// 2-1 Chapter 2—Machines, Machine Languages, and Digital Logia

Chapter 2: Machines, Machine
Languages, and Digital Logic

—

Topics

2.1 Classification of Computers and Their Instructions
2.2 Computer Instruction Sets

2.3 Informal Description of the Simple RISC Computer,
SRC

2.4 Formal Description of SRC Using Register Transfer
Notation, RTN

2.5 Describing Addressing Modes with RTN

2.6 Register Transfers and Logic Circuits: From
Behavior to Hardware

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[2-4 Chapter 2—Machines, Machine Languages, and Digital Logia

—

What Must an Instruction Specify?

Data Flow
 EE—
« Which operation to perform add r0, r1, r3

- Ans: Op code: add, load, branch, etc.
« Where to find the operand or operands add r0, r1,r3
- In CPU registers, memory cells, I/O locations, or part of

instruction
» Place to store result add r0, r1, 13
- Again CPU register or memory cell
« Location of next instruction add r0, r1, r3
br endloop >

- Almost always memory cell pointed to by program counter—PC

« Sometimes there is no operand, or no result, or no next instruction.
Can you think of examples?

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[2-5 Chapter 2—Machines, Machine Languages, and Digital Logia

Instructions Can Be Divided into
3 Classes

« Data movement instructions

- Move data from a memory location or register to another
memory location or register without changing its form

- Load—source is memory and destination is register
- Store—source is register and destination is memory
« Arithmetic and logic (ALU) instructions

- Change the form of one or more operands to produce a result
stored in another location

« Add, Sub, Shift, etc.
« Branch instructions (control flow instructions)

* Alter the normal flow of control from executing the next
instruction in sequence

* Br Loc, Brz Loc2,—unconditional or conditional branches

—

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

// 2-6

Instruction

MOV A, B
LDA A, Addr
lwz R3, A

1li $3, 455
mov R4, dout
IN, AL, KBD

LEA.L (AO),

A2

Chapter 2—Machines, Machine Languages, and Digital Logia

Tbl 2.1 Examples of Data Movement

Instructions

Meaning

Move 16 bits from memory location A to
Location B

Load accumulator A with the byte at me
location Addr

Move 32-bit data from memory location
register R3

Load the 32-bit integer 455 into register
Move 16-bit data from R4 to output port

Load a byte from in port KBD to accumu

Load the address pointed to by A0 into A2 M6800

* Lots of variation, even with one instruction type

\Computer Systems Design and Architecture by V. Heuring and H. Jordan

—

Machine
VAX11
mory M6800
Ato PPC601

$3 MIPS R3000
dout DEC PDP11

lator Intel Pentium

© 1997 V. Heuring and H. Jordan /j

/[2-7 Chapter 2—Machines, Machine Languages, and Digital Logia

Tbl 2.2 Examples of ALU

—

Instructions

Instruction Meaning Machine
MULF A, B, C multiply the 32-bit floating point values at VAX11

mem loc’ns. A and B, store at C
nabs r3, r1 Store abs value of r1 in r3 PPC601
ori $2, $1, 255 Store logical OR of reg $ 1 with 255 into reg $2 MIPS R300Q
DEC R2 Decrement the 16-bit value stored in reg R2 DEC PDP11
SHL AX, 4 Shift the 16-bit value in reg AX left by 4 bit pos’ns. Intel 8086

* Notice again the complete dissimilarity of both syntax and semantics.

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[2-8 Chapter 2—Machines, Machine Languages, and Digital Logia\
Tbl 2.3 Examples of Branch
Instructions
Instruction Meaning Machine
BLSS A, Tgt Branch to address Tgt if the least significant VAX11
bit of mem loc’n. A is set (i.e. = 1)
bun r2 Branch to location in R2 if result of previous PPC601
floating point computation was Not a Number (NAN)
beq $2, $1, 32 Branch to location (PC + 4 + 32) if contents MIPS R3000
of $1 and $2 are equal
SOB R4, Loop Decrement R4 and branch to Loop if R4 #0 DEC PDP11
JCXZ Addr Jump to Addr if contents of register CX = 0. Intel 8086

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[2-9 Chapter 2—Machines, Machine Languages, and Digital Logia‘

CPU Registers Associated with Flow of
Control—Branch Instructions

* Program counter usually locates next instruction
- Condition codes may control branch
« Branch targets may be separate registers

Processor State

CIN|[V|Z
Program Counter Condition Codes

Branch Targets

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[2-10 Chapter 2—Machines, Machine Languages, and Digital Logia‘

HLL Conditionals Implemented by
Control Flow Change

- Conditions are computed by arithmetic instructions

* Program counter is changed to execute only instructions
associated with true conditions

C language Assembly language
CMP.W #5, NUM ;the comparison
if NUM==5 then SET=7 BNE L1 :conditional branch
MOV.W #7, SET :action if true
L1 . -action if false

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

//2-12

\Computer Systems Design and Architecture by V. Heuring and H. Jordan

Chapter 2—Machines, Machine Languages, and Digital Logia

3-, 2-, 1-, & 0-Address ISAs

The classification is based on arithmetic instructions that have
two operands and one resulit

The key issue is “how many of these are specified by memory
addresses, as opposed to being specified implicitly”

A 3-address instruction specifies memory addresses for both
operands and the result R < Op1 op Op2

A 2-address instruction overwrites one operand in memory with
the result Op2 < Op1 op Op2

A 1-address instruction has a processor, called the accumulator
register, to hold one operand & the result (no addr. needed)
Acc < Acc op Op1

A 0-address + uses a CPU register stack to hold both operands
and the result TOS « TOS op SOS (where TOS is Top Of Stack,
SOS is Second On Stack)

The 4-address instruction, hardly ever seen, also allows the
address of the next instruction to specified explicitly

—

© 1997 V. Heuring and H. Jordan /j

ff 2-13 Chapter 2—Machines, Machine Languages, and Digital Logia‘

Fig 2.2 The 4-Address Machine and
Instruction Format

Memory CPU add, Res, Op1, Op2, Nexti (Res « Op1 + Op2)

Op1Addr:| Opft

! |
. |
| | v |
Op2Addr:| Op2 i |
I
|
LA
ResAddr:| Res <—‘| !
|
. ! |

NextiAddr:| Nexti

Instruction format

Bits: 8 24 24 24 24
add ResAddr Op1Addr Op2Addr NextiAddr
Which Where to , Where to find
operation put result Where to find operands next instruction

« Explicit addresses for operands, result, & next instruction
- Example assumes 24-bit addresses
- Discuss: size of instruction in bytes

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan jj

ff 2-14 Chapter 2—Machines, Machine Languages, and Digital Logia‘

Fig 2.3 The 3-Address Machine and
Instruction Format

Memory CPU add, Res, Op1, Op2 (Res <~ Op2 + Op1)

Op1Addr:| Op1

|
|
!
Op2Addr:| Op2 I
| '
ResAddr:| Res |<€—
. |
!
|
|
!
|

Program
NextiAddr:| Nexti |«—— counter

I Where to find
: next instruction

Instruction format
Bits: 8 24 24 24

add ResAddr Op1Addr Op2Addr

Which Where to _
operation put result Where to find operands

« Address of next instruction kept in processor state register—
the PC (except for explicit branches/jumps)

* Rest of addresses in instruction
- Discuss: savings in instruction word size

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan jj

ff 2-15 Chapter 2—Machines, Machine Languages, and Digital Logia‘

Fig 2.4 The 2-Address Machine and
Instruction Format

Memory CPU add Op2, Op1 (Op2 « Op2 + Op1)

Op1Addr:| Op1

|

|

|

|

|

| A
Op2Addr:|Op2,Res |<—

Program
counter

Where to find
next instruction

NextiAddr:| Nexti |«

Instruction format
Bits: 8 24 24
add Op2Addr Op1Addr
Which / Where to find operands
n

operatio

Where to
« Result overwrites Operand 2 put result

* Needs only 2 addresses in instruction but less choice in
placing data

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan jj

/[2-16 Chapter 2—Machines, Machine Languages, and Digital Logia‘

Fig 2.5 1-Address Machine and
Instruction Format

Memory CPU add Op1 (Acc « Acc + Op1)

Op1Addr:| Op1

Where to find
operand2, and

|

|

|

|

|

|

| T
. l |
. | /where to put result
) || Accumulator

|

|

|

: , Program
NextiAddr:| Nexti |<—— counter |24
: Where to find !
_ _ | nextinstruction
Need instructionstoload - -------- Instruction format
and store operands: Bits: 8 o4
;_?2 8pﬁgg: add | Op1Addr
P Which Where to find

- Special CPU register, the accumulator, operation operand1
supplies 1 operand and stores result

« One memory address used for other operand

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[2-17 Chapter 2—Machines, Machine Languages, and Digital Logia‘

Fig 2.6 The 0-Address, or Stack,
Machine and Instruction Format

Instruction formats
Memory CPU push Op1 (TOS « Op1)
| ——————————— - = = "
| / Bits: 8 24

Op1Addr:| Op1 | v v
:TOS Format | push Op1Addr
1 SOS \f

\ Operation Result

' etc.
: . add (TOS « TOS + SOS)
| | T
| Stack | Bits: 8
|
NextiAddr:| Nexti 4:— Program |54 ! rormat . add .
| counter Which operation
- |
: Where to find . Where to find operands,
_ _ _ hextinstruction | and where to put result

(on the stack)
« Uses a push-down stack in CPU
« Arithmetic uses stack for both operands and the result

- Computer must have a 1-address instruction to push and pop
operands to and from the stack

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[2-18 Chapter 2—Machines, Machine Languages, and Digital Logia‘

Example 2.1 Expression Evaluation for
3-, 2-, 1-, and 0-Address Machines

Evaluate a = (b+c)*d - e

3-address 2-address 1-address

add a, b, c load a, b load Db push b
mpy a, a, d add a, c add ¢ push c
sub a, a, e mpy a, d mpy d add
e

sub a, sub e push d
store a mpy

push e
sub

pop a

* Number of instructions & humber of addresses both vary
* Discuss as examples: size of code in each case

\Computer Systems Design and Architecture by V. Heuring and H. Jordan © 1997 V. Heuring and H. Jordan /j

/[2-19

Op1Addr:

Chapter 2—Machines, Machine Languages, and Digital Logia‘

______¢cru
|
Memory | Registers

|
I load

Op1 T >
|
|
|
|
|
A
|
|
|
|
|

Nexti |« Program
| counter

registers)

R8

R6

R4

R2

* [Itis the most common choice in today’s general-purpose computers
- Which register is specified by small “address” (3 to 6 bits for 8 to 64

Fig 2.7 General Register Machine and
Instruction Formats

* Load and store have one long & one short address: 1-1/2 addresses
« Arithmetic instruction has 3 “half” addresses

\Computer Systems Design and Architecture by V. Heuring and H. Jordan

Instruction formats

load R8, Op1 (R8 « Op1)
load R8 Op1Addr

add R2, R4, R6 (R2 « R4 + R6)
add | R2 | R4 | Re

© 1997 V. Heuring and H. Jordan /j

