
VHDL: A “Crash” Course

Electrical and Computer Engineering Department
University of Puerto Rico - Mayaguez

Dr. Manuel Jiménez
With contributions by: Irvin Ortiz Flores 



Outline

Background
Program Structure
– Types, Signals and Variables

Description Styles
Combinational Logic Design
Finite State Machines
Testbenches



What is VHDL?

VHDL: VHSIC Hardware Description Language
– VHSIC= Very High Speed Integrated Circuit

VHDL was created for modeling digital systems
– Language subset used in HW synthesis

Hierarchical system modeling
– Top-down and bottom-up design methodologies



VHDL Retrospective

VHDL is an IEEE and ANSI standard for 
describing digital systems
Created in 1981 for the DoD VHSIC program
– First version developed by IBM, TI, and Intermetric
– First release in 1985
– Standardized in 1987 and revised several times 

thereafter
Standard 1076, 1076.1 (VHDL-AMS), 1076.2, 1076.3
Standard 1164, VHDL-2006

– Inherits many characteristics of ADA: Strong typed



VHDL Uses

Modeling of Digital Systems
– Looks a High-level Language

Synthesis of Digital Systems
– Language Subset

Synthesis Targets
– FPGAs & FPLDs
– ASICs
– Custom ICs



VHDL-based Design Flow

Design Specs VHDL
Modeling

Functional
Verification

Synthesis

Timing
Verification

Implementation

FPGA,
Std. Cell,

or ASIC Libraries

Stimulus &
Testbench

Stimulus &
Testbench

Architectural
Design

Zero-delay
RTL Design

Functional
RTL Design

Backannotated
Physical Spec

Verified  PPR



Common VHDL Data Types

Integer: Predefined in the range -(231) through 
+(231-1). Subtypes can be declared

Boolean: False, True

Bit, std_logic: A single bit

Bit_vector, std_logic_vector: Multiple bits
– Range needs to be specified



Basic VHDL Program Structure 

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.all;

Entity Adder is

port (A,B :  in std_logic_vector(4 downto 0);

Cin : in   std_logic;

Sum : out std_logic_vector(4 downto 0);

Cout : out  std_logic);

End Adder;
architecture a_adder of adder is
signal AC,BC,SC : std_logic_vector(5 downto 0);
begin

AC <='0' & A;
BC <='0' & B;    
SC <= unsigned(AC) + unsigned(BC) + Cin;
Cout <= SC(5);
Sout <= SC(4 downto 0);

end a_adder;

Library 
Inclusion

Entity 
Declaration

Architecture 
Declaration



Entity Declaration

Specifies interface

States port's name, 
mode, & type

Mode can be IN, OUT, 
or INOUT

Port type can be from 
a single bit to a bit 
vector

Entity name

Port names Port mode Port type

Port length

ENTITY Adder IS

PORT (A,B : IN STD_LOGIC(4 DOWNTO 0);

Cin : IN   STD_LOGIC;

Sum : OUT STD_LOGIC(4 DOWNTO 0);

Cout : OUT  STD_LOGIC);

END Adder;



Architecture Declaration

Describes the internal operation of an entity
Several architectures can be associated to one 
entity
States which components, signals, variables, 
and constants will be used



An Architecture Example
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.STD_LOGIC_ARITH.all;

Entity Adder is

port (A,B :  in std_logic_vector(4 downto 0);

Cin : in   std_logic;

Sum : out std_logic_vector(4 downto 0);

Cout : out  std_logic);

End Adder;

architecture a_adder of adder is

signal AC,BC,SC : std_logic_vector(5 downto 0);

begin
AC <='0' & A;
BC <='0' & B;    
SC <= unsigned(AC) + unsigned(BC) + Cin;
Cout <= SC(5);
Sout <= SC(4 downto 0);

end a_adder;

Concurrent Statements: 
Processed at the same time. 
Also component instantiations, 
and processes can be placed.

Signal declaration. Also can be 
placed component, constants, 
types, declarations.

Architecture declaration

Associated 
entity

Library declaration section



Signals Vs Variables (1/2)

Signals
– Can exist anywhere, like 

wires

– Connect components or 
carry information between 
processes

– When inside a process, its 
value is updated when the 
process suspends

– Signal assignment 
operator: <=

Variables
– Can only exist inside a 

process

– Behave like local HLL 
variables holding 
temporary values

– Values updated right 
after assignment. 
Sequence matters

– Variable assignment 
operator: :=



Concurrent Vs. Sequential Code

Concurrent Statements
– Occur typically outside a process
– Take place concurrently, i.e. with simulation clock 

stopped
– Uses of SIGNALS and processes

Sequential Statements
– Occur only inside a process
– Are executed sequentially, i.e. one after another
– Uses VARIABLES and functions



Signals Vs Variables (2/2)

Signals
– Initial values: A=5, 

B=15, X=10
– Final values: A=10, 

B=5

Sigproc: process(A,X)
Begin
A <= X;
B <= A;

End process Sigproc;

Variables
– Initial values: A=5, 

B= 15, X=10
– Final values: A=10, 

B=10
Sigproc: process(X)
Variable A,B : integer;
Begin
A := X;
B := A;
End process Sigproc;



Three-Bit Binary Counter
entity countl is

port( clock, enable: in bit;
qa: out integer range 0 to 7);

end countl;

architecture countarch of countl is
begin

process (clock)
variable count: integer range 0 to 7;
begin

if (clock’event and clock ='1') then
if enable = '1' then

count:=count + 1;
end if;

end if;
qa <= count after 10 ns;

end process;
end countarch;

Sensitivity list. Process is executed 
each time one of this parameters 
change.

Variable declaration

Sequential statements. 

Variable assignment operator

Signal assignment operator



entity dff is
port ( d,clock : in bit;

q: out bit);
end dff;

architecture arch of dff is
begin

process (clock)
begin

if(clock'event and clock=1) then
if(d=‘1’) then

q <= ‘1’;
else

q <= ‘0’;
end if;

end if;
end process;

end arch;

A “D” Flip-Flop

Explicit comparisons and 
assignments to port and signals uses  
‘ ’ for one bit and “ ” for multiple bits 

Refers to the rising edge of the 
clock 



D-type flip-flop with
active low preset and clear inputs

Logical operators and, or, not,
nand, xor are defined in the 
language

elsif is used instead of the else 
if of C language.

Coments begin with ---- The pm and din signals are asynchronous
entity dffpc is

port(d,clrn,prn,clock: in bit;
q out bit);

end dffpc;
architecture arch of dffpc is
begin

process (clock)
begin

if(clock'event and clock = '1') then
if(d='l' and prn='l' and clrn='l') then

q <= '1';
elsif(d='0' and prn='l' and clrn ='1') then

q <='0'.
end if;
--handle active low preset
if(prn='0' and clrn='l') then

q <= '1';
end if;
--handle active low clear
if(clrn='0' and prn='l') then

q <= '0';
end if;

end if;
end process;

end arch;



D Flip-Flop with 
Asynchronous Preset and Clear

Integer range definition. Range 0 
to 1 defines one bit.

entity dffapc is
port(clock, d, prn, clrn : in bit;

q : out bit);
end dffapc;
architecture archl of dffapc is
begin

process(clock, clrn, prn)
variable reset, set: integer range 0 to 1; 
begin

if(prn=‘0’) then
q <= ‘1’;

elsif (clrn=‘0’) then
q <= ‘0’;

elsif (clock’event and clock=‘1’) then
q <= d;

end if;
end process;

end archl;



Full Adder
library ieee;
use ieee.std_logic 1164.all;
entity fulladd is

port( al,a2,cin: in std_logic;
sum,cout: out std_logic);

end fulladd;

architecture fulladd of fulladd is
begin

process(al,a2,cin)
begin

sum <= cm xor al xor a2;
cout <= (al and a2) or (cin and (al xor a2));

end process;
end fulladd;



Four Bit Adder

Integer type allows addition, 
subtraction and multiplication. Need 
the following statement at the library 
declaration section: 

use IEEE.STD_LOGIC_ARITH.all

--A VHDL 4 bit adder
entity fourbadd is

port ( cin: in integer range 0 to 1;
addendl:in integer range 0 to 15;
addend2:in integer range 0 to 15;
sum: out integer range 0 to 31);

end fourbadd;
architecture a4bitadd of fourbadd is
begin

sum <= addendl + addend2 + cin; 
end a4bitadd;



VHDL Description Styles

Dataflow: Uses concurrent signal assignments
Behavioral: Relies on process to implement 
sequential statements
Structural: Describes the interconnections 
among components of a system. Requires 
hierarchical constructs.
Mixed Method: Combines the three styles.



D Flip-Flop Dataflow
--D flip-flop dataflow
--Includes preset and clear
entity dff_flow is

port ( d, prn, clrn: in bit;
q,qbar: out bit);

end dff_flow;

architecture archl of dff_flow is
begin

q <= not prn or (clrn and d);
qbar <= prn and (not clrn or not d);

end archl;



Behavioral D Flip-Flop
--Active low preset and clear inputs
entity dffpc2 is

port(d,clock,clrn,prn:in bit;
q,qbar:out bit;

end dffpc2;

architecture arch of dffpc2 is
begin

process(clock,clrn,prn)
begin
if(clock’event and clock = ‘1’) 
then

q <= not prn or (clrn and d);
qbar <= prn and (not clrn or 
not d);

end if;
end process;

end arch;



D Flip-Flop Structural

--A two input nand gate 
entity nandtwo is

port(x, y:in bit;
z :out bit);

end nandtwo;
architecture anandtwo of nandtwo
is
begin

z <= not(x and y);
end anandtwo;

Component instantiation. Connections are 
made by correspondence

Component 
declaration. 
Port appears 
exactly as in 
the entity 
declaration.

Component 
instantiation 
label

Entity name

entity dff_str is
port (d :in bit;

q,qbar:out bit);
end dff_str;

architecture adff_str of dff_str is
component nandtwo

port(x, y: in bit;
z:out bit);

end component;
signal qbarinside, qinside, dbar: bit;
begin

nandq:nandtwo
port map(qinside, d,qbarinside);

nandqbar:nandtwo
port map(qbarinside,dbar, qinside);

dbar <= not d;
q <= qinside;
qbar <= qbarinside;

end adff_str;

qinside

nandq:nandtwo

nandqbar:nandtwo

qbarinside

dbar

d qbar

q



A Sequence Detector

A/z=0 B/z=0

C/z=1

w=0

w=0

w=1

w=1
w=0

w=1

Clock Cycle t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

W: 0 1 0 1 1 0 1 1 1 0 1 
Z: 0 0 0 0 0 1 0 0 1 1 0 

Case statement declaration

Type declaration

Signal definition using a defined type

Item under test

entity simple is
port ( clock, resetn, w: in stdlogic;

z:out std logic); 
end simple;

architecture behavior of simple is
type state_type is (a, b, c);
signal y: state_type ;
begin

process (resetn, clock)
begin

if resetn = ‘0’ then
y <= a;

elsif (clock’event and clock = ‘l’) then
case y is

when a =>
if w=’0’ then

y <= a;
else

y <= b;
end if;



A Secuence Detector  (continued)

Clock Cycle t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

W: 0 1 0 1 1 0 1 1 1 0 1
Z: 0 0 0 0 0 1 0 0 1 1 0

 

Case statement declaration

Conditional signal assignment

when b =>
if w=’0’ then

y <= a;
else

y <= c;
end if;

when c =>
if w=’0’then

y <= a;
else

y <= c;
end if;

end case:
end if;

end process;
z <= ‘l’ when y=c else ’0’;

end behavior; A/z=0 B/z=0

C/z=1

w=0

w=0

w=1

w=1
w=0

w=1



Testbenches

Stimuli transmitter to DUT
(testvectors) 
Needs not to be 
synthesizable 
No ports to the outside 
Environment for DUT 
Verification and validation of 
the design 
Several output methods 
Several input methods 



Example Testbench

entity TB_TEST is
end TB_TEST; 

architecture BEH of TB_TEST is
-- component declaration of the DUT
-- internal signal definition

begin
-- component instantiation of the DUT
-- clock generation
-- stimuli generation

end BEH; 



Example Testbench

entity TB_TEST is
end TB_TEST;

architecture BEH of TB_TEST is
component TEST

port(CLK : in std_logic;
RESET : in std_logic;
A : in integer range 0 to 15;
B : in std_logic;
C : out integer range 0 to 15);

end component;

constant PERIOD : time := 10 ns;
signal W_CLK : std_logic := '0';
signal W_A, W_C : integer range 0 to 15;
signal W_B : std_logic;
signal W_RESET : std_logic;

begin
DUT : TEST

port map(CLK => W_CLK,
RESET => W_RESET,
A => W_A,
B => W_B,
C => W_C);

· · ·



Questions?


