® ParaGraph
animates trace
information from
actual runs to depict
bebavior and
provides graphical
performance
summaries. It
provides 25
perspectives on the
same data, lending
insight that might
otherwise be missed.

Visualizing the
Performance

of Parallel

Programs

MICHAEL T. HEATH, University of Illinois
JENNIFER A. ETHERIDGE, Oak Ridge National Laboratory

raphical visual-
ization aids human comprehension of
complex phenomena and large volumes of
data. The behavior of parallel programs
on advanced architectures is often ex-
tremely complex, and monitoring the
performance of such programs can gener-
ate vast quantities of data. So it seems nat-
ural to use visualization to gain insight
into the behavior of parallel programs so
we can better understand them and im-
prove their performance.
We have developed ParaGraph, a soft-
ware tool that provides a detailed, dynam-
ic, graphical animation of the behavior of
message-passing parallel programs and
graphical summaries of their perfor-
mance.

GRAPHICAL SIMULATION

For lack of a better term, we use “sim-

ulation” to mean graphical animation. By
“simulation,” we do not mean to suggest
that there is anything artificial about the
programs or their behavior as ParaGraph
portrays them. ParaGraph displays the
behavior and performance of real parallel
programs running on real parallel com-
puters to solve real problems. In effect,
ParaGraph provides a visual replay of the
events that actually occurred when a par-
allel program was run on a parallel ma-
chine.

"To date, ParaGraph has been used only
for post-processing trace files created dur-
ing execution and saved for later study.
But its design does not rule out the possi-
bility that data could arrive at the graphi-
cal workstation as the program executes.

However, there are major impedi-
ments to genuine real-time performance
visualization. With the current generation
of distributed-memory parallel architec-

IEEE SOFTWARE

0740-7458/91/0900/0028/$01.00 @ IEEE

29

tures, it is difficult to extract performance
data from the processors and send it to the
outside world during executon without
significantly perturbing the program
being monitored. Also, the network
bandwidth between the processors and
the workstation and the drawing speed of
the workstation are usually inadequate to
handle the very high data-transmission
rates that a real-time display requires. Fi-
nally, humans would be hard pressed to
digest a detailed graphical depiction un-
folding in real dme. One of ParaGraph’s
strengths is that it lets you replay the same
execution trace data repeatedly.

Some performance-visualization pack-
ages treat the trace file of events saved after
a program executes as a static, immutable
object to be studied by various analytical
or statistical means. Such packages pro-
vide graphical tools designed for visual
browsing of the performance data from
various perspectives using scroll bars and
the like.

ParaGraph adopts a more dynamic ap-
proach whose conceptual basis is algo-
rithm animation. We see the trace file as a
script to be played out, visually reenacting
the original live action to provide insight
into a program’s dynamic behavior.

Both the static and dynamic ap-
proaches have advantages and disadvan-
tages. Algorithm animation is good at cap-
turing a sense of motion and change, butit
is difficult to control the simulation’s ap-
parent speed. The static browser approach
gives the user fine control over the speed at
which the data are viewed (dme can even
move backward), but it does not provide an
intuitive feeling for dynamic behavior.

Design goals. We wanted ParaGraph to
be easy to understand, casy to use, and

portable.

Easy to understand. The whole point of visu-

alization is to aid understanding, so it is |

imperative that the visual displays be as
intuitvely meaningful as possible. The
charts and diagrams should be aestheti-
cally appealing and the information they
convey should be self-evident. A diagram
is not likely to be useful if it requires an
extensive explanation, so the information

it conveys should either be immediately
obvious or easily remembered once
learned.

‘The display’s colors should reinforce
the meaning of graphical objects and be
consistent across views. Above all, the sys-
tem must provide many visual perspec-
tives, because no single view is likely to
provide full insight into the behavior and
data associated with parallel-program exe-
cution. ParaGraph provides more than 20
displays or views based on the same under-
lying trace data.

Easy 1o use. Software tools should relieve
tedium, not promote it. We use color and
animation to make ParaGraph painless,
even entertaining, to use. ParaGraph has
an interactive, mouse- and menu-oriented
user interface so its features are easily in-
voked and customized.

Another important factor in ease of use
is that the object under study (the parallel
program) need not be modified exten-
sively to obtain the visualization data.
ParaGraph’s input are

ParaGraph’s displays are based on the
message-passing paradigm, so it does not
support programs explicitly based on
shared-memory constructs.

PARAGRAPH FEATURES

ParaGraph is distinguished from other
visualization systems? in:

¢ The number of displays it provides.
While other packages provide multiple
views, none we know of provides the vari-
ety of perspectives ParaGraph does. Some
of ParaGraph'’s displays are original; oth-
ers have been inspired by similar displays
in other packages.

¢ Its portability among architectures
and displays. ParaGraph is applicable to
any parallel architecture having message
passing as its programming paradigm, and
ParaGraph itself is based on X Windows.

+ The intuitive appeal and aesthetic
quality of its displays, which we hope reach
a new, higher standard. Of course, how
successful we've been is in the eye of the

beholder.

trace files produced by the ¢ Its ease of use, at-
Portable Instrumented S tributable both to its in-
Communication Li- : teractive, graphical inter-
brary,! which lets users The Wh0|e pOIm Of face and to its use of PICL
produce trace data auto- V|SU(]||ZGT|O” ISto (]|d to provide the trace data

matically.

Portability. Portability is
important in two senses.
First, the graphics pack-
age itself should be porta-
ble. ParaGraph is based
on X Windows, and thus
runs on many vendors’
workstations. Although it
is most effective in color,
it also works on monochrome and gray-
scale monitors — it detects automatically
which monitor type is in use.

Second, the package must be able to
display execution behavior from different
parallel architectures and parallel-pro-
gramming paradigms. ParaGraph inherits
a high degree of such portability from
PICL, which runs on parallel architectures
from many different vendors (including
Cogent, Intel, N-Cube, and Symult).

On the other hand, many of

understanding, so it is
imperative that the
visual displays be as
infuitively meaningful
as possible.

without requiring the
user to instrument the
program under study.

¢ Its extensibility.
ParaGraph lets users add
new displays of their own
design to the views al-
ready provided.

An indicatdon of how
successful we’ve been in
making ParaGraph easy
to use and understand is the fact that many
users have obtained an early version from
Netlib on Internet during the last year,
built the program, and used it effectively
without the benefit of any documentation
except a one-page Readme file.?

Relationship to PICL. PICL runs on several
message-passing parallel architectures.!
As its name implies, it provides both por-
tability and instrumentation for programs
that use its communication facilities to

30

SEPTEMBER 1881

pass messages among processors.

On request, PICL provides a trace file
that records important execution events
(like sending and receiving messages). The
trace file contains one event record per
line, and each event record comprises an
integer set that specifies the event type,
time stamp, processor number, message
length, and other similar information.

ParaGraph has a producer-consumer
relationship with PICL: ParaGraph con-
sumes the trace data PICL produces.
Using PICL instead of a machine’s native
parallel-programming interface gives the
user portability, instrumentation, and the
ability to use ParaGraph to analyze behav-
ior and performance.

These benefits are essentially “free” in
that once you've implemented a parallel
program using PICL, you don’t have to
change the source code to move it toa new
machine (provided PICL is available on
the new machine), and little or no effort is
required to instrument the program for
performance analysis.

On the other hand, because
ParaGraph’s dependence on PICL is
solely for input data, ParaGraph could
work equally well with any data source that
has the same format and semantics. So
other message-passing systems can be in-
strumented to produce trace data in
ParaGraph’s format, and ParaGraph’s
input routine can be adapted to different
input formats. Indeed, ParaGraph has
been used with communication systems

other than PICL.

(lock synchronization. For meaningful simu-
lation, the event’s time stamps should be as
accurate and consistent across processors
as possible. This is not necessarily easy
when each processor has its own clock
with its own starting time and runs at its
own rate. Also, the clock’s resolution may
be inadequate to resolve events precisely.

Poor clock resolution and/or synchro-

the trace file — messages that appear to be
received before they are sent (a tachyon is
a hypothedcal particle that travels faster
than light). Tachyons confuse ParaGraph,
because much of its logic depends on pair-
ing sends and receives.

Because this possibility will invalidate
some ParaGraph displays, PICL goes to
considerable lengths to synchronize pro-
cessor clocks and adjust for potential clock
drift, so time stamps are as consistent and
meaningful as possible. On some ma-
chines, PICL actually provides higher
clock resolution than the systern was sup-
plied with.

Overhead. Collecting trace data can add
to overhead. PICL tries to minimize trac-
ing perturbation by saving
trace data in each
processor’s local memory,
downloading them to disk
only after the program has
finished execution. Nev-
ertheless, monitoring in-
evitably introduces extra
overhead: In PICL, the
clock calls necessary to de-
termine the time stamps
for the event records, plus
other minor overhead,
add a fixed amount (inde-
pendent of message size)
to the cost of sending each
message.

Thus, the overhead added is a func-
tion of the frequency and volume of
communication traffic; it also varies
from machine to machine. In general,
we believe that this perturbation is small
enough that the program’s behavior is
not altered fundamentally. In our ex-
perience, the lessons we learn from
the visual study of instrumented runs
always improve the performance of
uninstrumented runs.

USING PARAGRAPH

ParaGraph supports command-line
options that specify a host name for re-
mote display across a network, forced

i monochrome display mode (useful if
nization can lead to what we call zachyonsin |

black-and-white hard copies are to be
made from a color screen), or a trace-file
name. You can also specify (or change) the
trace-file name during execution by typing
the file name in an options menu. Para-
Graph preprocesses the input trace file to
determine some parameters (like time

|
Because ParaGraph's
dependence on PICLis
solely for input data,
ParaGraph could work
equally well with any
data source that has
the same format and
semantics.

scale and number of processors) automat-
ically, before the simulation begins;
the user can override most of these
values.

Interface. The initial ParaGraph display
is a main menu of buttons with which you
control the execution and select sub-
menus. Submenus include those for three
display types, or families (utilization, com-
munication, and tasks), for miscellaneous
displays, and for options and parameters.

You can selectas many
displays as will fit on the
screen, and you can resize
displays within reason. It
is difficult to pay close at-
tention to many displays
at once, but it is useful to
have several simulta-
neous displays for com-
parison and selective
scrutiny.

After selecting the
displays, you press start to
begin the graphical simu-
lation of the parallel pro-
gram based on the trace
file you specified. The
animation proceeds to the end of the trace
file, but you can interrupt it with a
pause/resume button. For even more de-
tailed study, the step button provides a
single-step mode that processes the trace
file one event ata time.

You can also single out a time interval
by specifying a starting and stopping time
(the defaults are the beginning and ending
of the trace file), or you can have the sim-
ulation stop at each occurrence of some
event. And you can restart the entre ani-
mation at any time by simply pressing the
start button.

Some ParaGraph displays change in
place as events occur, representing execu-
tion time from the original run with simu-
lation time in the replay. Other displays
represent execution time in the original
run with one space dimension on the
screen, scrolling (by a user-controllable
amount) as simulation time progresses,
in effect providing a moving window for
viewing a static picture. No matter
which time representation is used, all

IEEE SOFTWARE

31

displays are updated simultaneously and
synchronized with each other.

Speed. The relationship between simu-
lation speed and execution speed is neces-
sarily imprecise. The speed of the graphical
simulation is determined primarily by the
drawing speed of the workstation, which in
turn is a function of the number and com-
plexity of displays that have been selected.
There is no way to make the simulation
speed uniformly propor-
tional to the original exe-
cution speed.

For the most part,
ParaGraph simply pro-
cesses the event records
and draws the resultng
displays as fast as it can. If
there are gaps between
consecutive time stamps,
ParaGraph fills them in
with a spin loop so there is
atleastarough (ifnot uni-
form) correspondence
between simulation time
and executdon time. For-
tunately, close correspon-
dence does not seem to be critical in visual
performance analysis. What's most im-
portant is that the graphical replay pre-
serve the correct relative order of events.
Moreover, the figures of merit ParaGraph
produces are based on actual time stamps,
not simulation speed.

Because ParaGraph’s speed is deter-
mined primarily by the workstation’s
drawing speed, the number of displays you
select can speed it up or slow it down.
ParaGraph’s speed is also affected by the
displays’ complexity and the type and
amount of scrolling used.

When ParaGraph provided only a few
displays, it included parameterized delay
loops to slow the drawing in case it moved
too quickly for the eye to follow. Butaswe
added more displays this ceased to be a
problem, so we dispensed with the delay
loops. Now users sometimes complain
that the simulation is too slow rather than
too fast, since most like to have many dis-
plays open. You can always resort to sin-
gle-step mode if you want to study pro-
gram behavior very closely.

With one noted
exception, all of the
views shown can
display af least 128
processors and most
of them can display up
to 512 processors.

SOFTWARE DESIGN

ParaGraph is an interactive, event-
driven program. Its basic structure is that
of an event loop and a large switch that
selects actions based on each event’s na-
ture. Menu selections determine
ParaGraph’s execution behavior, both
statically (initial display selection, options,
and parameter values) and dynamically
(pause/resume, single-step mode).

ParaGraph has two
event queues: a queue of
X events produced by the
user (mouse clicks, key
presses, window expo-
sures) and a queue of trace
events produced by the
program under study.
ParaGraph must alter-
nate between these
queues to provide both a
dynamic depiction of the
program and responsive
user interaction.

The X-event queue
must be checked fre-
quently enough to pro-
vide good responsiveness, but not so fre-
quently as to degrade drawing speed. The
trace-event queue must be processed as
rapidly as possible while the simulation is
active, but it need not be checked at all if
the next possible event must be an X event
(as happens before a simulation starts,
after it finishes, when it is in single-step
mode, or when it has been paused and can
be resumed only by the user).

So ParaGraph’s alternation between
queues is not strict. Because not all event
records PICL produces are of interest to
ParaGraph, it fast-forwards through such
uninteresting records before it rechecks
the X-event queue. Also, ParaGraph
checks the X-event queue with both
blocking and nonblocking calls, depend-
ing on the circumstances, so workstation
resources are not consumed unnecessarily
when the simulation is inactive.

DISPLAYS

Printed illustrations obviously cannot

. convey ParaGraph’s dynamism, but we

must be content with snapshots. Due to
space limitations, we cannot illustrate all
25 displays, so we selected the most useful
and interesting ones from a typical Para-
Graph session. For clarity and simplicity,
the examples use only a few processors.
‘With one noted exception, all of the views
shown can display at least 128 processors
and most of them can display up to 512
processors. The figures reproduced here
were produced from trace files made on an
Intel iPSC/2 hypercube.

The parallel program illustrated in
most of the figures is a common computa-
tion in scientific computing: the solution
of a large sparse system of linear equations
by Cholesky factorization. (See our tech-
nical report for details of the parallel algo-
rithm used here.%)

In the example, the sparse matrix of the
linear system arises from a 15 x 15 square
grid, so the matrix is of order 225. The
nodes of the grid, and hence the rows and
columns of the matrix, are ordered by
nested dissection, which is a type of do-
main decomposition that leads to a typical
divide-and-conquer parallel algorithm for
the factorization.

In the example, each of the eight pro-
cessors first computes the portion of the
factorization corresponding to the interior
of its own part of the grid, which it can do
independent of the other processors.
However, eventually the processors reach
a point where interprocessor communica-
tion is required to supply boundary data
from neighboring grid portions before
computations can proceed. The proces-
sors team up in four pairs, then in two sets
of four, and finally all eight together, as
they work their way up the elimination
tree and communicate across higher level
boundaries.

Most of the displays fall into one of three
categories — utilization, communication,
and task informaton —although some con-
tain more than one type of information and
a few do not fit these categories at all.

Utilization displays. Figure 1 shows pro-
cessor-utilization displays, which show
how effectively processors are used and
how evenly the computational work is dis-
tributed among them.

32

SEPTEMBER 19891

Processor count. The utilization-count dis-
play (top-left window in Figure 1) shows
the total number of processors in each of
three states -— busy, overhead, and idle —
as a function of time. The number of pro-
cessors is on the vertical axis and time is on
the horizontal axis, which scrolls as neces-
sary as the simulation proceeds.

The color scheme is borrowed from
traffic signals: green (go) for busy, yellow
(caution) for overhead, and red (stop) for
idle. Along the vertical axis we show green
at the bottom, yellow in the middle, and
red at the top.

ParaGraph categorizes a processor as
idle if it has suspended execution awaiting
a message that has not yet arrived or if it
has ceased execution at the end of the run,
overhead if it is executing in the commu-
nication subsystem but not awaiting a
message, and busy if it is executing some
portion of the program other than the
communication subsystem.

Because these three categories are mu-
tually exclusive and exhaustive, the total
height of the composite is always equal to
the total number of processors. Ideally, we
would like to interpret busy as meaning
thata processor is doing useful work, over-
head as meaning that a processor is doing
work that would be unnecessary in a serial
program, and idle as meaning that a pro-
cessor is doing nothing. Unfortunately,
the monitoring required to make such a
determination would almost certainly be
nonportable and/or excessively intrusive.
So busy time may well include redundant
work or other work that would not be nec-
essary in a serial program, because our
monitor detects only that overhead associ-
ated with communication.

However, we find that in practice these
definitions are quite adequate to illustrate
the effectiveness of parallel programs. In
Figure 1, the perfectly parallel initial phase
of the divide-and-conquer algorithm for
sparse-matrix factorization corresponds to
the all-green portion at the far left, before
subsequent communication causes pro-
cessor use to decline.

Gantt chart. This display (bottom-left win-
dow in Figure 1), patterned after graphical
charts used in industrial management,®

Figure 1. Processor-utilization displays. Top row, from Jeft: count of processors in each of three states;
percentage of time a certain number of processors were in a given state. Bottom row, from left: activity of
individual processors over time; percentage of time each processor spent in each state.

depicts the activity of individual proces-
sors with a horizontal bar chart in which
the color of each bar indicates the
busy/overhead/idle status of the corre-
sponding processor as a function of time,
again using the traffic-signal color
scheme.

Processor number is on the vertical
axis; time on the horizontal axis, which
scrolls as necessary as the simulation pro-
ceeds. The Gantt chart provides the same
information as the udlization-count dis-
play, but by individual processor instead of
by aggregate. As Figure 1 shows, the utili-
zation-count display is simply the Gantt
chart with the green sunk to the bottom,
the red floated to the top, and the yellow
sandwiched in between.

Summary. The utlization-summary dis-
play (bottom-right window in Figure 1)
shows the percent of time over the entire
run that each processor spent in each of
the three states (busy, overhead, and idle).
"The percentage is shown on the vertical
axis; the processor number on the hori-
zontal axis. This display also uses the traf-
fic-light color scheme.

In addition to a visual impression of
overall program efficiency, this display
gives avisual indication of the load balance
across processors. In the sparse-matrix ex-
ample shown in Figure 1, four of the pro-
cessors are assigned the four corners of the
grid, while the other four are assigned
central portions of the grid, leading to a
load imbalance thatis clearly visible.

Concurrency profile. This display (top-right
window in Figure 1) shows the percentage
of time that a certain number of proces-
sors were in a given state. The percentage
of time is shown on the vertical axis; the
number of processors on the horizontal
axis. The profile for each possible state is
shown separately; the user can cycle
through the three states by clicking on a
subwindow.

The actual concurrency profile for real
programs shown by this display is usually
in marked contrast to the idealized condi-
tions that are the basis for Amdahl’s Law,
which assumes that at any given time the
computational work is either strictly serial
or fully parallel. Figure 1 shows the busy
profile for the sparse-matrix example; the

IEEE SOFTWARE

33

et

i

Figure 2. Communication and utilization displays. Top row, from lefi: logical connectivity of multiprocessors;
mmessage length; matrix of message size, duration, and pattern; node layouts that corvespond to networks
embedded in a hypercube. Bottom row, from left: geometric depiction of an individual processor’s use and overall
load balance; percentage of maximum number of processors in each of three states; curvent communication
volume as a percentage of the maximum; size of each processor’s incoming message queue.

idle and overhead profiles are not shown.

Utiization mefer. This display (bottom-cen-
ter window in Figure 2) uses a colored
vertical bar, with the traffic-light color
scheme, to indicate the percentage of the
maximum number of processors that are
currently in each of the three states.

The visual effect, shown in Figure 2, is
similar to a thermometer. This display
provides essentially the same information
as the utilization-count display, but saves
screen space because it changes in place
rather than scrolling with time.

Kiviat diagram. This display (bottom-left
window in Figure 2), adapted from related
graphs used in other types of performance
evaluation,®”’ gives a geometric depiction
of individual processor’s usage and the
overall load balance across processors.

As Figure 2 shows, each processor is
represented as a spoke on a wheel. The
recent average fractional usage of each
processor determines a point on its spoke,
with the hub of the wheel representing

zero (completely idle) and the outer rim
representing one (completely busy).

Taken together, the points for all the
processors determine the vertices of a
polygon whose size and shape illustrate
both processor use and load balance. Low
usage concentrates the polygon near the
center, while high usage causes the poly-
gon to lie near the perimeter. Poor load
balance across processors causes it to be
strongly skewed or asymmetric. Any
change in load balance is clearly shown:
With many ring-oriented algorithms, for
example, the moving polygon has the ap-
pearance of a rotating camshaft as the
heavier workload moves around the ring.

In Figure 2, current usage is shown in
dark shading, and the “high-water mark”
thus far has a lighter shading. The current
usage is a moving average over a user-
specified time, because instantaneous
usage would always be either zero or one
for each processor.

Communication displays. Interprocessor-
communication displays are helpful in de-

termining communication frequency,
volume, and overall pattern, and whether
there is congestion in the message queues.

Message queves. This display (bottom-
right window in Figure 2) depicts the size
of the each processor’s incoming-message
queue with a vertical bar whose height
varies with time as messages are sent,
buffered, and received. The processor
number is shown on the horizontal axis.

You can set the queue size to be mea-
sured either by the number of messages or
by their total length in bytes. A processor’s
input queue size is incremented each time
a message is sent to that processor, and
decremented each time the user process
on that processor receives a message. On
most message-passing parallel systems,
transmission tme between processors is
negligible compared to the overhead in
handling messages, so the time between
send and receive events is a reasonable ap-
proximation of the time a message actually
spends in the destination processor’s input
queue.

Depending on their types, messages
may not be received in the same order in
which they arrive for queuing, so queues
may grow and shrink in complicated ways.
As before, dark shading depicts the cur-
rent queue size on each processor, and
lighter shading the high-water mark.

This display gives a pictorial indication
of whether there is communication con-
gestion (if messages are accumulating in
the input queue) or if messages are being
consumed at about the same rate as they
arrive. Of course, it is best if messages ar-
rive slightly before they are actually
needed, so the receiving processor does
not become idle. But a large backlog of
Incoming messages can consume exces-
sive buffer space, so a happy medium is
desirable. In the example shown in Figure
2, processor 2 has no messages in its input
queue, the other processors all have mes-
sages awaiting receipt by their user pro-
cesses, and no queue is at its maximum size
so far.

Communication matrix. In this display (top-
center window in Figure 2), messages are
represented by squares in a two-dimen-

34

SEPTEMBER 1381

sional array whose rows and columns cor-
respond to each message’s sending and re-
ceiving processor. During simulation,
each message is depicted by coloring the
appropriate square when the message is
sent and erasing it when the message is
received.

The square’s color indicates message
size in bytes, as given in a separate color-
code display. Thus, this display shows
message size, duration, and overall pat-
tern. The nodes can be ordered along the
axes in either natural or Gray code order;
your choice will strongly affect the com-
munication pattern. At the end of the sim-
ulation, this display shows the cumulative
communication volume for the entire run
between each pair of processors.

Animation. In this display (top-left win-
dow in Figure 2), the multiprocessor is
represented by a graph whose nodes
(numbered circles) represent processors,
and whose arcs (lines between circles) rep-
resent communication links.

Each node’s status (busy, idle, sending,
and receiving) is indicated by its color, so
the circles are like the multiprocessor’s
front-panel lights. An arc is drawn be-
tween the source and destination proces-
sors when a message is sent, and erased
when the message is received. So both
node color and graph connectivity change
as simulation proceeds.

The small circles are arranged in a large
circle merely for convenience in drawing
straight lines between processor pairs
without intersecting any other processors;
this arrangement is not meant to suggest
that the underlying architecture is a ring.
"The nodes can be ordered around the cir-
cle in either natural or Gray code order;
again, your choice will strongly affect the
communication pattern.

The arcs represent the logical, rather
than physical, connectivity of the muld-
processor network, and possible routing of
messages through intervening nodesis not
depicted unless the program being visual-
ized does such forwarding explicitly.

Various combinations of states are pos-
sible for the sending and receiving proces-
sors. As Figure 2 shows, the processors on
both ends of a message line can be busy,

one having already sent the message and
resumed computing, while the other has
notyetstopped computing to receive it. At
the end of a simulation, this display shows
a summary of all logical communication
links used in the run.

Hypercwbe. This display (top-right win-
dowin Figure 2)is similar to the animation
display, except it provides additional node
layouts to exhibit more clearly communi-
cation patterns that correspond to the var-
ious networks that can be embedded in a
hypercube. The layouts provided include
ring, ring of rings, web, cube, lateral cubes,
nested cubes, mesh, linear, tree, tesseract
(four-dimensional cube), and polytope ar-
rangements.

This display does not require that a
machine’s interconnection network be a
hypercube — it highlights
the hypercube structure
merely as a matter of in-
terest. The scheme for
coloring nodes and draw-
ing arcs is the same as the
animation display, except
that curved arcs are often
used to avoid, as much as
possible, intersecting in-
termediate nodes.

To help the user of a
hypercube determine if

|
The layouts provided
include ring, ring of
rings, web, cube,
lateral cubes, nested
cubes, mesh, linear,
tree, fesseract

method used to draw the hypercube dis-
play does not scale up to large numbers of
processors, and itis limited to displaying at
most 16 processors.

Communication mefer. This display (bottom-
center window in Figure 2) uses a vertical
bar to indicate the current communica-
tion volume as a percentage of the maxi-
mum. This display provides essentially the
same information as the communication
traffic display, but saves screen space by
changing in place rather than scrolling
with time. Conceptually, this thermome-
ter-like display is similar to the utlization-
meter display, and the two are interesting
to observe side by side.

Communication fraffic. This display (top-left
window in Figure 3) is a simple plot of the
total communication
traffic in the interconnec-
tion network (including
message buffers) as a
function of time. The
curve plotted is the total
length or number of mes-
sages sent but not yet re-
ceived. It can be ex-
pressed by message count
or by volume in bytes.

The communication
traffic can also be either

the netuwgt;k"s ﬁhysicaé (four-dimension(]l the aggregate pvetrtz;lll
connectivity is honore processors or just the
by the program’s commu- CUbe) ' Gnd p0|yT0pe messages pending for any
nication, message arcs individual processor.
corresponding to genuine []rr(]ngemenTS. Message volume or count

physical hypercube links

are drawn in a different

color from message arcs along virtual links
that do not exist in a hypercube and there-
fore entail indirect routing through inter-
vening processors.

In Figure 2, the message between
nodes 2 and 7 must travel over a virtual
link by being forwarded through an inter-
mediate processor, whereas the message
between nodes 2 and 6 travels directly over
the physical link between those two pro-
cessors. As in the animation display, at the
conclusion of the simulation 2 summary of
all logical communication links used dur-
ing the run is shown. Unfortunately, the

is shown on the vertical

axis; time on the horizon-
tal axis, which scrolls as necessary. Figure
3 shows the successively higher peaks in
communication traffic for the sparse-ma-
trix example as the program encounters
higher level grid separators.

Space-ime diagram. Patterned after dia-
grams used in relativity theory, this display
(top-right window in Figure 3) depicts in-
teractions among processors through space
and dme. This diagram has been used by
Leslie Lamport to describe the order of
events in a distributed system.® The same
pictorial concept was used over a century

IEEE SOFTWARE

35

Figure 3. Communication and task displays. Top row, from left: plot of total communication traffic over time;

interactions among processors through space and time. Bottom row, from lef: each processor’s task activity over

time; duration of each task as a percentage of total execution time.

ago to prepare graphical railway schedules.”

In our adaptation of the space-time di-
agram, processor number is on the vertical
axis, time on the horizontal, which scrolls
as necessary. Processor activity (busy or
idle) is indicated by horizontal lines, one
for each processor, with the line drawn
solid if the corresponding processor is
busy (or doing overhead), and blank if the
processor is idle.

Messages between processors are de-
picted by slanted lines between the send-
ing and receiving processor activity lines,
indicating the dmes at which each mes-
sage was sent and received. These sending
and receiving times are from user process
to user process (not simply the physical
transmission time), and hence the slopes
of the resulting lines give a visual indica-
tion of how soon a piece of data produced
by one processor is needed by the receiv-
ing processor. The communication lines
are color-coded to indicate the sizes of the
messages being transmitted.

The space-time diagram shown in Fig-
ure 3 clearly shows the divide-and-con-
quer nature of the sparse-matrix example.
The eight processors inidally work inde-

pendendy, then combine in successively
larger groups as they move up the elimina-
tion tree. The space-time diagram is one
of the most informative of all the displays,
because it depicts both individual proces-
sor utilization and all message trafficin full
detail. For example, it can easily be seen
which message wakes up an idle processor
that was blocked. Unfortunately, this fine
level of detail does not scale up beyond
about 128 processors, as the diagram be-
comes extremely cluttered.

Task displays. The displays thus far have
depicted a number of important aspects
that help detect performance bottlenecks.
However, they contain no information
about where in the parallel program the
behavior occurs.

"Io remedy this situaton, we consid-
ered several automated approaches to pro-
viding such informadon (such as picking
up line numbers in the source code from
the compiler), but all of these involved
nasty practical difficuldes. So we reluc-
tantly made an exception to our rule that
the ParaGraph user need do nothing to

instrument the program under study.

We developed several new task dis-
plays that use information provided by
the user and PICL to depict the portion
of the program that is executing. The
user defines tasks within a program by
using special PICL routines to mark the
beginning and end of each task and as-
sign it a task number.

The scope of what is meant by a task is
left endrely to the user: A task can be a
single line of code, a loop, an entire sub-
routine, or any other unit of work that is
meaningful. For example, in matrix fac-
torization you might define the computa-
tion of each column to be a task and assign
the column number as the task number.
You need to define tasks only if you want
to view the task displays. If the trace file
contains no event records that define tasks,
the task displays will simply be blank.

Tasks can be nested, but if they are they
should be properly bracketed by matching
task begin and end records. Note also that
more than one processor can be assigned
the same task (or, more accurately, each
processor can be assigned its own portion
of the same task); indeed, the model we
have in mind is that all processors collabo-
rate on each task, rather than that each task
is assigned to a single processor. In many
contexts, such as the matrix example men-
tioned above, there is a natural ordering
and corresponding numbering of the tasks
in a parallel program.

In most of the task displays described
here, task numbers are color-coded. Be-
cause the number of tasks is likely to be
larger than the number of colors that can
be easily distinguished, ParaGraph recy-
cles colors to depict successive task num-
bers. We use one of six basic colors for
indicating each task, with the choice of
color given by the task number modulo
six. In the sparse-matrix example, we de-
fined the factorization computation of
each column to be a separate task, with the
column number as task number, for a total
of 225 tasks.

Task Gentt. This display (bottom-left win-
dow in Figure 3) depicts the task activity of
individual processors with a horizontal bar
chart in which the color of each bar indi-
| cates the current task being executed by

36

SEPTEMBER 13991

the corresponding processor as a function
of time. Processor number is on the verti-
cal axis; time on the horizontal axis, which
scrolls as necessary.

You can compare this display with the
utilization Gantt chart to correlate a
processor’s busy-overhead-idle status with
its task. Comparing Figure 3 with Figure 1
shows that for the sparse-matrix example the
longer tasks tend to be caused by extended
idle periods within the task while the proces-
sor awaits needed data, rather than by a
heavier work load for that processor.

Task summary. This display (bottom-right
window in Figure 3) indicates the duration
of each task (from earliest beginning to last
completion by any processor) as a percent-
age of the overall execution time and also
places the duration interval of each task
within the overall execution interval of the
program. The percentage of the total exe-
cution tme is shown on the vertical axis,
the task number on the horizontal axis. As
Figure 3 shows, this display provides an-
other striking depiction of the divide-and-
conquer sparse-matrix example, with the
8-4-2-1 sequence clearly visible.

Other task displays, not shown here, in-
clude task count, which shows the number of
processors thatare executing a given task ata
given time, and task status, which indicates
whether a task has yet to begin, is currently
in progress, or has been completed.

Other displays. Some displays either do
not fit into a category or cut across more
than one category.

Critical path. Similar to the space-time dia-
gram, this display (top window in Figure
4) uses a different color coding to high-
light the longest serial thread in a parallel
computation.

As Figure 4 shows, the processor and
message lines along the critical path are
shown in red, while all other processor and
message lines are in light blue. This dis-
play helps identify performance bottle-
necks and tune the parallel program by
focusing on the part of the computation
that is limiting performance. Any im-
provement in performance must necessar-
ily shorten the longest serial thread run-

ning through the computation, so this is
the first place to look for potential algo-
rithm improvements.

Phase porirait Patterned after phase portraits
used in differential equations and classical
mechanics to depict the relationship be-
tween two variables that depend on some
independent variable, these displays (bot-
tom-left and bottom-right windows in Fig-
ure 4) illustrate the reladonship over time
between communication and processor use.

Atany point in time, the percentage of
processors in the busy state and the per-
centage of the maximum volume of com-
munication in transit together define a sin-
gle point in a two-dimensional plane. This
point changes with time as communica-
tion and processor use vary, thereby trac-
ing out a trajectory in the plane that is
plotted in this display, with communica-
tion and use on the two axes.

Because the overhead and potential
idleness due to communication inhibit
Processor use, you expect communication
and use generally to have an inverse rela-
tionship. Thus the phase trajectory should
tend to lie along a diagonal. This display

frsbiemr Patn

reveals repetitive or periodic behavior,
which tends to show up in the phase por-
trait as an orbit pattern.

The bottom-left window of Figure 4
shows two distinct computation phases,
each of which exhibits a high degree of
periodic behavior. By setting task num-
bers, you can color-code the trajectory to
highlight either major phases in a compu-
tation or individual orbits. For example,
the two phases shown in Figure 4 are ma-
trix factorization (blue) and triangular solu-
tion (green) in solving a system of linear
equations, and in the bottom-right window
each separately colored orbit is a different
dimension of a fast Fourier transform.

Other displays not shown here include
processor status, which is a comprehen-
sive display that attempts to capture de-
tailed information about processor use,
communication, and tasks in a compact
format that scales up well to very large
numbers of processors; clock, which pro-
vides both digital and analog clock read-
ings during simulation; trace, a textual dis-
play of an annotated version of each trace
event as it is read from the trace file (useful
primarily in single-step mode for debug-

Figure 4. Miscellaneous displays. Top: space-time diagram with longest serial thread bighlighted. Bottom: two

phase portraits that ilfustrate the relationsbip between communication and processor use over time.

IEEE SOFTWARE

37

: -4
¥ s
g . i

Figure 5. Successive snapshots of an application-specific display showing several stages of recursive matrix
transposition.

ging or other detailed study on an event-
by-event basis); and statistical summary, a
textual display of numerical values for var-
ious statistics summarizing processor use
and communicatdon, both for individual
processors and processor aggregates (use-
tul in preparing tables and graphs that re-
quire exact numerical quantities for
printed reports or for analytical perfor-
mance modeling).

Application-spedfic displays. All the dis-

plays shown so far are generic — they are
applicable to any parallel program based
on message-passing. In general, this wide
applicability is a virtue, but knowledge of
the application often lets you design a spe-
cial-purpose display that reveals greater
detail or insight than generic displays
would permit.

For example, if you are studying a paral-
lel-sorting algorithm, generic displays can
show which processors communicate and
the communication volume, but not which
specific data items are being exchanged
among processors. Obviously, ParaGraph
cannotprovide such applicaton-specificdis-
plays, but it is extensible so users can add
application-specific displays of their own de-

sign that they can add to the menu and
view along with the generic displays.

ParaGraph contains calls at appropri-
ate points to application-specific routines
for the inidalization, data input, event
handling, and drawing of displays. If the
user does not supply these routines,
dummy “stub” routines are instead linked
into ParaGraph when the executable
module is built. When an application-spe-
cific display has been linked into Para-
Graph and the resulting module is exe-
cuted, the user-supplied display is given
access to all of the event records in the
trace file that ParaGraphreads and can use
them in any manner it chooses.

The events generated by PICL may
suffice for the application-specific display.
Oryou can insert additional events during
execution to supply additonal data for the
application-specific display.

PICLs tracemarks event is perhaps the
mostuseful for this purpose, because itlets
users insert into the trace file time-
stamped records containing arbitrary lists
of integers, which might be used to pro-
vide loop indices, array indices, memory
addresses, or other information that
would let the application-specific display

convey more fully and precisely the
program’s activity in the context of the
particular application.

Unfortunately, writing the necessary
routines to support an application-specific
display is a decidedly nontrivial task that
requires a general knowledge of X Win-
dows programming. But at least the user
of this capability can concentrate on only
those portions of the graphics program-
ming that are relevant to his application,
taking advantage of ParaGraph’s support-
ing infrastructure to provide all of the
other necessary facilities to drive and con-
trol the overall graphical simulaton and
provide a meaningful context in which to
view the application-specific information.

"To help users who want to develop ap-
plication-specific displays, we have devel-
oped several prototype displays to depict
parallel-sorting algorithms, matrix trans-
position, and various other matrix compu-
tations. These example routnes are dis-
tributed along with the source code for
ParaGraph. Figure 5 shows successive
snapshots of an application-specific dis-
play for matrix transposition that is driven
by event records that indicate which data
items are being exchanged among the
processors.

FUTURE WORK

ParaGraph is a reasonably mature tool,
although we intend to add more displays
as helpful new perspectives are devised.
There are a few minor technical points
about ParaGraph that could stand im-
provement. It would be nice to have more
explicit control over simulation speed.
The contents of many displays are lost if
the window is obscured and then
reexposed. This inability to repair or re-
draw windows, short of rerunning the
simulation from the beginning, was a de-
liberate design decision based on a desire
to conserve the substantial amount of
memory that would be required to save
the contents of all windows for possible
restoration. Nevertheless, this “feature”
can be annoying at imes and should even-
tually be fixed.

A more serious limitation of Para-
Graph in its current form is the number of

38

SEPTEMBER 1881

processors that can be depicted effectively.
Afew of the current displays are simply too
detailed to scale up beyond about 128 pro-
cessors and still be comprehensible. Most
of the displays scale up well toalevel of 512
or 1,024 processors on a normal-sized
workstation screen, but at this point they
are down to representing each processor
by a single pixel (or pixel line), and hence
cannot be scaled any further in their cur-
rent form.

To visualize programs for massively
parallel architectures that have thousands
of processors, we must either devise new
displays that scale up to this level, or adapt
the existing displays by aggregating or se-
lecting information. For example, the cur-
rent displays could depict processor clus-
ters or subsets (cross sections).

It is fairly easy to imagine how graphics
technology might be adapted to meet
the needs of visualizing massively parallel
computations, but it is much less obvious
how to handle the vast volume of trace
data that would result from monitoring
thousands of processors. It is already diffi-
cult to store and process the trace data col-
lected from long runs even with the mod-
est numbers of processors currently
supported by PICL and ParaGraph. To go
beyond the present level will almost cer-
tainly require some degree of behavior ab-
straction, both in the data and in its graph-
ical presentation. We simply cannotafford
to continue to record or display all com-
munication events when they become so
voluminous.

Unfortunately, many of ParaGraph’s
displays depend critically on the availabil-
ity of data on each individual event. Thus,
the development of new visual displays
and new data abstractions must proceed in
tandem so the monitoring facility will pro-
duce data that can be visually displayed in
a meaningful way.

Source code for ParaGraph, as well as
sample trace files for demonstrating its
use, are available for free over Internet’s
Netlib software-distribution service.* To
receive detailed instructions for obtaining
ParaGraph, send an electronic mail mes-
sage to netlib@ornl.gov containing the
text “send index from paragraph.” ¢

ACKNOWLEDGMENTS

The detailed implementation of ParaGraph has been done almost entirely by undergraduate students on
research internships at Oak Ridge National Laboratory. The software’s overall structure and the conceptual de-
signs of the individual displays were developed by Heath. The bulk of the programming was done by Etheridge
while she was an undergraduate student, first at Roanoke College and later at the University of Tennessee.

Loretta Auvil, then an undergraduate at Alderson Broaddus College, developed the Hypercube display,
and Michelle Hribar, then an undergraduate at Albion College, developed the first two application-specific dis-
plays (to illustrate parallel sorting and matrix transposition) as extensions to ParaGraph. In each case these un-
dergraduates began their work on ParaGraph without any prior knowledge of Unix, C, computer graphics,
workstations, or X Windows, and within a single term each was contributing to the sophisticated software de-
scribed here. ParaGraph’s development has been an interesting educational experiment that has provided a use-
ful tool for the performance analysis of parallel programs.

This research was supported by the Applied Mathematical Sciences Research Program, Office of Energy
Research, US Energy Dept. under contract DE-AC05-840R21400 with Martin Marietta Energy Systems.

REFERENCES
1. GA. Geistetal., PICL: A Portable Instrumented Communication Library, C Reference Manual, Tech. Report
ORNL/TM-11130, Oak Ridge Nat'l Lab., Oak Ridge, Tenn., 1990.

. M.T. Heath and J.A. Etheridge, Visualizing Performance of Pavallel Programs, Tech. Report ORNL/TM-
11813, Oak Ridge Nat'l Lab., Oak Ridge, Tenn., 1991.

. JJ. Dongarra and E. Grosse. “Distribution of Mathematical Software via Electronic Mail,” Comm. ACM,
May 1987, pp. 403-407.

4. MT. Heath, E. Ng, and B.W. Peyton, “Parallel Algorithms for Sparse Linear Systems,” SIAM Review,
Sept. 1991, pp. 420-460.

. H.L. Gantt, “Organizing for Work,” Industrial Management, Aug. 1919, pp. 89-93.

. K. Kolence and P. Kiviat, “Software Unit Profiles and Kiviat Figures,” Performance Evaluation Rev., Sept.
1973, pp. 2-12.

7. MLE. Morris, “Kiviat Graphs: Conventions and Figures of Merit,” Performance Evaluation Rev., Oct. 1974,

pp. 2-8.

8. L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System, Commn. ACM, July 1978,
pp- 558-565.

. E.R. Tufte, The Visual Display of Quantitative Information, Graphics Press, Cheshire, Conn., 1983.

~

w

[SNEVY

el

Michael T. Heath is a computer science professor and research scientist at the National
Center for Supercomputing Applications at the University of Illinois at Urbana-Cham-
paign. He was a senior research-staff member and computer science group leader in the
Mathematical Sciences Section at Oak Ridge National Laboratory. His research inter-
ests are in large-scale scientific computing on parallel computers, numerical linear alge-
bra, and performance visualization.

Heath received a PhD in computer science from Stanford University.

Jennifer A. Etheridge is a technical research associate in the mathematical sciences
section at Oak Ridge National Laboratory. Her current interests are in computer
graphics and visualization.

Etheridge received a BS in mathematics from the University of Tennessee at Knoxville.

Address questions about this article to Heath at the National Center for Super-
computing Applications, 4157 Beckman Institute, University of Illinois, 405 Mathews
Ave., Urbana, IL 61801-2300; Internet heath@ncsa.uiuc.edu.

IEEE SOFTWARE

39

