COMPUTER
ARITHMETIC

ALGORITHMS

ISRAEL KOREN

University of Massachusetts, Amherst

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

FAST ADDITION

5.1 TWO-OPERAND ADDERS

The addition of two operands is the most frequent operation in almost any arithmetic
unit. A two-operand adder is not only used when performing additions and subtractions
but is also often employed when executing more complex operations like multiplication
and division. Consequently, a fast two-operand adder is essential.

The most straightforward implementation of a parallel adder for two operands
Xn—1sXp—2 =+, X0 and y,—q, Ya—2 -, Yo is through the use of n basic units called full
adders. A full adder (FA) is a logical circuit that accepts two operand bits, say x; and
Vi, and an incoming carry bit, denoted by ¢;, and then produces the corresponding sum
bit, denoted by s;, and an outgoing carry bit, denoted by c; ;. As this notation suggests,
the outgoing carry c;4; is also the incoming carry for the subsequent FA, which has x;,
and y; as input bits. The FA is a combinatorial digital circuit implementing the binary
addition of three bits through the following Boolean equations:

Si=XxiDyi D¢ (5.1)

where @ is the exclusive-or operation, and

Cit+1 =X - yi +¢i - (xi + yi) (5.2)

where x; - y; is the AND operation, x; A y;, and x; + y; is the OR operation, x; V ;.

71

72 Fast Addition Chap. 5

X3 3 x2 » X Al X0 Yo

’ c3 3 (%] i : cl 3 : o
FA < FA < FA < FA
53 52 5 S0

Figure 5.1 A 4-bit ripple-carry adder.

A parallel adder consisting of FAs for n = 4 is depicted in Figure 5.1. In a parallel
arithmetic unit, all 2 input bits (x; and y;) are usually available to the adder at the same
time. However, the carries have to propagate from the FA in position 0 (the position of
the FA whose inputs are xo and yp) to position i in order for the FA in that position to
produce the correct sum and carry-out bits. In other words, we need to wait until the
carries ripple through all n FAs before we can claim that the sum outputs are correct and
may be used in further calculations. Because of this, the parallel adder shown in Figure
5.1 is called a ripple-carry adder. Note that the FA in position i, being a combinatorial
circuit, will see an incoming carry ¢; = 0 at the beginning of the operation, and will
accordingly produce a sum bit s;. The incoming carry ¢; may change later on, resulting
in a corresponding change in s;. Thus, a ripple effect can be observed at the sum outputs
of the adder as well, continuing until the carry propagation is complete. Also, notice that
in an add operation, the incoming carry in position 0, ¢y, is always zero and, as a result,
one may replace the FA in this position by a simpler unit that is capable of adding only
two bits. Such a circuit is called a half adder (HA) and its Boolean equations can be
obtained from equations (5.1) and (5.2) by setting ¢; equal to 0. Still, an FA is frequently
used to enable us to add a 1 in the Jeast-significant position (u/p). This is needed to
implement a subtract operation in the two’s complement method. Here, the subtrahend
is complemented and then added to the minuend. This is accomplished by taking the
one’s complement of the subtrahend and adding a forced carry to the FA in position 0
by setting ¢co = 1.

Example 5.1

Consider the following two operands for the adder in Figure 5.1: x3, X2, X1, X0 =
1111 and y3, y2, y1, Yo = 0001. App denotes the operation time (delay) of an FA,
assuming that the delays associated with generating the sum output and the carry-
out are equal. This may be the case if, for example, both circuits use a two-level
gate implementation. The following diagram shows the sum and carry signals as
a function of the time, 7', measured in Ara units:

Sec. 5.2 Carry-Look-Ahead Adders 73

Ts=0 1111
+ 0001

T.=Appsit> Camny 0001
Sum 1110

Ti= ZAFA Carry 0011
Sum 1100

T =3Afr4 Carry 0111
Sum 1000

= 4A,:A Cany 1111
Sum 0000

This is the longest carry propagation chain that can occur when adding two
4-bit numbers. In synchronous arithmetic units, the time allowed for the adder’s
operation must be the worst-case delay, which is, in the general case, n-Ag4. This
means that the adder is assumed to produce the correct sum after this fixed delay,
regardless of the actual carry propagation time, which might be very short, as in
0101+0010.

Consider now the subtract operation 0101 — 0010, which is performed by
adding the two’s complement of the subtrahend to the minuend. The two’s com-
plement is formed by taking the one’s complement of 0010, which is 1101, and
setting the forced carry, ¢y, to 1 yielding 0011. O

It is clear that the long carry propagation chains must be dealt with in order to
speed up the addition. Two main approaches can be envisioned: One is to reduce the
carry propagation time; the other is to detect the completion of the carry propagation and
avoid wasting time while waiting for the fixed delay (of n - A4 for ripple-carry adders)
unless absolutely necessary. Clearly, the second approach leads to a variable addition
time, which may be inconvenient in a synchronous design. We therefore concentrate
on the first approach and study several schemes for accelerating carry propagation. The
technique for detection of carry completion is left to the reader as an exercise.

5.2 CARRY-LOOK-AHEAD ADDERS

The most commonly used scheme for accelerating carry propagation is the carry-look-
ahead scheme. The main idea behind carry-look-ahead addition is an attempt to generate
all incoming carries in parallel (for all the n — 1 high order FAs) and avoid the need
to wait until the correct carry propagates from the stage (FA) of the adder where it has
been generated. This can be accomplished in principle, since the carries generated and
the way they propagate depend only on the digits of the original numbers x,_x,-2 - X
and y,_1yn—2 -+ yo. These digits are available simultaneously to all stages of the adder
and, consequently, each stage can have all the information it needs in order to calculate
the correct value of the incoming carry and compute the sum bit accordingly. This,
however, would require a large number of inputs to each stage of the adder, rendering it
impractical.

74 Fast Addition Chap. 5

One may reduce the number of inputs at each stage by extracting from the input
digits the information needed to determine whether new carries will be generated and
whether they will be propagated. To this end, we will study in detail the generation and
propagation of carries.

There are stages in the adder in which a carry-out is generated regardless of the
incoming carry, and as a result, no additional information on previous input digits is
required. These are the stages for which x; = y; = 1. There are other stages that are only
capable of propagating the incoming carry; i.e., x;y; = 10, or x;y; = 01. Only a stage in
which x; = y; = 0 cannot propagate a carry. To assimilate the information regarding the
generation and propagation of carries, we define the following logic functions using the
AND and OR operations. Let G; = x; - y; denote the generated carry and let P; = x; +y;
denote the propagated carry. As a result, the Boolean expression (5.2) for the carry-out
can be rewritten as

ciyt = Xiyi +ci(xi +yi) =Gi+¢i- P
Substituting ¢; = G;_ + ¢;—1 P;—; in the above expression yields
Cit1 =Gi+ Gia1Pi+cio1 P P
Further substitutions result in

Ci+1 = Gi+ Gi-1Pi + Gi-2Pi1 P + ci2 Pia Pio 1 Py = -

= Gi +Gi-1P; + Gi2Pi-1 P+ -+ + coPoPy -+ - P; Ot

This type of expression allows us to calculate all the carries in parallel from the original
digits x,_1Xx,—2---Xo and y,—1y,—2--- Yo and the forced carry cyp. For example, for a
4-bit adder, the carries are

¢ = Go+cohPy

¢ = G+ GoPy +coPyP

3 = G2+ G P+ GoP Py + coPo P P,

ca = G3+ GaP3+ G PaPs+ GoPi PPy + co Py PL P2 Ps

(5.4)

If this is done for all stages of the adder, then for each stage a Ag delay is
required to generate all P; and G;, where Ag is the delay of a single gate. A delay of
2A¢ is then needed to generate all ¢; (assuming a two-level gate implementation) and
another 2A to generate the sum digits, s;, in parallel (again, assuming a two-level gate
implementation). Hence, a total of 5A¢ time units is needed, regardless of n, the number
of bits in each operand. However, for a large value of n, say, n = 32, an extremely
large number of gates is needed and, more importantly, gates with a very large fan-in
are required (fan-in is the number of gate inputs, and is equal to n + 1 in this case).
Therefore, we must reduce the span of the look-ahead at the expense of speed. We
may divide the n stages into groups and have a separate carry-look-ahead in each group.

Sec. 5.2 Carry-Look-Ahead Adders 75

The groups can then be interconnected by the ripple-carry method. Dividing the adder
into equal-sized groups has the additional benefit of modularity, requiring the detailed
design of only a single integrated circuit. A group size of 4 is commonly used, and
ICs capable of adding two sequences, each consisting of four digits with carry-look-
ahead, are available. Size 4 was selected because it is a common factor of most word
sizes, and also because of technology-dependent constraints (e.g., the available number
of input/output pins).

For n bits and groups of size 4, there are n/4 groups. To propagate a carry through
a group once the P;’s, G;’s, and ¢, are available, we need 2A time units. Thus, 1A is
needed to generate all P; and G;, (n/4)-2A are needed to propagate the carry through
all bits, and an additional delay of 2A is needed to generate the sum outputs, for a total
of (25 4+ 3)A¢ = (5 + 3)Ag. This is almost a fourfold reduction in delay compared to
the 2nA¢ delay of a ripple-carry adder.

We may further speed up the addition by providing a carry-look-ahead over groups
in addition to the internal look-ahead within the group. We define a group-generated
carry, G*, and a group-propagated carry, P*, for a group of size 4 as follows: G* = 1 if
a carry-out (of the group) is generated internally and P* = 1 if a carry-in (to the group)
is propagated internally to produce a carry-out (of the group). The Boolean equations
for these carries are

G* =G3+GyP3+ G P,P3s+ GoyP PP

(5.5)
P* = PyP\P,P;

The group-generated and group-propagated carries for several groups can now be used
to generate group carry-ins in a manner similar to single-bit carry-ins in equation (5.4).
A combinatorial circuit implementing these equations is available as a separate and
standard IC. This IC is called a carry-look-ahead generator, and its use is illustrated in
the following example.

Example 5.2

For n = 16 there are four groups, with outputs G§, G}, G3, G and P§, P, Py, Py.
These serve as inputs to a carry-look-ahead generator, whose outputs are denoted
by ¢y, cg, and ¢, satisfying

cs = Gy+coPy
cg = G,l. + G:; Pl‘ + l.‘()P(’; Pl* (56)
c2 = G5+ GYP; + Gy PP +co Py P Py

A 16-bit adder with four groups, each with internal carry-look-ahead and an addi-

tional carry-look-ahead generator, are depicted in Figure 5.2. The operation of this
adder consists of the following four steps:

1. All groups generate in parallel bit-carry-generate, G;, and bit-carry-propagate,
B

76 Fast Addition Chap. 5

X15-12 Y15-12 X11-8 Y11-8 X7-4 Y1-4 X3-0 ¥3-0
g e e !
2 cg ca co
Group 3 |a— Group 2 |a— Group 1 Group 0
G;v P; b G;w Py~ S1-8 GTV wPI‘ S1-4 | G(‘)v 1P(; 93=0
Carry-Look-Ahead Generator

G“l lP”

Figure 5.2 A 16-bit two-level carry-look-ahead adder. (The notation x3_¢
means X3, Xz, X1, Xg.)

2. All groups generate in parallel group-carry-generate, G}, and group-carry-
propagate, P;.

3. The carry-look-ahead generator produces the carries cy4, cg, and c¢j2 into the
groups.

4. The groups calculate their individual sum bits (in parallel) with internal carry-
look-ahead. In other words, they first generate the internal carries according
to equation (5.4) and then the sum bits.

The minimum time delay associated with the steps (1)—(4) (assuming a minimum
number of gate levels in all circuits) is 1Ag for step 1, 2Ag for step 2, 2A¢
for step 3, and 4A¢ for step 4. Thus, the total addition time is 9As instead
of 11A¢, which is the addition time if the external carry-look-ahead generator
is not used and the carry ripples among the groups. These calculations yield
only theoretical estimates for the addition time. In practice, one has to use the
typical delays associated with the particular integrated circuits employed in order
to calculate the addition time more accurately (see any integrated circuit databook).

O

As shown in Figure 5.2, the carry-look-ahead generator produces two additional
outputs, G** and P**, whose Boolean equations are similar to those in equation (5.5).
These new outputs are called section-carry generate and section-carry propagate, re-
spectively, where a section, in this case, is a set of four groups and consists of 16
bits. As before, the number of groups in a section is commonly set at four because of
implementation-related considerations, and not because of any limitation of the underly-
ing algorithm.

If the number of bits to be added is larger than 16, say, 64, we may use either
four circuits, each similar to the one shown in Figure 5.2, with a ripple-carry between
adjacent sections, or use another level of carry-look-ahead, and achieve a faster execution

Sec. 5.3 Conditional Sum Adders 77

of addition. This is exactly the same circuit as above, accepting the four pairs of section-
carry-generate and section-carry-propagate, and producing the carries ¢y, €32, and cyg.

As the number of bits, n, increases, more levels of carry-look-ahead generators
can be added in order to speed up the addition. The required number of levels (for
maximum speed up) approaches log, n, where b is the blocking factor; i.e., the number
of bits in a group, the number of groups in a section, and so on. The blocking factor is
4 in the conventional implementation depicted in Figure 5.2. The overall addition time
of a carry-look-ahead adder is therefore proportional to log, n.

5.6 CARRY-SAVE ADDERS

When three or more operands are to be added simultaneously (e.g., in multiplication) us-
ing two-operand adders, the time-consuming carry-propagation must be repeated several

Sec. 5.6 Carry-Save Adders 87

times. If the number of operands is k, then carries have to propagate (k —1) times. Sev-
eral techniques for multiple operand addition that attempt to lower the carry-propagation
penalty have been proposed and implemented. The technique that is most commonly
used is carry-save addition. In carry-save addition, we let the carry propagate only in
the last step, while in all the other steps we generate a partial sum and a sequence of
carries separately. Thus, a carry-save adder (CSA) accepts three n-bit operands and gen-
erates two n-bit results, an n-bit partial sum, and an n-bit carry. A second CSA accepts
these two bit-sequences and another input operand, and generates a new partial sum and
carry. A CSA is therefore, capable of reducing the number of operands to be added from
3 to 2, without any carry propagation.

A carry-save adder may be implemented in several different ways. In the simplest
implementation, the basic element of the carry-save adder is a full adder with three
inputs, x, y, and z, whose arithmetic operation can be described by

x+y+z=2c+s (5.10)
where s and ¢ are the sum and carry outputs, respectively. Their values are

s=(x+y+2zmod2 and c=(x+y;2)—s (5.11)

The outputs are the weighted binary representation of the number of 1’s in the inputs.
We therefore call the FA a (3, 2) counter, as shown in Figure 5.8. An n-bit CSA consists
of n (3,2) counters operating in parallel with no carry links interconnecting them.

(3,2) Counter

P

C s Figure 5.8 A (3,2) counter.

A carry-save adder for four 4-bit operands X, Y, Z, and W, is shown in Figure 5.9.
The upper two levels are 4-bit CSAs, while the third level is a 4-bit carry-propagating
adder (CPA). The latter is a ripple-carry adder, but may be replaced by a carry-look-
ahead adder or any other fast CPA. One should note that partial sum bits and carry bits
are interconnected to guarantee that only bits having the same weight are added by any
(3,2) counter.

In order to add the k operands X, X, ---, Xx we need (k — 2) CSA units and
one CPA. If the CSAs are arranged in a cascade, as in Figure 5.9, then the time to add
the k operands is

(k—2)-Tcsa + Tcra

where Tcpy is the operation time of a CPA and Tcsa is the operation time of a CSA,
which equals the delay of a full adder, Ar4. The latter is at least 2 - Ag, where Ag is

88 Fast Addition Chap. 5

------------- e L
20 CSA
......v <l ------------------
i C T i
23 22 2! 20 CSA
ol i s | i e s g g e e 'l R :
------- e e O et B8 e
24 I 23 22 2! CPA
hl """ I """"" S i iy l_l """""""""" L’ """" l """""""" |
Ss M S3 A)) S So

Figure 5.9 A carry-save adder for four operands.

the delay of a single gate. Note that the final result may reach a length of n + [logyk]
bits, since the sum of k operands, of size n bits each, can be as large as (2" — 1)k.

A better way to organize the CSAs, and reduce the operation time, is in the form
of a tree commonly called a Wallace tree [18]. A six-operand Wallace tree is illustrated
in Figure 5.10. The left arrows on the carry outputs of the CSAs indicate that these
outputs have to be shifted to the left before being added to the sum bits, as shown in
Figure 5.9. In this tree, the number of operands is reduced by a factor of 2/3 at each
level. Consequently, log (k/2)

Number of levels = log G/2) (5.12)

Equation (5.12) provides only an estimate of the number of levels, since at each
level the number of operands must be an integer. Thus, if N; is the number of operands
at level i, then the number of operands at the level (i + 1) above can be at most | N;-3/2]
(where the floor x| of a number x is the largest integer that is smaller than or equal to
x). The number of operands at the bottom level (i.e., level 0) is 2, so that the maximum
number of operands at level 1 is 3 and the maximum number of operands at level 2 is
[9/2] = 4. The resulting sequence of numbers is 2,3,4,6,9,13,19,28, etc. Starting with

X X2 X3 Xa Xs Xe
, . O, SO, AV, |

| CSA | | CSA |
2y " 2

R R
y ¥ v

i

Y Y Figure 5.10 A CSA tree

C S for six operands.

Sec. 5.6 Carry-Save Adders 89

five operands, we still need three levels as we do for six operands. The entries in Table
5.1 were generated using similar arguments. This table shows the exact number of levels
required for up to 63 operands.

TABLE 5.1 THE NUMBER OF LEVELS IN
A CSA TREE FOR k OPERANDS.

Number of operands || Number of levels

3 1

4 2
5 ke =10 3
7 <. k<9 -
10. =k <il3 S
144k < 19 6
20 < k < 28 7
29 <k <4 8
43 < k < 63 9

Example 5.6

For k = 12, five levels are needed, resulting in a delay of 5 - Tcsa, instead of
10 - Tesa, which is the delay for a linear cascade of 10 CSAs. O

Examining Table 5.1, we may note that the most economical implementation (in
terms of number of levels) is achieved when the number of operands is an element of the
series 3,4,6,9,13,19,28, - --. Thus, for a given number of operands, say, k, which is not
an element of this series, we need to use only enough CSAs to reduce k to the closest
(and smaller than k) element in the above series. For example, for k = 27, we may
use 8 CSAs (with 24 inputs) rather than 9 CSAs, in the top level, so that the number of
operands in the next level will be 8 -2+ 3 = 19, which is an element of the series. The
remaining part of the tree will have its operands follow the series.

The idea of using a (3,2) counter to form multi-operand adders can be extended
to a (7,3) counter, whose three outputs represent the number of 1’s in its seven inputs.
Another example is the (15,4) counter or, in general, any (k, m) counter where k and m
satisfy

M _1>k or m=[logak+1)]

A (7,3) counter, for example, can be implemented using (3,2) counters as shown in Figure
5.11, where intermediate results are added according to their weight. However, this im-
plementation requires four (3,2) counters arranged in three levels and therefore provides
no speed-up compared to an implementation based on (3,2) counters. A (7,3) counter
can also be implemented directly as a multilevel circuit that may have a smaller overall
delay depending on the particular technology employed [10]. A different implementation
of the (7,3) counter is through a ROM of size 27 % 3 = 128 x 3 bits. The access time of
this ROM is unlikely to be smaller than the delay associated with the implementation in

90 Fast Addition Chap. 5

X] X2 X3 X3 X5 Xg X7
vy (R
(3,2 (3.2)
L = Bk il
v
3,2)

{ l Y Figure 5.11 A (7,3) counter using

) S So (3,2) counters.

Figure 5.11. However, a speed-up may be achieved if a ROM implementation is used
for a (k, m) counter with higher values of k and m.

When several (7,3) counters (in parallel) are used to add seven operands, we obtain
three results, and a second level of (3,2) counters is needed to reduce these to two results
(sum and carry) to be added by a CPA. A similar situation arises when (15,4) or more
complex counters are used, generating more than two results and consequently requiring a
second level of counters. In some cases, the additional level of counters can be combined
with the first level of counters, resulting in a more convenient implementation.

In what follows, we show how the (7,3) counter can be combined with a 3,2)
counter. We call the combined counter a (7,2) counter. A straightforward implementation
of a (7,2) counter is shown in Figure 5.12, where the bottom right (3,2) counter is the
additional (3,2) counter, while the remaining four (3,2) counters constitute the ordinary
(7,3) counter that is depicted in Figure 5.11. A (7,2) counter in column i has seven
primary inputs of weight 2 and two carry inputs from column (i — 1) and i-2). It
generates two primary outputs, denoted by $2 and $2'*!, reflecting their weights, and
two outgoing carries C2'*' and C2"*2, to columns (i + 1) and (i + 2), respectively.
Note that the input carries to the (7,2) counter in Figure 5.12 do not participate in the
generation of the two output carries in order to avoid a slow carry-propagation chain.

All the previously described counters are single-column counters. For multi-
operand addition we can generalize these single-column counters into multiple-column
counters. We define a generalized parallel counter as a counter that adds / input columns
and produces an m-bit output [16]. The notation we use for such a counter is

(k’—l- kl—zv A k()v m)

where &; is the number of input bits in the i—th column with weight 2'. Clearly, a
(k,m) counter is a special case of this generalized counter. The number of outputs m

Sec. 5.6 Carry-Save Adders 91

ol of oi 2f: 243t 2
(3,2) 3,2)
e
Vv Vv
(3,2
Carry C2' from (i — 1)
R ¥y Carry C2' from (i —2)
(3,2) 3,2)
Carry C21*? 10 (i +2) -<—| l l
Carry C2H 1o (i + 1) RN S2+1 s

Figure 5.12 A (7,2) counter with two carries, in bit position i.

must satisfy

I=1
2" —1 > Y k2 (5.13)
i=0
If all / columns have the same height k (i.e., ko = ki = ... = ki1 = k), then the
inequality that has to be satisfied is : E
™_1>Ek-@2-1) (5.14)

A simple example of these counters is the (5,5,4) counter shown in Figure 5.13.
For this counter, k = 5, [= 2 and m = 4, and inequality (5.14) turns into an equality,
implying that all 16 combinations of the output bits are useful. (5,5,4) counters can be
used to reduce five operands (of any length) to two results that can then be added with a
CPA. The length of operands will determine the number of (5,5,4) counters in parallel.

A reasonable way of implementing generalized counters is by using ROMs. For
example, the (5,5,4) counter shown in Figure 5.13 can be realized with a 205+5) x 4 ROM
(i.e., 1024 x 4).

. .
. .
. .
. .
. L]
. . . . Figure 5.13 A (5,5,4) counter. The
dots represent input or output bits.

92 Fast Addition Chap. 5

The (5,5.4) counters conveniently reduce the input operands to two intermediate
results, requiring only one CPA to produce the final sum. In the general case, a string
of (ko = k, ..., kj—; = k, m) counters may generate more than two intermediate results,
requiring additional reduction before a CPA can be used. To find out the number of inter-
mediate results generated by a set of (k,k, - - -, k, m) counters, consider the following. A
set of (k, k, ---, k, m) counters, with / columns each, produces m-bit outputs at intervals
of / bits. Any column has at most [%] output bits. Thus, k operands can be reduced
to s = [4] operands. If s = 2, a single CPA can generate the final sum. Otherwise,
further reduction, from s to 2, is needed.

Example 5.7

If the number of bits per column in a two-column counter (k, k, m) is increased
beyond 5, then m > 5 and as a result, s = [’g] > 2. For example, if kK = 7, the
inequality that must be satisfied is 2" — 1 > 7 -3 = 21, and therefore m = 5. A
set of (7,7,5) counters will generate s = 3 operands, and consequently another set
of (3,2) counters is needed in order to reduce the number of operands to 2. O

The hardware complexity of a carry-save adder for a large number of operands
might be prohibitive, independent of the particular type of parallel counters employed.
One way to reduce the hardware complexity is to design a smaller carry-save tree and use
it iteratively. The n operands are divided into [n/j] groups of j operands each, and a tree
for j 4+ 2 operands with two feedback paths and a CPA is designed, as shown in Figure
5.14. The two feedback paths make it necessary to complete the first pass through the
CSA tree before the second set of j operands is applied. This slows down the execution
of the multiple-operand addition, since pipelining is not possible. In the next section we
discuss pipelining in general and describe ways to modify the tree structure in Figure
5.14 to support pipelining.

Xl Xj
l LN l
Y ‘
CSA
Tree
~—
4 Y
CPA Figure 5.14 A CSA tree with two
feedback paths and j new operands.

