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1. ’’Being Adaptive’’: Generalities 
2. ProActive: Adaptive Features
3. Adaptive Genes:   Active Objects-Components vs. MPI
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A Few 
Generalities 

on
’’Adaptive’’
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Dictionary Definitions
Adaptive, Adaptative:

Having a capacity for adaptation; 
’’The adaptive coloring of a chameleon”

==> An entity adapting to the environment
’’Auto-adaptive’’:  … No !  Pleonasm, already by definition 

How to be adaptive? 
Adaptable ==> Parameterized 
First: Good Parameterized Strategies and Protocols

– Design
– Model, Performance Evaluation, Simulation, Emulation, Benchmarks

Configurable ==> then can become: Effectively Adaptive
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Dictionary Definitions (2)

ANTONYM:    Maladaptive
Showing faulty adaptation

=> dysfunctional, nonadaptive -- of a trait or condition
Failing to serve an adjustive purpose; 

==> Dysfunctional behavior
==> Poorly adjusted

So, if your Middleware is adaptive, it can indeed  be 
Maladaptive!
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Adaptive 
Grids
in pictures
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What ’’Adaptive Grids’’ used to be
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Zooming

Numerical Dendritic Growth (NDG):
Modeling Solidification using Phase-Field Equations
Solved by   Adaptive Grid Methods
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Adaptation in Grid applications:
Not only the middleware is being Adaptive

Many applications require adaptive strategies, e.g.:

• Adaptive Numerical Method ==> Mesh Refinement

• Adaptive Multi-scale Bio-simulation

• Adaptive Discretisation Schemes

• …
How to make sure 

Adaptive Applications do not confuse Adaptive Middelwares ?
ending up into … Maladaptive Grid !
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What ’’Adaptive Grids’’ are now

Adaptive Middleware for 
Distributed Sensor Environments

Xingbo Yu, Koushik Niyogi,
Sharad Mehrotra, Nalini
Venkatasubramanian 

University of California, Irvine
IEEE Distributed System Online
May 2003
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’’Adaptive Grids’’ are complex systems

Adaptive
Communication
Control 
Middleware 
"CSC"

NTT 
Cyber 
Communication 
Laboratory
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Adaptation in Grid Middleware:
Adaptive strategies at many locations:

• Communication transports and strategies
• Discovery, Localization, Routing
• Fault-Tolerance 
• Managing Disconnections 
• Security
• Buffering
• Scheduling, Load Balancing
• …

How to make sure 
Adaptive Strategy N do not confuse Adaptive Strategy M ?

ending up into … Maladaptive Grid !
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2. Adaptivity in
ProActive
Programming

Composing
Deploying

W r a p p i n g
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A uniform framework:        An Active Object pattern
A formal model behind:      Determinism (POPL’04)

Programming Model:
• Remote Objects    (Classes, not only Interfaces, Dynamic)
• Asynchronous Communications, Wait-By-Necessity 
• Groups, Mobility, Components, Security
Environment:
• XML Deployment Descriptors
• Interfaced with: rsh, ssh, LSF, PBS, Globus, Jini, SUN Grid Engine

• Graphical Visualization and monitoring:  IC2D
In the www. ObjectWeb .org   Consortium

(Open Source LGPL) 

ProActive:
A Java API + Tools for Parallel, Distributed Computing
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ProActive model
Java RMI (Remote Method Invocation =  Object RPC =  o.foo(p)  )

plus a few important features:
• Sequential Object: a single thread with default FIFO service
• No shared passive objects
• Asynchronous Method calls towards Active Objects:

Implicit Futures as method results
• Wait-By-Necessity:

• Automatic wait upon a strict operation on an unknown future
• First-Class Futures:

- Futures can be passed to other activities
- Sending a future to another machines is not blocking
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A

ProActive : Active objects

Proxy

Java Object

A ag = newActive (“A”, […], VirtualNode)
V v1 = ag.foo (param);
V v2 = ag.bar (param);
...
v1.bar(); //Wait-By-Necessity

V

Wait-By-Necessity 
is a

Dataflow
Synchronization

JVM

A

JVM

Active Object

Future Object Request

Req. Queue

Thread

v1v2 ag

WBN!
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Call between Objects:
Parameter passing: Copy of Java Objects

ba
x

Copy:
at 

serializ
ation

(Deep) Copies evolve independently -- No consistency  

b.foo(x)
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Call between Objects:
Parameter Passing: Active Objects

ba
x

Copy:
at 
serializ
ation

Object passed by Deep Copy - Active Object by Reference

b.foo(x, c)

c

c

Reference 
Passing
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A

Creating AO and Groups

Typed Group Java or Active Object

A ag = newActiveGroup (“A”, […], VirtualNode)
V v = ag.foo(param);
...
v.bar(); //Wait-by-necessity

V

Group, Type, and Asynchrony 
are crucial for Cpt. and GRID

JVM

Object-Oriented
Typed Group Communications 
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Adaptive Feature 1: 
Parallel Group Communications

Adaptive strategy to manage the number of threads

Execution of N calls in //  

Group proxy

A

B

C

D
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OO SPMD
A ag = newSPMDGroup (“A”, […], VirtualNode)

// In each member
myGroup.barrier (“2D”); // Global Barrier
myGroup.barrier (“vertical”); // Any Barrier
myGroup.barrier (“north”,”south”,“east”,“west”);

A

Still, 
not based on raw messages, 

but

Typed Method Calls
==> Components
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IC2D: Interactive Control and Debugging of Distribution

With any ProActive application
Features:

Graphical and Textual visualization
Monitoring and Control
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Content
Composition View

Distributed Components 
Graphical Composition, Monitoring, Migration
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Content
Composition View

Distributed Components 
Graphical Composition, Monitoring, Migration
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Adaptive Feature 2: 
Multi-transports layer 

RMI, RMI-ssh, …, Ibis, HTTP XML, ...
Adaptive choice of transport layer between:

• RMI 
• ssh/RMI

Also available with static configuration:
• Ibis (TCP, Myrinet, etc.)
• HTTP
• … ssh/HTTP

Short Term Perspective:
Fully Adaptive Choice between all transports
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2. ProActive : Migration of active objects

Migration is initiated by the active object itself through a primitive: migrateTo

Can be initiated from outside through any public method

The active object migrates with:
• all pending requests
• all its passive objects 
• all its future objects

Automatic and transparent forwarding of:
• requests (remote references remain valid)
• replies (its previous queries will be fullfilled)
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Principles and optimizations

Same semantics guaranteed (RDV, FIFO order point to point, asynchronous)
Safe migration (no agent in the air!)
Local references if possible when arriving within a VM
Tensionning (removal of forwarder)
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Principles and optimizations
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Safe migration (no agent in the air!)
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Tensionning (removal of forwarder)

direct
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Principles and optimizations
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Local references if possible when arriving within a VM
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direct

forwarder
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Other Strategy: Centralized

S

Host A

A

Host B Host C Host D

S : Source
A : Agent

referenceServer
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Centralized Strategy (2)

S

Host A

Host B

A

Host C Host D

S : Source
A : Agent

reference

Migration

Server

Server Update

A migrating object updates the server
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Centralized Strategy (3)

S

Host A

Host B Host C Host D

S : Source
A : Agent

reference

Message

Migration
A

Server

UpdateFailed

A migrating object updates the server
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Centralized Strategy (4)

S

Host A

Host B Host C Host D

S : Source
A : Agent

référence

A

Server
Ask for a new

reference

Response

Message

But the AO might
have moved again in 
the meantime

… just play again.

!

The source get a new reference from the server
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Adaptive Feature 3: 
TTL-TTU mixed parameterized protocol

TTL: Time To Live + Updating Forwarder:
• After TTL, a forwarder is subject to self destruction 
• Before terminating, it updates server(s) with last agent known location

TTU: Time To Update  mobile AO:
• After TTU, an will inform a localization server(s) of its current location

Dual TTU:  first of two events:
• maxMigrationNb: the number of migrations without server update
• maxTimeOnSite: the time already spent on the current site

5 s

10
5 s
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Adaptative

Security
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ProActive Security: Key Features

ProActive Security Features 
• Authentication of users and applications (PKI  X 509 certificates)
• Authentication, Integrity and Confidentiality of communications

[A,I,C]
• In XML deployment files, Not In Source
• Mobility Aware
• Dynamically negotiated policies
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A Chain of X509 Certificates 

User certificate Application 
certificate

Entities certificates
Generate certificate
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Multi-level Policies

Dn

Accept  Deny

D0

Accept  Deny

Dn-1

Accept  Deny

VN

Accept  Deny
AO

Accept  Deny

Security policy is defined according all 
matching rules from:

• Domains

• Virtual Nodes 

• Active Objects

Security 
policy

Administrator + 
User-level policy

Application-level 
policy
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Combining Policies

Search for the most specific rule in each domain.
Retrieve all matching rules
Compute policies according to security attributes

Required (+)

Required 
(+)

Optional 
(?)

Disallowed 
(-)

Optional (?)

Disallowed (-)

Sender
Receiver

+ +

+ ?

- -

-

invalid

invalid
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Example
Domain GridA Domain GridB

VN1
VN2

Policy rules 
database

JVM
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Example
Domain GridA Domain GridB

Rose

Daliah

VN1
VN2

Policy rules 
database

JVM
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Example
Domain GridA Domain GridB

Rose

Daliah

VN1
VN2

Policy rules 
database

Migration :  
- same VN 
- same domain

Can I migrate to the 
next VN1 node ?

JVM
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Example
Domain GridA Domain GridB

Daliah

VN1
VN2

Policy rules 
database

Rose

Migration :  
- same VN 
- same domain

1 - retrieve VN policy
2 - migration allowed

JVM
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Example
Domain GridA Domain GridB

Rose

Daliah

VN1
VN2

Policy rules 
database

Migration :  
- same VN 
- same domain

JVM
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Example
Domain GridA Domain GridB

Rose

Daliah

VN1
VN2

Policy rules 
database

Migration :  
- same VN 
- other domain

JVM

Can I migrate to the 
next VN1 node on 

GridB domain?
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Example
Domain GridA Domain GridB

Daliah

VN1
VN2

Policy rules 
database

Migration :  
- same VN 
- other domain Rose

JVM

1- VN1 policy -> none
2- GridA -> GridB : [+A,+I,+C]
3- migration with [+A,+I,+C]
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Example
Domain GridA Domain GridB

Rose

Daliah

VN1
VN2

Policy rules 
database

Migration :  
- same VN 
- other domain

JVM
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Example
Domain GridA Domain GridB

Daliah

VN1
VN2

Policy rules 
database

Method call :  
- other VN 
- other domain
From 
Rose --> Daliah

Rose

JVM

Rose -> Daliah : [+A,?I,+C]

Daliah -> Rose : [+A,+I,?C]

Negotiated Policy:
Rose -> Daliah : [+A,+I,+C]
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Adaptive Feature 4: 
Adaptive Security

Dynamic setting of the security attributes

Dynamic negotiation between different:
• Domain and Sub-domain
• Virtual Nodes
• Active Objects

on JVMs on different Machines
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First-Class Futures

Update
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Wait-By-Necessity: First Class Futures

ba

Futures are Global Single-Assignment Variables

V= b.bar ()

c

c

c.gee (V)

v

v
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Adaptive Feature 5: 
Future update strategies

No partial replies and requests: 
• No passing of futures between activities, more deadlocks

Eager strategies: as soon as a future is computed
• Forward-based: 

– Each activity is responsible for updating the values of futures it has forwarded

• Message-based: 
– Each forwarding of future generates a message sent to the computing activity 
– The computing activity is responsible for sending the value to all

Mixed strategy: 
• Futures update any time between future computation and WbN

Lazy strategy: 
• On demand, only when the value of the future is needed (WbN on it)
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Wait-By-Necessity: Eager Forward Based

ba

AO forwarding a future: will have to forward its value

V= b.bar ()

c

c

c.gee (V)

v

v

b
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Wait-By-Necessity: Eager Message Based

ba

AO forwarding a future: send a message 

V= b.bar ()

c

c

c.gee (V)

v

v

b
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Wait-By-Necessity: Lazy Strategy

ba

An Active Object requests a Future Value when needed

V= b.bar ()

c c.gee (V)

v

v c
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Adaptive:
Active Objects, Cp.

vs.
MPI
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MPI Communication primitives
For some (historical) reasons, MPI has many com. Primitives:

MPI_Send Std MPI_Recv Receive
MPI_Ssend Synchronous MPI_Irecv Immediate
MPI_Bsend Buffer … (any) source, (any) tag, 
MPI_Rsend Ready
MPI_Isend Immediate, async/future
MPI_Ibsend, …

First of all:
• a combinatory complexity occurs between sendS and receivesS 
• many semantic variation and problems arise between implementations

I’d rather put the burden on the implementation, not the Programmers ! 
How to do adaptive implementation in that context ?

Is Recv at all needed ?  First adaptive feature: Dynamic Control Flow of Mess.
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Main MPI problems for the GRID

Too static in design 

Too complex in Interface (API)

Too many specific primitives to be adaptive

Typelessness 
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Sum up: MPI vs. ProActive / OO SPMD
A simple communication model, with simple communication primitive(s):

• No RECEIVE but data flow synchronization
• Adaptive implementations are possible for:

• // machines, Cluster, Desktop, etc.,
• Physical network, LAN, WAN, and network conditions

Typed Method Calls:
==> Component enabled     

… Adaptivity is needed for Components 
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Adaptive  GRID
The need for adaptive middleware is now acknowledged, 

with dynamic strategies at various points in containers, proxies, etc.

Can we afford  adaptive  GRID ?

with dynamic strategies at various points 
… communications, groups, checkpointing, reconfiguration, …
to deal with various conditions  (LAN, WAN, network, P2P, ...)

YES !
HPC vs. HPC

High Performance Components vs. High Productivity Components
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Conclusion
5 Adaptive/Parameterized features in ProActive:

• RMI <--> ssh/RMI   … HTTP - Ibis/TCP - Ibis/Myrinet - ...
• Groups, Localization in Mobility, Security, Future Update 

Perspectives -- On-going work:
• Adaptive Components:

• Tensionning
• Re-configuration

• Adaptive Checkpointing
Better off with simple Functional RMI /  Two-sided MPI Message PassingS

Lets just be careful:
otherwise, we’ll just build …

Maladaptive Adaptive Grids !
Adapt. Network

Adapt. Middleware

Adapt. Application

TCP is an Adaptive Middleware
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ProActive.ObjectWeb.org


