

plus a few important features:
• Sequential Object: a single thread with default FIFO service
• No shared passive objects
• Asynchronous Method calls towards Active Objects:

Implicit Futures as method results
• Wait-By-Necessity:

• Automatic wait upon a strict operation on an unknown future
• First-Class Futures:

- Futures can be passed to other activities
- Sending a future to another machines is not blocking

Denis Caromel 15

A

ProActive : Active objects

Proxy

Java Object

A ag = newActive (“A”, […], VirtualNode)
V v1 = ag.foo (param);
V v2 = ag.bar (param);
...
v1.bar(); //Wait-By-Necessity

V

Wait-By-Necessity
is a

Dataflow
Synchronization

JVM

A

JVM

Active Object

Future Object Request

Req. Queue

Thread

v1v2 ag

WBN!

Denis Caromel 16

Call between Objects:
Parameter passing: Copy of Java Objects

ba
x

Copy:
at

serializ
ation

(Deep) Copies evolve independently -- No consistency

b.foo(x)

Denis Caromel 17

Call between Objects:
Parameter Passing: Active Objects

ba
x

Copy:
at
serializ
ation

Object passed by Deep Copy - Active Object by Reference

b.foo(x, c)

c

c

Reference
Passing

Denis Caromel 18

A

Creating AO and Groups

Typed Group Java or Active Object

A ag = newActiveGroup (“A”, […], VirtualNode)
V v = ag.foo(param);
...
v.bar(); //Wait-by-necessity

V

Group, Type, and Asynchrony
are crucial for Cpt. and GRID

JVM

Object-Oriented
Typed Group Communications

Denis Caromel 19

Adaptive Feature 1:
Parallel Group Communications

Adaptive strategy to manage the number of threads

Execution of N calls in //

Group proxy

A

B

C

D

Denis Caromel 20

OO SPMD
A ag = newSPMDGroup (“A”, […], VirtualNode)

// In each member
myGroup.barrier (“2D”); // Global Barrier
myGroup.barrier (“vertical”); // Any Barrier
myGroup.barrier (“north”,”south”,“east”,“west”);

A

Still,
not based on raw messages,

but

Typed Method Calls
==> Components

Denis Caromel 21

IC2D: Interactive Control and Debugging of Distribution

With any ProActive application
Features:

Graphical and Textual visualization
Monitoring and Control

Denis Caromel 22

Content
Composition View

Distributed Components
Graphical Composition, Monitoring, Migration

Denis Caromel 23

Content
Composition View

Distributed Components
Graphical Composition, Monitoring, Migration

Denis Caromel 24

Adaptive Feature 2:
Multi-transports layer

RMI, RMI-ssh, …, Ibis, HTTP XML, ...
Adaptive choice of transport layer between:

• RMI
• ssh/RMI

Also available with static configuration:
• Ibis (TCP, Myrinet, etc.)
• HTTP
• … ssh/HTTP

Short Term Perspective:
Fully Adaptive Choice between all transports

Denis Caromel 25

2. ProActive : Migration of active objects

Migration is initiated by the active object itself through a primitive: migrateTo

Can be initiated from outside through any public method

The active object migrates with:
• all pending requests
• all its passive objects
• all its future objects

Automatic and transparent forwarding of:
• requests (remote references remain valid)
• replies (its previous queries will be fullfilled)

Denis Caromel 26

Principles and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

Denis Caromel 27

Principles and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

Denis Caromel 28

Principles and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

direct

Denis Caromel 29

Principles and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

direct

direct

Denis Caromel 30

Principles and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

direct

direct

forwarder

Denis Caromel 31

Principles and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

direct

direct

forwarder

Denis Caromel 32

Principles and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

direct

direct

forwarder

Denis Caromel 33

Principles and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)

direct

direct

forwarder

Denis Caromel 34

Other Strategy: Centralized

S

Host A

A

Host B Host C Host D

S : Source
A : Agent

referenceServer

Denis Caromel 35

Centralized Strategy (2)

S

Host A

Host B

A

Host C Host D

S : Source
A : Agent

reference

Migration

Server

Server Update

A migrating object updates the server

Denis Caromel 36

Centralized Strategy (3)

S

Host A

Host B Host C Host D

S : Source
A : Agent

reference

Message

Migration
A

Server

UpdateFailed

A migrating object updates the server

Denis Caromel 37

Centralized Strategy (4)

S

Host A

Host B Host C Host D

S : Source
A : Agent

référence

A

Server
Ask for a new

reference

Response

Message

But the AO might
have moved again in
the meantime

… just play again.

!

The source get a new reference from the server

Denis Caromel 38

Adaptive Feature 3:
TTL-TTU mixed parameterized protocol

TTL: Time To Live + Updating Forwarder:
• After TTL, a forwarder is subject to self destruction
• Before terminating, it updates server(s) with last agent known location

TTU: Time To Update mobile AO:
• After TTU, an will inform a localization server(s) of its current location

Dual TTU: first of two events:
• maxMigrationNb: the number of migrations without server update
• maxTimeOnSite: the time already spent on the current site

5 s

10
5 s

Denis Caromel 39

Adaptative

Security

Denis Caromel 40

ProActive Security: Key Features

ProActive Security Features
• Authentication of users and applications (PKI X 509 certificates)
• Authentication, Integrity and Confidentiality of communications

[A,I,C]
• In XML deployment files, Not In Source
• Mobility Aware
• Dynamically negotiated policies

Denis Caromel 41

A Chain of X509 Certificates

User certificate Application
certificate

Entities certificates
Generate certificate

Denis Caromel 42

Multi-level Policies

Dn

Accept Deny

D0

Accept Deny

Dn-1

Accept Deny

VN

Accept Deny
AO

Accept Deny

Security policy is defined according all
matching rules from:

• Domains

• Virtual Nodes

• Active Objects

Security
policy

Administrator +
User-level policy

Application-level
policy

Denis Caromel 43

Combining Policies

Search for the most specific rule in each domain.
Retrieve all matching rules
Compute policies according to security attributes

Required (+)

Required
(+)

Optional
(?)

Disallowed
(-)

Optional (?)

Disallowed (-)

Sender
Receiver

+ +

+ ?

- -

-

invalid

invalid

Denis Caromel 44

Example
Domain GridA Domain GridB

VN1
VN2

Policy rules
database

JVM

Denis Caromel 45

Example
Domain GridA Domain GridB

Rose

Daliah

VN1
VN2

Policy rules
database

JVM

Denis Caromel 46

Example
Domain GridA Domain GridB

Rose

Daliah

VN1
VN2

Policy rules
database

Migration :
- same VN
- same domain

Can I migrate to the
next VN1 node ?

JVM

Denis Caromel 47

Example
Domain GridA Domain GridB

Daliah

VN1
VN2

Policy rules
database

Rose

Migration :
- same VN
- same domain

1 - retrieve VN policy
2 - migration allowed

JVM

Denis Caromel 48

Example
Domain GridA Domain GridB

Rose

Daliah

VN1
VN2

Policy rules
database

Migration :
- same VN
- same domain

JVM

Denis Caromel 49

Example
Domain GridA Domain GridB

Rose

Daliah

VN1
VN2

Policy rules
database

Migration :
- same VN
- other domain

JVM

Can I migrate to the
next VN1 node on

GridB domain?

Denis Caromel 50

Example
Domain GridA Domain GridB

Daliah

VN1
VN2

Policy rules
database

Migration :
- same VN
- other domain Rose

JVM

1- VN1 policy -> none
2- GridA -> GridB : [+A,+I,+C]
3- migration with [+A,+I,+C]

Denis Caromel 51

Example
Domain GridA Domain GridB

Rose

Daliah

VN1
VN2

Policy rules
database

Migration :
- same VN
- other domain

JVM

Denis Caromel 52

Example
Domain GridA Domain GridB

Daliah

VN1
VN2

Policy rules
database

Method call :
- other VN
- other domain
From
Rose --> Daliah

Rose

JVM

Rose -> Daliah : [+A,?I,+C]

Daliah -> Rose : [+A,+I,?C]

Negotiated Policy:
Rose -> Daliah : [+A,+I,+C]

Denis Caromel 53

Adaptive Feature 4:
Adaptive Security

Dynamic setting of the security attributes

Dynamic negotiation between different:
• Domain and Sub-domain
• Virtual Nodes
• Active Objects

on JVMs on different Machines

Denis Caromel 54

First-Class Futures

Update

Denis Caromel 55

Wait-By-Necessity: First Class Futures

ba

Futures are Global Single-Assignment Variables

V= b.bar ()

c

c

c.gee (V)

v

v

Denis Caromel 56

Adaptive Feature 5:
Future update strategies

No partial replies and requests:
• No passing of futures between activities, more deadlocks

Eager strategies: as soon as a future is computed
• Forward-based:

– Each activity is responsible for updating the values of futures it has forwarded

• Message-based:
– Each forwarding of future generates a message sent to the computing activity
– The computing activity is responsible for sending the value to all

Mixed strategy:
• Futures update any time between future computation and WbN

Lazy strategy:
• On demand, only when the value of the future is needed (WbN on it)

Denis Caromel 57

Wait-By-Necessity: Eager Forward Based

ba

AO forwarding a future: will have to forward its value

V= b.bar ()

c

c

c.gee (V)

v

v

b

Denis Caromel 58

Wait-By-Necessity: Eager Message Based

ba

AO forwarding a future: send a message

V= b.bar ()

c

c

c.gee (V)

v

v

b

Denis Caromel 59

Wait-By-Necessity: Lazy Strategy

ba

An Active Object requests a Future Value when needed

V= b.bar ()

c c.gee (V)

v

v c

Denis Caromel 60

Adaptive:
Active Objects, Cp.

vs.
MPI

Denis Caromel 61

MPI Communication primitives
For some (historical) reasons, MPI has many com. Primitives:

MPI_Send Std MPI_Recv Receive
MPI_Ssend Synchronous MPI_Irecv Immediate
MPI_Bsend Buffer … (any) source, (any) tag,
MPI_Rsend Ready
MPI_Isend Immediate, async/future
MPI_Ibsend, …

First of all:
• a combinatory complexity occurs between sendS and receivesS
• many semantic variation and problems arise between implementations

I’d rather put the burden on the implementation, not the Programmers !
How to do adaptive implementation in that context ?

Is Recv at all needed ? First adaptive feature: Dynamic Control Flow of Mess.

Denis Caromel 62

Main MPI problems for the GRID

Too static in design

Too complex in Interface (API)

Too many specific primitives to be adaptive

Typelessness

Denis Caromel 63

Sum up: MPI vs. ProActive / OO SPMD
A simple communication model, with simple communication primitive(s):

• No RECEIVE but data flow synchronization
• Adaptive implementations are possible for:

• // machines, Cluster, Desktop, etc.,
• Physical network, LAN, WAN, and network conditions

Typed Method Calls:
==> Component enabled

… Adaptivity is needed for Components

Denis Caromel 64

Adaptive GRID
The need for adaptive middleware is now acknowledged,

with dynamic strategies at various points in containers, proxies, etc.

Can we afford adaptive GRID ?

with dynamic strategies at various points
… communications, groups, checkpointing, reconfiguration, …
to deal with various conditions (LAN, WAN, network, P2P, ...)

YES !
HPC vs. HPC

High Performance Components vs. High Productivity Components

Denis Caromel 65

Conclusion
5 Adaptive/Parameterized features in ProActive:

• RMI <--> ssh/RMI … HTTP - Ibis/TCP - Ibis/Myrinet - ...
• Groups, Localization in Mobility, Security, Future Update

Perspectives -- On-going work:
• Adaptive Components:

• Tensionning
• Re-configuration

• Adaptive Checkpointing
Better off with simple Functional RMI / Two-sided MPI Message PassingS

Lets just be careful:
otherwise, we’ll just build …

Maladaptive Adaptive Grids !
Adapt. Network

Adapt. Middleware

Adapt. Application

TCP is an Adaptive Middleware

Denis Caromel 66

ProActive.ObjectWeb.org

