
Tutorial on MPI� The
Message�Passing Interface

William Gropp

A
R

G
O

N
NE

NATIONAL LABORA

TO
R

Y

U
N

IVERSITY OF C
HIC

A
G

O

•

•

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne� IL �����

gropp�mcs�anl�gov

�

Course Outline

� Background on Parallel Computing

� Getting Started

� MPI Basics

� Intermediate MPI

� Tools for writing libraries

� Final comments

Thanks to Rusty Lusk for some of the material in this
tutorial�

This tutorial may be used in conjunction with
the book �Using MPI� which contains detailed
descriptions of the use of the MPI routines�

� Material that beings with this symbol is �advanced�

and may be skipped on a �rst reading�

�

Background

� Parallel Computing

� Communicating with other processes

� Cooperative operations

� One	sided operations

� The MPI process

�

Parallel Computing

� Separate workers or processes

� Interact by exchanging information

�

Types of parallel computing

All use di
erent data for each worker

Data�parallel Same operations on di
erent

data� Also called SIMD

SPMD Same program� di
erent data

MIMD Di
erent programs� di
erent data

SPMD and MIMD are essentially the same

because any MIMD can be made SPMD

SIMD is also equivalent� but in a less

practical sense�

MPI is primarily for SPMD�MIMD� HPF is

an example of a SIMD interface�

�

Communicating with other processes

Data must be exchanged with other workers

� Cooperative � all parties agree to

transfer data

� One sided � one worker performs

transfer of data

�

Cooperative operations

Message	passing is an approach that makes

the exchange of data cooperative�

Data must both be explicitly sent and

received�

An advantage is that any change in the

receiver�s memory is made with the receiver
s

participation�

SEND(data)

Process 0 Process 1

RECV(data)

�

One�sided operations

One	sided operations between parallel

processes include remote memory reads and

writes�

An advantage is that data can be accessed

without waiting for another process

Process 0 Process 1

Process 0 Process 1

(Memory)

PUT(data)

(Memory)

GET(data)

�

Class Example

Take a pad of paper� Algorithm� Initialize with the
number of neighbors you have

� Compute average of your neighbor�s values and
subtract from your value� Make that your new
value�

� Repeat until done

Questions

�� How do you get values from your neighbors�

�� Which step or iteration do they correspond to�
Do you know� Do you care�

	� How do you decide when you are done�

	

Hardware models

The previous example illustrates the

hardware models by how data is exchanged

among workers�

� Distributed memory �e�g�� Paragon� IBM

SPx� workstation network�

� Shared memory �e�g�� SGI Power

Challenge� Cray T�D�

Either may be used with SIMD or MIMD

software models�

� All memory is distributed�

�

What is MPI�

� A message�passing library speci�cation

 message�passing model

 not a compiler speci�cation

 not a speci�c product

� For parallel computers
 clusters
 and heterogeneous
networks

� Full�featured

� Designed to permit �unleash�� the development of
parallel software libraries

� Designed to provide access to advanced parallel
hardware for

 end users

 library writers

 tool developers

��

Motivation for a New Design

� Message Passing now mature as programming
paradigm

 well understood

 e�cient match to hardware

 many applications

� Vendor systems not portable

� Portable systems are mostly research projects

 incomplete

 lack vendor support

 not at most e�cient level

��

Motivation �cont��

Few systems o�er the full range of desired features�

� modularity �for libraries�

� access to peak performance

� portability

� heterogeneity

� subgroups

� topologies

� performance measurement tools

��

The MPI Process

� Began at Williamsburg Workshop in April
 ����

� Organized at Supercomputing ��� �November�

� Followed HPF format and process

� Met every six weeks for two days

� Extensive
 open email discussions

� Drafts
 readings
 votes

� Pre��nal draft distributed at Supercomputing ��	

� Two�month public comment period

� Final version of draft in May
 ����

� Widely available now on the Web
 ftp sites
 netlib
�http���www�mcs�anl�gov�mpi�index�html�

� Public implementations available

� Vendor implementations coming soon

��

Who Designed MPI�

� Broad participation

� Vendors

 IBM
 Intel
 TMC
 Meiko
 Cray
 Convex
 Ncube

� Library writers

 PVM
 p�
 Zipcode
 TCGMSG
 Chameleon

Express
 Linda

� Application specialists and consultants

Companies Laboratories Universities
ARCO ANL UC Santa Barbara
Convex GMD Syracuse U
Cray Res LANL Michigan State U
IBM LLNL Oregon Grad Inst
Intel NOAA U of New Mexico
KAI NSF Miss� State U�
Meiko ORNL U of Southampton
NAG PNL U of Colorado
nCUBE Sandia Yale U
ParaSoft SDSC U of Tennessee
Shell SRC U of Maryland
TMC Western Mich U

U of Edinburgh
Cornell U�
Rice U�
U of San Francisco

��

Features of MPI

� General

 Communicators combine context and group for
message security

 Thread safety

� Point�to�point communication

 Structured bu�ers and derived datatypes

heterogeneity

 Modes� normal �blocking and non�blocking�

synchronous
 ready �to allow access to fast
protocols�
 bu�ered

� Collective

 Both built�in and user�de�ned collective
operations

 Large number of data movement routines

 Subgroups de�ned directly or by topology

��

Features of MPI �cont��

� Application�oriented process topologies

 Built�in support for grids and graphs �uses
groups�

� Pro�ling

 Hooks allow users to intercept MPI calls to
install their own tools

� Environmental

 inquiry

 error control

��

Features not in MPI

� Non�message�passing concepts not included�

 process management

 remote memory transfers

 active messages

 threads

 virtual shared memory

� MPI does not address these issues
 but has tried to
remain compatible with these ideas �e�g� thread
safety as a goal
 intercommunicators�

��

Is MPI Large or Small�

� MPI is large ���� functions�

 MPI�s extensive functionality requires many
functions

 Number of functions not necessarily a measure
of complexity

� MPI is small �� functions�

 Many parallel programs can be written with just
� basic functions�

� MPI is just right

 One can access �exibility when it is required�

 One need not master all parts of MPI to use it�

�	

Where to use MPI�

� You need a portable parallel program

� You are writing a parallel library

� You have irregular or dynamic data

relationships that do not �t a data

parallel model

Where not to use MPI�

� You can use HPF or a parallel Fortran ��

� You don
t need parallelism at all

� You can use libraries �which may be

written in MPI�

�

Why learn MPI�

� Portable

� Expressive

� Good way to learn about subtle issues in

parallel computing

��

Getting started

� Writing MPI programs

� Compiling and linking

� Running MPI programs

� More information

� Using MPI by William Gropp
 Ewing Lusk

and Anthony Skjellum

� The LAM companion to �Using MPI���� by
Zdzislaw Meglicki

� Designing and Building Parallel Programs by
Ian Foster�

� A Tutorial�User�s Guide for MPI by Peter
Pacheco
�ftp���math�usfca�edu�pub�MPI�mpi�guide�ps�

� The MPI standard and other information is
available at http���www�mcs�anl�gov�mpi� Also
the source for several implementations�

��

Writing MPI programs

�include �mpi�h�

�include �stdio�h�

int main� argc� argv �

int argc	

char

argv	

�

MPI�Init�
argc�
argv �	

printf� �Hello world�n� �	

MPI�Finalize��	

return �	

�

��

Commentary

� �include �mpi�h� provides basic MPI

de�nitions and types

� MPI�Init starts MPI

� MPI�Finalize exits MPI

� Note that all non	MPI routines are local�

thus the printf run on each process

��

Compiling and linking

For simple programs� special compiler

commands can be used� For large projects�

it is best to use a standard Make�le�

The MPICH implementation provides

the commands mpicc and mpif��

as well as �Makefile
 examples in

��usr�local�mpi�examples�Makefile�in

��

Special compilation commands

The commands

mpicc �o first first�c
mpif�� �o firstf firstf�f

may be used to build simple programs when using
MPICH�

These provide special options that exploit the pro�ling
features of MPI

�mpilog Generate log �les of MPI calls

�mpitrace Trace execution of MPI calls

�mpianim Real�time animation of MPI �not available
on all systems�

There are speci�c to the MPICH implementation�

other implementations may provide similar commands

�e�g�
 mpcc and mpxlf on IBM SP���

��

Using Make�les

The �le �Makefile�in
 is a template Make�le�

The program �script� �mpireconfig
 translates

this to a Make�le for a particular system�

This allows you to use the same Make�le for

a network of workstations and a massively

parallel computer� even when they use

di
erent compilers� libraries� and linker

options�

mpireconfig Makefile

Note that you must have �mpireconfig
 in

your PATH�

��

Sample Make�le�in

����� User configurable options �����

ARCH � �ARCH�
COMM � �COMM�
INSTALL�DIR � �INSTALL�DIR�
CC � �CC�
F�� � �F���
CLINKER � �CLINKER�
FLINKER � �FLINKER�
OPTFLAGS � �OPTFLAGS�
�
LIB�PATH � �L��INSTALL�DIR	
lib
��ARCH	
��COMM	
FLIB�PATH �
�FLIB�PATH�LEADER���INSTALL�DIR	
lib
��ARCH	
��COMM	
LIB�LIST � �LIB�LIST�
�
INCLUDE�DIR � �INCLUDE�PATH� �I��INSTALL�DIR	
include

��� End User configurable options ���

��

Sample Make�le�in �con�t�

CFLAGS � �CFLAGS� ��OPTFLAGS	 ��INCLUDE�DIR	 �DMPI���ARCH	
FFLAGS � �FFLAGS� ��INCLUDE�DIR	 ��OPTFLAGS	
LIBS � ��LIB�PATH	 ��LIB�LIST	
FLIBS � ��FLIB�PATH	 ��LIB�LIST	
EXECS � hello

default� hello

all� ��EXECS	

hello� hello�o ��INSTALL�DIR	
include
mpi�h
��CLINKER	 ��OPTFLAGS	 �o hello hello�o

��LIB�PATH	 ��LIB�LIST	 �lm

clean�

bin
rm �f ��o �� PI� ��EXECS	

�c�o�
��CC	 ��CFLAGS	 �c ���c

�f�o�
��F��	 ��FFLAGS	 �c ���f

�	

Running MPI programs

mpirun �np � hello

�mpirun
 is not part of the standard� but

some version of it is common with several

MPI implementations� The version shown

here is for the MPICH implementation of

MPI�

� Just as Fortran does not specify how

Fortran programs are started� MPI does not

specify how MPI programs are started�

� The option �t shows the commands that

mpirun would execute� you can use this to

�nd out how mpirun starts programs on yor

system� The option �help shows all options

to mpirun�

�

Finding out about the environment

Two of the �rst questions asked in a parallel

program are� How many processes are there�

and Who am I�

How many is answered with MPI�Comm�size

and who am I is answered with MPI�Comm�rank�

The rank is a number between zero and

size	��

��

A simple program

�include �mpi�h�
�include �stdio�h	

int main
 argc� argv �
int argc

char ��argv

�
int rank� size

MPI�Init
 �argc� �argv �

MPI�Comm�rank
 MPI�COMM�WORLD� �rank �

MPI�Comm�size
 MPI�COMM�WORLD� �size �

printf
 �Hello world� I�m �d of �d�n��

rank� size �

MPI�Finalize
�

return �

�

��

Caveats

� These sample programs have been kept

as simple as possible by assuming that all

processes can do output� Not all parallel

systems provide this feature� and MPI

provides a way to handle this case�

��

Exercise � Getting Started

Objective� Learn how to login� write�

compile� and run a simple MPI program�

Run the �Hello world� programs� Try two

di
erent parallel computers� What does the

output look like�

��

Sending and Receiving messages

Process 0 Process 1

A:

B:

Send Recv

Questions�

� To whom is data sent�

� What is sent�

� How does the receiver identify it�

��

Current Message�Passing

� A typical blocking send looks like

send
 dest� type� address� length �

where

 dest is an integer identi�er representing the
process to receive the message�

 type is a nonnegative integer that the
destination can use to selectively screen
messages�

 �address� length� describes a contiguous area in
memory containing the message to be sent�

and

� A typical global operation looks like�

broadcast
 type� address� length �

� All of these speci�cations are a good match to
hardware
 easy to understand
 but too in�exible�

��

The Bu	er

Sending and receiving only a contiguous array of
bytes�

� hides the real data structure from hardware which
might be able to handle it directly

� requires pre�packing dispersed data

 rows of a matrix stored columnwise

 general collections of structures

� prevents communications between machines with
di�erent representations �even lengths� for same
data type

��

Generalizing the Bu	er Description

� Speci�ed in MPI by starting address
 datatype
 and
count
 where datatype is�

 elementary �all C and Fortran datatypes�

 contiguous array of datatypes

 strided blocks of datatypes

 indexed array of blocks of datatypes

 general structure

� Datatypes are constructed recursively�

� Speci�cations of elementary datatypes allows
heterogeneous communication�

� Elimination of length in favor of count is clearer�

� Specifying application�oriented layout of data
allows maximal use of special hardware�

��

Generalizing the Type

� A single type �eld is too constraining� Often
overloaded to provide needed �exibility�

� Problems�

 under user control

 wild cards allowed �MPI�ANY�TAG�

 library use con�icts with user and with other
libraries

�	

Sample Program using Library Calls

Sub� and Sub� are from di�erent libraries�

Sub�
�

Sub�
�

Sub�a and Sub�b are from the same library

Sub�a
�

Sub�
�

Sub�b
�

Thanks to Marc Snir for the following four examples

�

Correct Execution of Library Calls

Process 0 Process 1 Process 2

recv(any) send(1)

recv(any) send(0)

recv(1) send(0)

recv(2) send(1)

send(2) recv(0)

Sub1

Sub2

��

Incorrect Execution of Library Calls

Process 0 Process 1 Process 2

recv(any) send(1)

recv(any) send(0)

recv(1) send(0)

recv(2) send(1)

send(2) recv(0)

Sub1

Sub2

��

Correct Execution of Library Calls with Pending

Communcication

Process 0 Process 1 Process 2

recv(any) send(1)

send(0)

send(0)

recv(0)

recv(any)

send(1)

send(2) recv(1)

recv(2)

Sub1a

Sub2

Sub1b

��

Incorrect Execution of Library Calls with Pending

Communication

Process 0 Process 1 Process 2

recv(any) send(1)

send(0)

send(0)

recv(0)

recv(any)

send(1)

send(2) recv(1)

recv(2)

Sub1a

Sub2

Sub1b

��

Solution to the type problem

� A separate communication context for each family
of messages
 used for queueing and matching�
�This has often been simulated in the past by
overloading the tag �eld��

� No wild cards allowed
 for security

� Allocated by the system
 for security

� Types �tags
 in MPI� retained for normal use �wild
cards OK�

��

Delimiting Scope of Communication

� Separate groups of processes working on
subproblems

 Merging of process name space interferes with
modularity

 �Local� process identi�ers desirable

� Parallel invocation of parallel libraries

 Messages from application must be kept
separate from messages internal to library�

 Knowledge of library message types interferes
with modularity�

 Synchronizing before and after library calls is
undesirable�

��

Generalizing the Process Identi�er

� Collective operations typically operated on all
processes �although some systems provide
subgroups��

� This is too restrictive �e�g�
 need minimum over a
column or a sum across a row
 of processes�

� MPI provides groups of processes

 initial �all� group

 group management routines �build
 delete
groups�

� All communication �not just collective operations�
takes place in groups�

� A group and a context are combined in a
communicator�

� Source�destination in send�receive operations refer
to rank in group associated with a given
communicator� MPI�ANY�SOURCE permitted in a
receive�

��

MPI Basic Send
Receive

Thus the basic �blocking� send has become�

MPI�Send
 start� count� datatype� dest� tag�
comm �

and the receive�

MPI�Recv
start� count� datatype� source� tag�
comm� status�

The source
 tag
 and count of the message actually
received can be retrieved from status�

Two simple collective operations�

MPI�Bcast
start� count� datatype� root� comm�
MPI�Reduce
start� result� count� datatype�

operation� root� comm�

��

Getting information about a message

MPI�Status status

MPI�Recv
 ���� �status �

��� status�MPI�TAG

��� status�MPI�SOURCE

MPI�Get�count
 �status� datatype� �count �

MPI�TAG and MPI�SOURCE primarily of use when
MPI�ANY�TAG and�or MPI�ANY�SOURCE in the receive�

MPI�Get�count may be used to determine how much
data of a particular type was received�

�	

Simple Fortran example

program main
include �mpif�h�

integer rank� size� to� from� tag� count� i� ierr
integer src� dest
integer st�source� st�tag� st�count
integer status�MPI�STATUS�SIZE	
double precision data����	

call MPI�INIT� ierr 	
call MPI�COMM�RANK� MPI�COMM�WORLD� rank� ierr 	
call MPI�COMM�SIZE� MPI�COMM�WORLD� size� ierr 	
print �� �Process �� rank� � of �� size� � is alive�
dest � size � �
src � �

C
if �rank �eq� src	 then

to � dest
count � ��
tag � ����
do �� i��� ��

�� data�i	 � i
call MPI�SEND� data� count� MPI�DOUBLE�PRECISION� to�

� tag� MPI�COMM�WORLD� ierr 	
else if �rank �eq� dest	 then

tag � MPI�ANY�TAG
count � ��
from � MPI�ANY�SOURCE
call MPI�RECV�data� count� MPI�DOUBLE�PRECISION� from�

� tag� MPI�COMM�WORLD� status� ierr 	

�

Simple Fortran example �cont��

call MPI�GET�COUNT� status� MPI�DOUBLE�PRECISION�
� st�count� ierr 	

st�source � status�MPI�SOURCE	
st�tag � status�MPI�TAG	

C
print �� �Status info� source � �� st�source�

� � tag � �� st�tag� � count � �� st�count
print �� rank� � received�� �data�i	�i�����	

endif

call MPI�FINALIZE� ierr 	
end

��

Six Function MPI

MPI is very simple� These six functions allow

you to write many programs�

MPI Init

MPI Finalize

MPI Comm size

MPI Comm rank

MPI Send

MPI Recv

��

A taste of things to come

The following examples show a C and

Fortran version of the same program�

This program computes PI �with a very

simple method� but does not use MPI�Send

and MPI�Recv� Instead� it uses collective

operations to send data to and from all of

the running processes� This gives a di�erent

six	function MPI set�

MPI Init

MPI Finalize

MPI Comm size

MPI Comm rank

MPI Bcast

MPI Reduce

��

Broadcast and Reduction

The routine MPI�Bcast sends data from one

process to all others�

The routine MPI�Reduce combines data from

all processes �by adding them in this case��

and returning the result to a single process�

��

Fortran example� PI

program main

include �mpif�h�

double precision PI��DT
parameter �PI��DT � ��������������������������d�	

double precision mypi� pi� h� sum� x� f� a
integer n� myid� numprocs� i� rc

c function to integrate
f�a	 � ��d�
 ���d� � a�a	

call MPI�INIT� ierr 	
call MPI�COMM�RANK� MPI�COMM�WORLD� myid� ierr 	
call MPI�COMM�SIZE� MPI�COMM�WORLD� numprocs� ierr 	

�� if � myid �eq� � 	 then
write�����	

�� format��Enter the number of intervals� �� quits	�	
read�����	 n

�� format�i��	
endif

call MPI�BCAST�n���MPI�INTEGER���MPI�COMM�WORLD�ierr	

��

Fortran example �cont��

c check for quit signal
if � n �le� � 	 goto ��

c calculate the interval size
h � ���d�
n

sum � ���d�
do �� i � myid��� n� numprocs

x � h � �dble�i	 � ���d�	
sum � sum � f�x	

�� continue
mypi � h � sum

c collect all the partial sums
call MPI�REDUCE�mypi�pi���MPI�DOUBLE�PRECISION�MPI�SUM���
� MPI�COMM�WORLD�ierr	

c node � prints the answer�
if �myid �eq� �	 then

write��� ��	 pi� abs�pi � PI��DT	
�� format�� pi is approximately� �� F������

� � Error is� �� F�����	
endif

goto ��

�� call MPI�FINALIZE�rc	
stop
end

��

C example� PI

�include �mpi�h�
�include �math�h�

int main�argc�argv	
int argc�
char �argv !�
"

int done � �� n� myid� numprocs� i� rc�
double PI��DT � ���������������������������
double mypi� pi� h� sum� x� a�

MPI�Init�#argc�#argv	�
MPI�Comm�size�MPI�COMM�WORLD�#numprocs	�
MPI�Comm�rank�MPI�COMM�WORLD�#myid	�

��

C example �cont��

while �$done	
"

if �myid �� �	 "
printf��Enter the number of intervals� �� quits	 �	�
scanf��%d��#n	�

&
MPI�Bcast�#n� �� MPI�INT� �� MPI�COMM�WORLD	�
if �n �� �	 break�

h � ���
 �double	 n�
sum � ����
for �i � myid � �� i �� n� i �� numprocs	 "

x � h � ��double	i � ���	�
sum �� ���
 ���� � x�x	�

&
mypi � h � sum�

MPI�Reduce�#mypi� #pi� �� MPI�DOUBLE� MPI�SUM� ��
MPI�COMM�WORLD	�

if �myid �� �	
printf��pi is approximately %���f� Error is %���f
n��

pi� fabs�pi � PI��DT		�
&
MPI�Finalize�	�

&

��

Exercise � PI

Objective� Experiment with send�receive

Run either program for PI� Write new

versions that replace the calls to MPI�Bcast

and MPI�Reduce with MPI�Send and MPI�Recv�

� The MPI broadcast and reduce operations

use at most log p send and receive operations

on each process where p is the size of

MPI COMM WORLD� How many operations do

your versions use�

�	

Exercise � Ring

Objective� Experiment with send�receive

Write a program to send a message around a

ring of processors� That is� processor � sends

to processor �� who sends to processor ��

etc� The last processor returns the message

to processor ��

� You can use the routine MPI Wtime to time

code in MPI� The statement

t � MPI Wtime��	

returns the time as a double �DOUBLE

PRECISION in Fortran	�

�

Topologies

MPI provides routines to provide structure to

collections of processes

This helps to answer the question�

Who are my neighbors�

��

Cartesian Topologies

A Cartesian topology is a mesh

Example of �� � Cartesian mesh with arrows

pointing at the right neighbors�

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

��

De�ning a Cartesian Topology

The routine MPI�Cart�create creates a Cartesian
decomposition of the processes
 with the number of
dimensions given by the ndim argument�

dims
�� � �
dims
�� � �
periods
�� � �false�
periods
�� � �false�
reorder � �true�
ndim � �
call MPI�CART�CREATE
 MPI�COMM�WORLD� ndim� dims�
� periods� reorder� comm�d� ierr �

��

Finding neighbors

MPI�Cart�create creates a new communicator with the
same processes as the input communicator
 but with
the speci�ed topology�

The question
 Who are my neighbors
 can now be
answered with MPI�Cart�shift�

call MPI�CART�SHIFT
 comm�d� �� ��
nbrleft� nbrright� ierr �

call MPI�CART�SHIFT
 comm�d� �� ��
nbrbottom� nbrtop� ierr �

The values returned are the ranks
 in the

communicator comm�d
 of the neighbors shifted by ��

in the two dimensions�

��

Who am I�

Can be answered with

integer coords
��
call MPI�COMM�RANK
 comm�d� myrank� ierr �
call MPI�CART�COORDS
 comm�d� myrank� ��
� coords� ierr �

Returns the Cartesian coordinates of the calling

process in coords�

��

Partitioning

When creating a Cartesian topology
 one question is
�What is a good choice for the decomposition of the
processors��

This question can be answered with MPI�Dims�create�

integer dims
��
dims
�� � �
dims
�� � �
call MPI�COMM�SIZE
 MPI�COMM�WORLD� size� ierr �
call MPI�DIMS�CREATE
 size� �� dims� ierr �

��

Other Topology Routines

MPI contains routines to translate between

Cartesian coordinates and ranks in a

communicator� and to access the properties

of a Cartesian topology�

The routine MPI�Graph�create allows the

creation of a general graph topology�

��

Why are these routines in MPI�

In many parallel computer interconnects�

some processors are closer to than

others� These routines allow the MPI

implementation to provide an ordering of

processes in a topology that makes logical

neighbors close in the physical interconnect�

� Some parallel programmers may remember

hypercubes and the e�ort that went into

assigning nodes in a mesh to processors

in a hypercube through the use of Grey

codes� Many new systems have di�erent

interconnects� ones with multiple paths

may have notions of near neighbors that

changes with time� These routines free

the programmer from many of these

considerations� The reorder argument is

used to request the best ordering�

��

The periods argument

Who are my neighbors if I am at the edge of

a Cartesian Mesh�

?

�	

Periodic Grids

Specify this in MPI�Cart�create with

dims
�� � �
dims
�� � �
periods
�� � �TRUE�
periods
�� � �TRUE�
reorder � �true�
ndim � �
call MPI�CART�CREATE
 MPI�COMM�WORLD� ndim� dims�
� periods� reorder� comm�d� ierr �

�

Nonperiodic Grids

In the nonperiodic case� a neighbor may

not exist� This is indicated by a rank of

MPI�PROC�NULL�

This rank may be used in send and receive

calls in MPI� The action in both cases is as if

the call was not made�

��

Collective Communications in MPI

� Communication is coordinated among a group of
processes�

� Groups can be constructed �by hand� with MPI
group�manipulation routines or by using MPI
topology�de�nition routines�

� Message tags are not used� Di�erent
communicators are used instead�

� No non�blocking collective operations�

� Three classes of collective operations�

 synchronization

 data movement

 collective computation

��

Synchronization

� MPI�Barrier�comm�

� Function blocks untill all processes in

comm call it�

��

Available Collective Patterns

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

A A

A

A

A

A B C D A

B

C

D

A

B

C

D

A B C D

A B C D

A B C D

A B C D

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

All to All

All gather

Scatter

Gather

Broadcast

Schematic representation of collective data

movement in MPI

��

Available Collective Computation Patterns

ABC

ABCD

AB

A

ABCD

Reduce

Scan

P3

P3

P0

P1

P2

P0

P1

P2

A

B

C

DP3

A

B

C

DP3

P0

P1

P2

P0

P1

P2

Schematic representation of collective data

movement in MPI

��

MPI Collective Routines

� Many routines�

Allgather Allgatherv Allreduce
Alltoall Alltoallv Bcast
Gather Gatherv Reduce
ReduceScatter Scan Scatter
Scatterv

� All versions deliver results to all participating
processes�

� V versions allow the chunks to have di�erent sizes�

� Allreduce
 Reduce
 ReduceScatter
 and Scan take
both built�in and user�de�ned combination
functions�

��

Built�in Collective Computation Operations

MPI Name Operation
MPI MAX Maximum
MPI MIN Minimum
MPI PROD Product
MPI SUM Sum
MPI LAND Logical and
MPI LOR Logical or
MPI LXOR Logical exclusive or �xor�
MPI BAND Bitwise and
MPI BOR Bitwise or
MPI BXOR Bitwise xor
MPI MAXLOC Maximum value and location
MPI MINLOC Minimum value and location

��

De�ning Your Own Collective Operations

MPI�Op�create
user�function� commute� op�
MPI�Op�free
op�

user�function
invec� inoutvec� len� datatype�

The user function should perform

inoutvec�i� � invec�i� op inoutvec�i�

for i from � to len���

user�function can be non�commutative �e�g�
 matrix

multiply��

��

Sample user function

For example
 to create an operation that has the
same e�ect as MPI�SUM on Fortran double precision
values
 use

subroutine myfunc
 invec� inoutvec� len� datatype �
integer len� datatype
double precision invec
len�� inoutvec
len�
integer i
do �� i���len

�� inoutvec
i� � invec
i� inoutvec
i�
return
end

To use
 just

integer myop
call MPI�Op�create
 myfunc� �true�� myop� ierr �
call MPI�Reduce
 a� b� �� MPI�DOUBLE�PRECISON� myop� ��� �

The routine MPI�Op�free destroys user�functions when

they are no longer needed�

�	

De�ning groups

All MPI communication is relative to a

communicator which contains a context

and a group� The group is just a set of

processes�

�

Subdividing a communicator

The easiest way to create communicators with new
groups is with MPI�COMM�SPLIT�

For example
 to form groups of rows of processes

1

2

0

0 1 2 3 4
Column

Row

use

MPI�Comm�split
 oldcomm� row� �� �newcomm �

To maintain the order by rank
 use

MPI�Comm�rank
 oldcomm� �rank �

MPI�Comm�split
 oldcomm� row� rank� �newcomm �

��

Subdividing �con�t�

Similarly
 to form groups of columns

1

2

0

0 1 2 3 4
Column

Row

use

MPI�Comm�split
 oldcomm� column� �� �newcomm� �

To maintain the order by rank
 use

MPI�Comm�rank
 oldcomm� �rank �

MPI�Comm�split
 oldcomm� column� rank� �newcomm� �

��

Manipulating Groups

Another way to create a communicator with speci�c
members is to use MPI�Comm�create�

MPI�Comm�create
 oldcomm� group� �newcomm �

The group can be created in many ways�

��

Creating Groups

All group creation routines create a group by
specifying the members to take from an existing
group�

� MPI�Group�incl speci�es speci�c members

� MPI�Group�excl excludes speci�c members

� MPI�Group�range�incl and MPI�Group�range�excl
use ranges of members

� MPI�Group�union and MPI�Group�intersection
creates a new group from two existing groups�

To get an existing group
 use

MPI�Comm�group
 oldcomm� �group �

Free a group with

MPI�Group�free
 �group �

��

Bu�ering issues

Where does data go when you send it� One

possibility is�

Local Buffer

Local Buffer

A:

B:

Process 1 Process 2

The Network

��

Better bu	ering

This is not very e�cient� There are three

copies in addition to the exchange of data

between processes� We prefer

B:

A:

Process 1 Process 2

But this requires that either that MPI�Send

not return until the data has been delivered

or that we allow a send operation to return

before completing the transfer� In this case�

we need to test for completion later�

��

Blocking and Non�Blocking communication

� So far we have used blocking communication�

 MPI Send does not complete until bu�er is empty
�available for reuse��

 MPI Recv does not complete until bu�er is full
�available for use��

� Simple
 but can be �unsafe��

Process � Process �
Send��� Send���
Recv��� Recv���

Completion depends in general on size of message
and amount of system bu�ering�

� Send works for small enough messages but fails

when messages get too large� Too large ranges from

zero bytes to ����s of Megabytes�

��

Some Solutions to the �Unsafe
 Problem

� Order the operations more carefully�

Process � Process �
Send��� Recv���
Recv��� Send���

� Supply receive bu�er at same time as send
 with
MPI Sendrecv�

Process � Process �
Sendrecv��� Sendrecv���

� Use non�blocking operations�

Process � Process �
Isend��� Isend���
Irecv��� Irecv���
Waitall Waitall

� Use MPI�Bsend

��

MPI�s Non�Blocking Operations

Non�blocking operations return �immediately�
�request handles� that can be waited on and queried�

� MPI Isend
start� count� datatype� dest� tag� comm�
request�

� MPI Irecv
start� count� datatype� dest� tag� comm�
request�

� MPI Wait
request� status�

One can also test without waiting� MPI�Test
 request�

flag� status�

�	

Multiple completions

It is often desirable to wait on multiple requests� An
example is a master�slave program
 where the master
waits for one or more slaves to send it a message�

� MPI Waitall
count� array of requests�
array of statuses�

� MPI Waitany
count� array of requests� index�
status�

� MPI Waitsome
incount� array of requests� outcount�
array of indices� array of statuses�

There are corresponding versions of test for each of
these�

� The MPI WAITSOME and MPI TESTSOME may be used to

implement master�slave algorithms that provide fair

access to the master by the slaves�

	

Fairness

What happens with this program�

�include �mpi�h�
�include �stdio�h�
int main�argc� argv	
int argc�
char ��argv�
"
int rank� size� i� buf �!�
MPI�Status status�

MPI�Init� #argc� #argv 	�
MPI�Comm�rank� MPI�COMM�WORLD� #rank 	�
MPI�Comm�size� MPI�COMM�WORLD� #size 	�
if �rank �� �	 "

for �i��� i������size��	� i��	 "
MPI�Recv� buf� �� MPI�INT� MPI�ANY�SOURCE�

MPI�ANY�TAG� MPI�COMM�WORLD� #status 	�
printf� �Msg from %d with tag %d
n��

status�MPI�SOURCE� status�MPI�TAG 	�
&

&
else "

for �i��� i����� i��	
MPI�Send� buf� �� MPI�INT� �� i� MPI�COMM�WORLD 	�

&
MPI�Finalize�	�
return ��
&

	�

Fairness in message�passing

An parallel algorithm is fair if no process

is e
ectively ignored� In the preceeding

program� processes with low rank �like

process zero� may be the only one whose

messages are received�

MPI makes no guarentees about fairness�

However� MPI makes it possible to write

e�cient� fair programs�

	�

Providing Fairness

One alternative is

�define large ���
MPI�Request requests large!�
MPI�Status statuses large!�
int indices large!�
int buf large!�
for �i��� i�size� i��	

MPI�Irecv� buf�i� �� MPI�INT� i�
MPI�ANY�TAG� MPI�COMM�WORLD� #requests i��! 	�

while�not done	 "
MPI�Waitsome� size��� requests� #ndone� indices� statuses 	�
for �i��� i�ndone� i��	 "

j � indices i!�
printf� �Msg from %d with tag %d
n��

statuses i!�MPI�SOURCE�
statuses i!�MPI�TAG 	�

MPI�Irecv� buf�j� �� MPI�INT� j�
MPI�ANY�TAG� MPI�COMM�WORLD� #requests j! 	�

&
&

	�

Providing Fairness �Fortran�

One alternative is

parameter� large � ��� 	
integer requests�large	�
integer statuses�MPI�STATUS�SIZE�large	�
integer indices�large	�
integer buf�large	�
logical done
do �� i � ��size��

�� call MPI�Irecv� buf�i	� �� MPI�INTEGER� i�
� MPI�ANY�TAG� MPI�COMM�WORLD� requests�i	� ierr 	

�� if ��not� done	 then
call MPI�Waitsome� size��� requests� ndone�

indices� statuses� ierr 	
do �� i��� ndone

j � indices�i	
print �� �Msg from �� statuses�MPI�SOURCE�i	� � with tag��

� statuses�MPI�TAG�i	
call MPI�Irecv� buf�j	� �� MPI�INTEGER� j�

MPI�ANY�TAG� MPI�COMM�WORLD� requests�j	� ierr 	
done � ���

�� continue
goto ��
endif

	�

Exercise � Fairness

Objective� Use nonblocking communications

Complete the program fragment on

�providing fairness�� Make sure that you

leave no uncompleted requests� How would

you test your program�

	�

More on nonblocking communication

In applications where the time to send data between
processes is large
 it is often helpful to cause
communication and computation to overlap� This can
easily be done with MPI�s non�blocking routines�

For example
 in a ��D �nite di�erence mesh
 moving
data needed for the boundaries can be done at the
same time as computation on the interior�

MPI�Irecv
 ��� each ghost edge ��� �

MPI�Isend
 ��� data for each ghost edge ��� �

��� compute on interior
while
still some uncompleted requests� �

MPI�Waitany
 ��� requests ��� �
if
request is a receive�

��� compute on that edge ���
�

Note that we call MPI�Waitany several times� This

exploits the fact that after a request is satis�ed
 it

is set to MPI�REQUEST�NULL
 and that this is a valid

request object to the wait and test routines�

	�

Communication Modes

MPI provides mulitple modes for sending messages�

� Synchronous mode �MPI Ssend�� the send does not
complete until a matching receive has begun�
�Unsafe programs become incorrect and usually
deadlock within an MPI�Ssend��

� Bu�ered mode �MPI Bsend�� the user supplies the
bu�er to system for its use� �User supplies enough
memory to make unsafe program safe��

� Ready mode �MPI Rsend�� user guarantees that
matching receive has been posted�

 allows access to fast protocols

 unde�ned behavior if the matching receive is not
posted

Non�blocking versions�
MPI Issend
 MPI Irsend
 MPI Ibsend

Note that an MPI�Recv may receive messages sent with
any send mode�

	�

Bu	ered Send

MPI provides a send routine that may be used when
MPI�Isend is awkward to use �e�g�
 lots of small
messages��

MPI�Bsend makes use of a user�provided bu�er to save
any messages that can not be immediately sent�

int bufsize

char �buf � malloc
bufsize�

MPI�Buffer�attach
 buf� bufsize �

���
MPI�Bsend
 ��� same as MPI�Send ��� �

���
MPI�Buffer�detach
 �buf� �bufsize �

The MPI�Buffer�detach call does not complete until all
messages are sent�

� The performance of MPI Bsend depends on the

implementation of MPI and may also depend on

the size of the message� For example	 making a

message one byte longer may cause a signi�cant drop

in performance�

	�

Reusing the same bu	er

Consider a loop

MPI�Buffer�attach
 buf� bufsize �

while
�done� �

���
MPI�Bsend
 ��� �

�

where the buf is large enough to hold the message in
the MPI�Bsend� This code may fail because the

�
void �buf
 int bufsize

MPI�Buffer�detach
 �buf� �bufsize �

MPI�Buffer�attach
 buf� bufsize �

�

		

Other Point�to�Point Features

� MPI�SENDRECV� MPI�SENDRECV�REPLACE

� MPI�CANCEL

� Persistent communication requests

�

Datatypes and Heterogenity

MPI datatypes have two main purposes

� Heterogenity � parallel programs

between di
erent processors

� Noncontiguous data � structures�

vectors with non	unit stride� etc�

Basic datatype� corresponding to the

underlying language� are prede�ned�

The user can construct new datatypes at run

time� these are called derived datatypes�

�
�

Datatypes in MPI

Elementary� Language	de�ned types �e�g��

MPI�INT or MPI�DOUBLE�PRECISION �

Vector� Separated by constant �stride�

Contiguous� Vector with stride of one

Hvector� Vector� with stride in bytes

Indexed� Array of indices �for

scatter�gather�

Hindexed� Indexed� with indices in bytes

Struct� General mixed types �for C structs

etc��

�
�

Basic Datatypes �Fortran�

MPI datatype Fortran datatype

MPI�INTEGER INTEGER

MPI�REAL REAL

MPI�DOUBLE�PRECISION DOUBLE PRECISION

MPI�COMPLEX COMPLEX

MPI�LOGICAL LOGICAL

MPI�CHARACTER CHARACTER���

MPI�BYTE

MPI�PACKED

�
�

Basic Datatypes �C�

MPI datatype C datatype

MPI�CHAR signed char

MPI�SHORT signed short int

MPI�INT signed int

MPI�LONG signed long int

MPI�UNSIGNED�CHAR unsigned char

MPI�UNSIGNED�SHORT unsigned short int

MPI�UNSIGNED unsigned int

MPI�UNSIGNED�LONG unsigned long int

MPI�FLOAT float

MPI�DOUBLE double

MPI�LONG�DOUBLE long double

MPI�BYTE

MPI�PACKED

�
�

Vectors

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

To specify this row �in C order�� we can use

MPI�Type�vector
 count� blocklen� stride� oldtype�
�newtype �

MPI�Type�commit
 �newtype �

The exact code for this is

MPI�Type�vector
 !� �� �� MPI�DOUBLE� �newtype �

MPI�Type�commit
 �newtype �

�
�

Structures

Structures are described by arrays of

� number of elements �array�of�len�

� displacement or location �array�of�displs�

� datatype �array�of�types�

MPI�Type�structure
 count� array�of�len�
array�of�displs�
array�of�types� �newtype �

�
�

Example� Structures

struct "
char display ��!�
� Name of display �

int maxiter�
� max � of iterations �

double xmin� ymin�
� lower left corner of rectangle �

double xmax� ymax�
� upper right corner �

int width�
� of display in pixels �

int height�
� of display in pixels �

& cmdline�

� set up � blocks �

int blockcounts �! � "��������&�
MPI�Datatype types �!�
MPI�Aint displs �!�
MPI�Datatype cmdtype�

� initialize types and displs with addresses of items �

MPI�Address� #cmdline�display� #displs �! 	�
MPI�Address� #cmdline�maxiter� #displs �! 	�
MPI�Address� #cmdline�xmin� #displs �! 	�
MPI�Address� #cmdline�width� #displs �! 	�
types �! � MPI�CHAR�
types �! � MPI�INT�
types �! � MPI�DOUBLE�
types �! � MPI�INT�
for �i � �� i �� �� i��	

displs i! �� displs �!�
MPI�Type�struct� �� blockcounts� displs� types� #cmdtype 	�
MPI�Type�commit� #cmdtype 	�

�
�

Strides

The extent of a datatype is �normally� the

distance between the �rst and last member�

LB UB

EXTENT

Memory locations specified by datatype

You can set an arti�cial extent by using

MPI�UB and MPI�LB in MPI�Type�struct�

�
�

Vectors revisited

This code creates a datatype for an arbitrary

number of element in a row of an array

stored in Fortran order �column �rst��

int blens���� displs���

MPI�Datatype types���� rowtype

blens��� � �

blens��� � �

displs��� � �

displs��� � number�in�column � sizeof
double�

types��� � MPI�DOUBLE

types��� � MPI�UB

MPI�Type�struct
 �� blens� displs� types� �rowtype �

MPI�Type�commit
 �rowtype �

To send n elements
 you can use

MPI�Send
 buf� n� rowtype� ��� �

�
	

Structures revisited

When sending an array of a structure
 it is important
to ensure that MPI and the C compiler have the
same value for the size of each structure� The most
portable way to do this is to add an MPI�UB to the
structure de�nition for the end of the structure� In
the previous example
 this is

� initialize types and displs with addresses of items �

MPI�Address� #cmdline�display� #displs �! 	�
MPI�Address� #cmdline�maxiter� #displs �! 	�
MPI�Address� #cmdline�xmin� #displs �! 	�
MPI�Address� #cmdline�width� #displs �! 	�
MPI�Address� #cmdline��� #displs �! 	�
types �! � MPI�CHAR�
types �! � MPI�INT�
types �! � MPI�DOUBLE�
types �! � MPI�INT�
types �! � MPI�UB�
for �i � �� i �� �� i��	

displs i! �� displs �!�
MPI�Type�struct� �� blockcounts� displs� types� #cmdtype 	�
MPI�Type�commit� #cmdtype 	�

��

Interleaving data

By moving the UB inside the data� you can

interleave data�

Consider the matrix

0
1
2
3
4
5
6
7

8
9

10
11
12

14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

13

We wish to send �	���	�����	��� and ��	��

to process �� �	����	�����	��� and ��	�� to

process �� etc� How can we do this with

MPI�Scatterv�

���

An interleaved datatype

MPI�Type�vector
 �� �� "� MPI�DOUBLE� �vec �

de�nes a block of this matrix�

blens��� � �
 blens��� � �

types��� � vec
 types��� � MPI�UB

displs��� � �
 displs��� � sizeof
double�

MPI�Type�struct
 �� blens� displs� types� �block �

de�nes a block whose extent is just � entries�

���

Scattering a Matrix

We set the displacements for each block as the
location of the �rst element in the block� This works
because MPI�Scatterv uses the extents to determine
the start of each piece to send�

scdispls��� � �

scdispls��� � �

scdispls��� � ��

scdispls��� � �#

MPI�Scatterv
 sendbuf� sendcounts� scdispls� block�

recvbuf� nx � ny� MPI�DOUBLE� ��
MPI�COMM�WORLD �

� How would use use the topology routines to make

this more general

���

Exercises � datatypes

Objective� Learn about datatypes

�� Write a program to send rows of a matrix �stored
in column�major form� to the other processors�

Let processor � have the entire matrix
 which has
as many rows as processors�

Processor � sends row i to processor i�
Processor i reads that row into a local array that
holds only that row� That is
 processor � has a
matrix A�N�M� while the other processors have a
row B�M��

�a� Write the program to handle the case where
the matrix is square�

�b� Write the program to handle a number of
columns read from the terminal�

C programmers may send columns of a matrix
stored in row�major form if they prefer�

If you have time
 try one of the following� If you
don�t have time
 think about how you would
program these�

�� Write a program to transpose a matrix
 where
each processor has a part of the matrix� Use
topologies to de�ne a ��Dimensional partitioning

���

of the matrix across the processors
 and assume
that all processors have the same size submatrix�

�a� Use MPI�Send and MPI�Recv to send the block

the transpose the block�

�b� Use MPI�Sendrecv instead�

�c� Create a datatype that allows you to receive
the block already transposed�

	� Write a program to send the �ghostpoints� of a
��Dimensional mesh to the neighboring
processors� Assume that each processor has the
same size subblock�

�a� Use topologies to �nd the neighbors

�b� De�ne a datatype for the �rows�

�c� Use MPI�Sendrecv or MPI�IRecv and MPI�Send
with MPI�Waitall�

�d� Use MPI�Isend and MPI�Irecv to start the
communication
 do some computation on the
interior
 and then use MPI�Waitany to process
the boundaries as they arrive

The same approach works for general
datastructures
 such as unstructured meshes�

�� Do 	
 but for 	�Dimensional meshes� You will
need MPI�Type�Hvector�

Tools for writing libraries

MPI is speci�cally designed to make it easier

to write message	passing libraries

� Communicators solve tag�source

wild	card problem

� Attributes provide a way to attach

information to a communicator

���

Private communicators

One of the �rst thing that a library should

normally do is create private communicator�

This allows the library to send and receive

messages that are known only to the library�

MPI�Comm�dup� old�comm�
new�comm �	

���

Attributes

Attributes are data that can be attached to

one or more communicators�

Attributes are referenced by keyval� Keyvals

are created with MPI�KEYVAL�CREATE�

Attributes are attached to a communicator

with MPI�Attr�put and their values accessed

by MPI�Attr�get�

� Operations are de�ned for what happens

to an attribute when it is copied �by creating

one communicator from another	 or deleted

�by deleting a communicator	 when the

keyval is created�

���

What is an attribute�

In C� an attribute is a pointer of type void
�

You must allocate storage for the attribute

to point to �make sure that you don
t use

the address of a local variable��

In Fortran� it is a single INTEGER�

���

Examples of using attributes

� Forcing sequential operation

� Managing tags

��	

Sequential Sections

�include �mpi�h�
�include �stdlib�h�

static int MPE�Seq�keyval � MPI�KEYVAL�INVALID�

��
MPE�Seq�begin � Begins a sequential section of code�

Input Parameters�
� comm � Communicator to sequentialize�
� ng � Number in group� This many processes are allowed
to execute

at the same time� Usually one�

��

void MPE�Seq�begin� comm� ng 	
MPI�Comm comm�
int ng�
"
int lidx� np�
int flag�
MPI�Comm local�comm�
MPI�Status status�

� Get the private communicator for the sequential
operations �

if �MPE�Seq�keyval �� MPI�KEYVAL�INVALID	 "

MPI�Keyval�create� MPI�NULL�COPY�FN�
MPI�NULL�DELETE�FN�
#MPE�Seq�keyval� NULL 	�

&

��

Sequential Sections II

MPI�Attr�get� comm� MPE�Seq�keyval� �void �	#local�comm�
#flag 	�

if �$flag	 "

� This expects a communicator to be a pointer �

MPI�Comm�dup� comm� #local�comm 	�
MPI�Attr�put� comm� MPE�Seq�keyval�

�void �	local�comm 	�
&

MPI�Comm�rank� comm� #lidx 	�
MPI�Comm�size� comm� #np 	�
if �lidx $� �	 "

MPI�Recv� NULL� �� MPI�INT� lidx��� �� local�comm�
#status 	�

&

� Send to the next process in the group unless we

are the last process in the processor set �

if � �lidx % ng	 � ng � � ## lidx $� np � �	 "

MPI�Send� NULL� �� MPI�INT� lidx � �� �� local�comm 	�
&

&

���

Sequential Sections III

��
MPE�Seq�end � Ends a sequential section of code�
Input Parameters�

� comm � Communicator to sequentialize�
� ng � Number in group�
��

void MPE�Seq�end� comm� ng 	
MPI�Comm comm�
int ng�
"
int lidx� np� flag�
MPI�Status status�
MPI�Comm local�comm�

MPI�Comm�rank� comm� #lidx 	�
MPI�Comm�size� comm� #np 	�
MPI�Attr�get� comm� MPE�Seq�keyval� �void �	#local�comm�
#flag 	�
if �$flag	

MPI�Abort� comm� MPI�ERR�UNKNOWN 	�

� Send to the first process in the next group OR to the
first process

in the processor set �

if � �lidx % ng	 �� ng � � '' lidx �� np � �	 "

MPI�Send� NULL� �� MPI�INT� �lidx � �	 % np� ��
local�comm 	�

&
if �lidx �� �	 "

MPI�Recv� NULL� �� MPI�INT� np��� �� local�comm�
#status 	�

&
&

���

Comments on sequential sections

� Note use of MPI�KEYVAL�INVALID to

determine to create a keyval

� Note use of �ag on MPI�Attr�get to

discover that a communicator has no

attribute for the keyval

���

Example� Managing tags

Problem� A library contains many objects

that need to communicate in ways that are

not known until runtime�

Messages between objects are kept separate

by using di
erent message tags� How are

these tags chosen�

� Unsafe to use compile time values

� Must allocate tag values at runtime

Solution�

Use a private communicator and use an

attribute to keep track of available tags in

that communicator�

���

Caching tags on communicator

�include �mpi�h�

static int MPE�Tag�keyval � MPI�KEYVAL�INVALID�

�
Private routine to delete internal storage when a

communicator is freed�
�

int MPE�DelTag� comm� keyval� attr�val� extra�state 	
MPI�Comm �comm�
int �keyval�
void �attr�val� �extra�state�
"
free� attr�val 	�
return MPI�SUCCESS�
&

���

Caching tags on communicator II

��
MPE�GetTags � Returns tags that can be used in

communication with a
communicator

Input Parameters�
� comm�in � Input communicator
� ntags � Number of tags

Output Parameters�
� comm�out � Output communicator� May be �comm�in��
� first�tag � First tag available
��

int MPE�GetTags� comm�in� ntags� comm�out� first�tag 	
MPI�Comm comm�in� �comm�out�
int ntags� �first�tag�
"
int mpe�errno � MPI�SUCCESS�
int tagval� �tagvalp� �maxval� flag�

if �MPE�Tag�keyval �� MPI�KEYVAL�INVALID	 "
MPI�Keyval�create� MPI�NULL�COPY�FN� MPE�DelTag�

#MPE�Tag�keyval� �void �	� 	�
&

���

Caching tags on communicator III

if �mpe�errno � MPI�Attr�get� comm�in� MPE�Tag�keyval�
#tagvalp� #flag 		

return mpe�errno�

if �$flag	 "

� This communicator is not yet known to this system�

so we
dup it and setup the first value �

MPI�Comm�dup� comm�in� comm�out 	�
comm�in � �comm�out�
MPI�Attr�get� MPI�COMM�WORLD� MPI�TAG�UB� #maxval�

#flag 	�
tagvalp � �int �	malloc� � � sizeof�int	 	�
printf� �Mallocing address %x
n�� tagvalp 	�
if �$tagvalp	 return MPI�ERR�EXHAUSTED�
tagvalp � �maxval�
MPI�Attr�put� comm�in� MPE�Tag�keyval� tagvalp 	�
return MPI�SUCCESS�
&

���

Caching tags on communicator IV

�comm�out � comm�in�
if ��tagvalp � ntags	 "

� Error� out of tags� Another solution would be to do
an MPI�Comm�dup� �

return MPI�ERR�INTERN�
&

�first�tag � �tagvalp � ntags�
�tagvalp � �first�tag�

return MPI�SUCCESS�
&

���

Caching tags on communicator V

��
MPE�ReturnTags � Returns tags allocated with MPE�GetTags�

Input Parameters�
� comm � Communicator to return tags to
� first�tag � First of the tags to return
� ntags � Number of tags to return�
��

int MPE�ReturnTags� comm� first�tag� ntags 	
MPI�Comm comm�
int first�tag� ntags�
"
int �tagvalp� flag� mpe�errno�

if �mpe�errno � MPI�Attr�get� comm� MPE�Tag�keyval�
#tagvalp� #flag 		

return mpe�errno�

if �$flag	 "

� Error� attribute does not exist in this communicator

�

return MPI�ERR�OTHER�
&

if ��tagvalp �� first�tag	
�tagvalp � first�tag � ntags�

return MPI�SUCCESS�
&

��	

Caching tags on communicator VI

��
MPE�TagsEnd � Returns the private keyval�

��

int MPE�TagsEnd�	
"
MPI�Keyval�free� #MPE�Tag�keyval 	�
MPE�Tag�keyval � MPI�KEYVAL�INVALID�
&

��

Commentary

� Use MPI�KEYVAL�INVALID to detect when

keyval must be created

� Use flag return from MPI�ATTR�GET to

detect when a communicator needs to be

initialized

���

Exercise � Writing libraries

Objective� Use private communicators and attributes

Write a routine to circulate data to the next process

using a nonblocking send and receive operation�

void Init�pipe
 comm �
void ISend�pipe
 comm� bufin� len� datatype� bufout �
void Wait�pipe
 comm �

A typical use is

Init�pipe
 MPI�COMM�WORLD �
for
i��
 i�n
 i � �

ISend�pipe
 comm� bufin� len� datatype� bufout �

Do�Work
 bufin� len �

Wait�pipe
 comm �

t � bufin
 bufin � bufout
 bufout � t

�

What happens if Do�Work calls MPI routines�

� What do you need to do to clean up Init pipe

� How can you use a user�de�ned topology to

determine the next process
 �Hint� see MPI Topo test

and MPI Cartdim get�

���

MPI Objects

� MPI has a variety of objects

�communicators� groups� datatypes� etc�	

that can be created and destroyed� This

section discusses the types of these data and

how MPI manages them�

� This entire chapter may be skipped by

beginners�

���

The MPI Objects

MPI Request Handle for nonblocking

communication� normally freed by MPI in

a test or wait

MPI Datatype MPI datatype� Free with

MPI�Type�free�

MPI Op User	de�ned operation� Free with

MPI�Op�free�

MPI Comm Communicator� Free with

MPI�Comm�free�

MPI Group Group of processes� Free with

MPI�Group�free�

MPI Errhandler MPI errorhandler� Free with

MPI�Errhandler�free�

���

When should objects be freed�

Consider this code

MPI�Type�vector
 ly� �� nx� MPI�DOUBLE� �newx� �

MPI�Type�hvector
 lz� �� nx�ny�sizeof
double�� newx��

�newx �

MPI�Type�commit
 �newx �

�This creates a datatype for one face of a 	�D

decomposition�� When should newx� be freed�

���

Reference counting

MPI keeps track of the use of an MPI object
 and
only truely destroys it when no�one is using it� newx�
is being used by the user �the MPI�Type�vector that
created it� and by the MPI�Datatype newx that uses it�

If newx� is not needed after newx is de�ned
 it should
be freed�

MPI�Type�vector
 ly� �� nx� MPI�DOUBLE� �newx� �

MPI�Type�hvector
 lz� �� nx�ny�sizeof
double�� newx��

�newx �

MPI�Type�free
 �newx� �

MPI�Type�commit
 �newx �

���

Why reference counts

Why not just free the object�

Consider this library routine�

void MakeDatatype
 nx� ny� ly� lz� MPI�Datatype �new �
�
MPI�Datatype newx�

MPI�Type�vector
 ly� �� nx� MPI�DOUBLE� �newx� �

MPI�Type�hvector
 lz� �� nx�ny�sizeof
double�� newx��

new �

MPI�Type�free
 �newx� �

MPI�Type�commit
 new �

�

Without the MPI�Type�free
 �newx� �
 it would be very
awkward to later free newx� when new was freed�

���

Tools for evaluating programs

MPI provides some tools for evaluating the

performance of parallel programs�

These are

� Timer

� Pro�ling interface

���

The MPI Timer

The elapsed �wall	clock� time between two

points in an MPI program can be computed

using MPI�Wtime�

double t�� t�	

t� � MPI�Wtime��	

���

t� � MPI�Wtime��	

printf� �Elapsed time is �f�n�� t� � t� �	

The value returned by a single call to

MPI�Wtime has little value�

� The times are local� the attribute

MPI WTIME IS GLOBAL may be used to determine

if the times are also synchronized with each

other for all processes in MPI COMM WORLD�

��	

Pro�ling

� All routines have two entry points� MPI ��� and
PMPI ����

� This makes it easy to provide a single level of
low�overhead routines to intercept MPI calls
without any source code modi�cations�

� Used to provide �automatic� generation of trace
�les�

MPI_Send
PMPI_Send

MPI_Bcast

MPI_Send
PMPI_Send

MPI_Send

MPI_Bcast

User Program MPI LibraryProfile Library

static int nsend � ��
int MPI�Send� start� count� datatype� dest� tag� comm 	
"
nsend���
return PMPI�Send� start� count� datatype� dest� tag� comm 	
&

��

Writing pro�ling routines

The MPICH implementation contains a program for
writing wrappers�

This description will write out each MPI routine that
is called��
�ifdef MPI�BUILD�PROFILING
�undef MPI�BUILD�PROFILING
�endif
�include �stdio�h	
�include �mpi�h�

��fnall fn�name��
��vardecl int llrank��
PMPI�Comm�rank
 MPI�COMM�WORLD� �llrank �

printf
 ���d� Starting ��fn�name������n��

llrank �
 fflush
 stdout �

��callfn��
printf
 ���d� Ending ��fn�name���n�� llrank �

fflush
 stdout �

��endfnall��

The command

wrappergen �w trace�w �o trace�c

converts this to a C program� The complie the �le
�trace�c� and insert the resulting object �le into your
link line�

cc �o a�out a�o ��� trace�o �lpmpi �lmpi

���

Another pro�ling example

This version counts all calls and the number of bytes sent with

MPI�Send� MPI�Bsend� or MPI�Isend�
�include �mpi�h�

""foreachfn fn�name MPI�Send MPI�Bsend MPI�Isend&&
static long ""fn�name&&�nbytes�""fileno&&�""endforeachfn&&

""forallfn fn�name MPI�Init MPI�Finalize MPI�Wtime&&int
""fn�name&&�ncalls�""fileno&&�
""endforallfn&&

""fnall this�fn�name MPI�Finalize&&
printf� �""this�fn�name&& is being called�
n� 	�

""callfn&&

""this�fn�name&&�ncalls�""fileno&&���
""endfnall&&

""fn fn�name MPI�Send MPI�Bsend MPI�Isend&&
""vardecl int typesize&&

""callfn&&

MPI�Type�size� ""datatype&&� �MPI�Aint �	#""typesize&& 	�
""fn�name&&�nbytes�""fileno&&��""typesize&&�""count&&
""fn�name&&�ncalls�""fileno&&���

""endfn&&

���

Another pro�ling example �con�t�

""fn fn�name MPI�Finalize&&
""forallfn dis�fn&&

if �""dis�fn&&�ncalls�""fileno&&	 "
printf� �""dis�fn&&� %d calls
n��

""dis�fn&&�ncalls�""fileno&& 	�
&

""endforallfn&&
if �MPI�Send�ncalls�""fileno&&	 "

printf� �%d bytes sent in %d calls with MPI�Send
n��
MPI�Send�nbytes�""fileno&&�

MPI�Send�ncalls�""fileno&& 	�
&

""callfn&&
""endfn&&

���

Generating and viewing log �les

Log �les that contain a history of a

parallel computation can be very valuable

in understanding a parallel program� The

upshot and nupshot programs� provided in

the MPICH and MPI	F implementations�

may be used to view log �les

���

Generating a log �le

This is very easy with the MPICH

implementation of MPI� Simply replace �lmpi

with �llmpi �lpmpi �lm in the link line for

your program� and relink your program� You

do not need to recompile�

On some systems� you can get a real	time

animation by using the libraries �lampi �lmpe

�lm �lX�� �lpmpi�

Alternately� you can use the �mpilog or

�mpianim options to the mpicc or mpif��

commands�

���

Connecting several programs together

MPI provides support for connection separate

message	passing programs together through

the use of intercommunicators�

���

Sending messages between di	erent programs

Programs share MPI�COMM�WORLD�

Programs have separate and disjoint

communicators�

Comm1 Comm2

App1 App2

MPI_COMM_WORLD

Comm_intercomm

���

Exchanging data between programs

� Form intercommunicator

�MPI�INTERCOMM�CREATE�

� Send data

MPI�Send� ���� �� intercomm �

MPI�Recv� buf� ���� �� intercomm �	

MPI�Bcast� buf� ���� localcomm �	

More complex point	to	point operations

can also be used

���

Collective operations

Use MPI�INTERCOMM�MERGE to create an

intercommunicator�

��	

Final Comments

Additional features of MPI not covered in

this tutorial

� Persistent Communication

� Error handling

��

Sharable MPI Resources

� The Standard itself�

� As a Technical report� U� of Tennessee�
report

� As postscript for ftp� at info�mcs�anl�gov in
pub�mpi�mpi�report�ps�

� As hypertext on the World Wide Web�
http���www�mcs�anl�gov�mpi

� As a journal article� in the Fall issue of the
Journal of Supercomputing Applications

� MPI Forum discussions

� The MPI Forum email discussions and both
current and earlier versions of the Standard
are available from netlib�

� Books�

� Using MPI� Portable Parallel Programming
with the Message�Passing Interface
 by
Gropp
 Lusk
 and Skjellum
 MIT Press
 ����

� MPI Annotated Reference Manual
 by Otto

et al�
 in preparation�

���

Sharable MPI Resources� continued

� Newsgroup�

� comp�parallel�mpi

� Mailing lists�

� mpi�comm$mcs�anl�gov� the MPI Forum
discussion list�

� mpi�impl$mcs�anl�gov� the implementors�
discussion list�

� Implementations available by ftp�

� MPICH is available by anonymous ftp from
info�mcs�anl�gov in the directory
pub�mpi�mpich
 �le mpich�tar�Z�

� LAM is available by anonymous ftp from
tbag�osc�edu in the directory pub�lam�

� The CHIMP version of MPI is available by
anonymous ftp from ftp�epcc�ed�ac�uk in the
directory pub�chimp�release�

� Test code repository�

� ftp���info�mcs�anl�gov�pub�mpi�mpi�test

���

MPI��

� The MPI Forum �with old and new participants�
has begun a follow�on series of meetings�

� Goals

 clarify existing draft

 provide features users have requested

 make extensions
 not changes

� Major Topics being considered

 dynamic process management

 client�server

 real�time extensions

 �one�sided� communication �put�get
 active
messages�

 portable access to MPI system state �for
debuggers�

 language bindings for C�� and Fortran���

� Schedule

 Dynamic processes
 client�server by SC ���

 MPI�� complete by SC ���

���

Summary

� The parallel computing community has cooperated
to develop a full�featured standard message�passing
library interface�

� Implementations abound

� Applications beginning to be developed or ported

� MPI�� process beginning

� Lots of MPI material available

���

