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Preface
This book is intended to be an exposition of the modeling and control
of AC motors, specifically, the induction, PM synchronous, stepper, and
switched reluctance motors. The particular emphasis here is on techniques
used for high performance applications, that is, applications that require
both rapid and precise control of position, speed and/or torque. Tradition-
ally, DC motors were reserved for high performance applications (position-
ing systems, rolling mills, traction drives, etc.) because of their relative
ease of control compared to AC motors. However, with the advances in
computing and power electronics, AC motors continue to replace DC mo-
tors in high performance applications. The exposition here is to carefully
derive the mathematical models of the AC machines and show how these
mathematical models are used to design control algorithms that achieve
high performance.
Electric machines are a particularly fascinating application of basic elec-

tricity and magnetism. The presentation here relies heavily on these basic
concepts from Physics to develop the models of the motors. Specifically,
Faraday’s Law ξ = −dφ/dt where φ = R

S
~B · d~S, the magnetic force law

~F = i~̀× ~B (or, ~F = q~v×~B), Gauss’s Law H
~B · d~S = 0, Ampere’s LawH

~H · d~̀ = ifree , the relationship between ~B and ~H, properties of mag-
netic materials, etc. are reviewed in detail and used extensively to derive
the currently accepted nonlinear differential equation models of the various
AC motors. The authors have attempted to make the modeling assump-
tions as clear as possible and to show that the magnetic and electric fields
satisfy Maxwell’s equations (as, of course, they must). Many elementary
books on electric machines tend to make a superficial use of electricity and
magnetism in regards to electric machines. Instead, they rely on stating the
equivalent circuit models of the machine and analyzing them ad nauseam.
However, the equivalent circuit is a result of making a linear approximation
to a nonlinear differential equation model of the motor. Consequently, the
emphasis here is on the derivation of the nonlinear model based on basic
electricity and magnetism. The derivation of the corresponding equivalent
circuit assuming steady-state conditions is then straightforward.
Electric machines also provide fascinating examples to illustrate con-

cepts from electromagnetic field theory (in contrast to electricity and mag-
netism). In particular, how the electric and magnetic fields change as one
goes between reference frames that are in relative motion can be nice il-
lustrated using AC machines. Optional sections show how the electric and
magnetic fields change as one goes between a coordinate system attached to
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the stator to a coordinate system that rotates with the rotating magnetic
field produced by the stator currents or a frame attached to the rotor. Also
given in an optional section is the derivation of the azimuthal electric and
magnetic fields.
This is also a book on the control of AC machines based on their differen-

tial equation models. With the notable exception of the sinusoidal steady-
state analysis of the induction motor in Chapter 7, very little attention is
given to the classical equivalent circuits as these models are valid only in
steady-state. Instead, the differential equation models are used as the basis
to develop the notions of field-oriented control, input-output linearization,
flux observers, least-squares identification methods, state feedback trajec-
tory tracking, etc. This is a natural result of the emphasis here on high
performance control methods (e.g., field-oriented control) as opposed to
classical methods (e.g., V/f , slip control etc.)1.
There are of course many good books in this areas of electric machines

and their control. The authors owe a debt of gratitude to Professor W.
Leonhard for his book [1] from which they were educated in the modeling
and control of electric drives. The present book is much narrower in focus
with an emphasis on the modeling and operation of the motors based on
elementary classical physics and an emphasis on high performance control
methods. The book by Krause [2] is clear and complete in its derivation
of the mathematical models of electric machines while C.B.Gray [3] makes
quite an effort to present electromagnetic theory in the context of electric
machines. A comprehensive treatment using Simulink R° to simulate electric
machinery in given in C-M Ong’s book [4]. The books by S.J. Chapman
[5], Woodson & Melcher [6], Matsch [7], Krause and Wasynczuk [8], Mohan
[9] and Slemon & Straughn [10] are good elementary books on machines.
The beautifully written textbooks Physics by the Physical Science Cur-

riculum Study [11], Physics by D. Halliday and R. Resnick [12], Principles
of Electrodynamics by M. Schwartz [13] and Electromagnetic Fields by
R.K. Wangness [14] are used as references for the theory of electricity and
magnetism.
This book borrows from these above works and hopefully adds its own

contribution to the literature on AC machines.
Part one of the book consists of the first three chapters and presents a

detailed review of the basic electricity and magnetism as well as an intro-
duction to control that will be used extensively in the remaining chapters.
Specifically:
Chapter 1 reviews the basic ideas of electricity and magnetism that are

needed in the later chapters to model AC motors. In particular, the notions
of magnetic fields, magnetic materials, magnetic force and Faraday’s law

1The classical methods are discussed, but the high performance methods are covered
in detail.
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are reviewed by using them to derive the ideal model of a DC motor.
Chapter 2 provides an elementary introduction to the control ideas re-

quired for the high performance control of electric machines. An elementary
presentation is given of state feedback control, speed observers and identi-
fication theory as applied to DC motors to setup the reader for the later
chapters.
These first two chapters are elementary in nature and were written to be

accessible to undergraduates. The reason for this is the fact that typically
control engineers do not have a lot of background in modeling of machines
while power/electric-machine engineers do not usually have a background
in basic state-space concepts of control theory. Consequently, it is hoped
that these two chapters can bring the reader up to speed in these areas.
Chapter 3 goes into the modeling of magnetic materials in terms of their

use in electric machines. The fundamental result of this chapter is the
modification of Ampere’s Law

H
C
~B · d~̀ = µ0i so that it is valid in the

presence of magnetic material. This introduces the notion the field ~H and
its relationship to ~B to obtain the more general version of Ampere’s LawH
~H · d~̀= ifree . All of this requires a significant discussion of the modeling

of magnetic materials. The approximation that ~H is zero in magnetic ma-
terials is discussed and shown how this approximation and Ampere’s Law
can be used to find the ~B in the air gap of AC machines. Also presented
is Gauss’s Law for ~B which leads to the notion of conservation of flux, as
well as the fact that the normal component of ~B must be continuous across
the boundary between air and magnetic material. This chapter should be
read, but the reader should not get “bogged down” in the chapter. Rather,
the main results should be remembered.
Part two consists of the chapters 4 through 12 and presents the modeling

and control of AC motors. Specifically:
Chapter 4 uses the results of Chapters 1&3 to explain how a radially

directed rotating magnetic field can be established in the airgap of AC ma-
chines. In particular, the notion of sinusoidally wound turns (phase wind-
ings) is explained and then Ampere’s Law is used to show that a sinusoidal
(spatially) distributed radial magnetic field is established in the airgap by
the currents in the phase windings.
Chapter 5 explains the fundamental physics behind the working of induc-

tion and synchronous machines. Specifically, this chapter uses a simplified
model of the induction motor and shows how voltages and currents are
induced in the rotor loops by the rotating magnetic field established by the
stator currents. Then it is shown how torque is produced on these induced
currents by the same stator rotating magnetic field that induced them. Sim-
ilarly, the synchronous motor is analyzed to show how the stator rotating
magnetic field produces torque on the rotor.
Chapter 6 derives the differential equation mathematical models that

characterize two phase induction and synchronous machines. These models
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are the accepted models seen throughout the literature.
Chapter 7 This chapter presents the derivation of the models of three

phase AC machines and their two-phase equivalent models. The classical
steady-state analysis of induction motors is also presented.
Chapter 8 covers the control of induction motors presenting both field-

oriented control and input-output linearization control. The notion of flux
observers, field weakening, speed estimation based on position measure-
ments as well as parameter identification methods are all discussed.
Chapter 9 covers the control of synchronous motors describing field-

oriented control, field weakening, speed estimation as well as identification
methods.
Chapter 10 covers the modeling and control of Switched Reluctance mo-

tors.
Chapter 11 covers advanced topics including sensorless control of induc-

tion motors
Chapter 12 covers the modeling and control of PM stepper motors.
Note to the reader: Sections marked with an asterisk * can be omitted

without loss of continuity.
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Chapter 1 reviews the basic ideas of electricity and magnetism that are
needed in the later chapters to model AC motors. In particular, the notions
of magnetic fields, magnetic materials, magnetic force and Faraday’s law
are reviewed by using them to derive the ideal model of a DC motor.
A fundamental reference for this chapter is the beautifully written book
by Halliday and Resnick [12]. An advanced treatment of Electromagnetic
Theory is given in another beautifully written book by R.K. Wangness [14].
Chapter 2 provides an elementary introduction to the control ideas re-

quired for the high performance control of electric machines. An elementary
presentation is given of state feedback control, speed observers, identifica-
tion theory applied to DC motors to setup the reader for the later chapters.
These first two chapters are elementary in nature and were written to be

accessible to undergraduates. The reason for this is the fact that typically
control engineers do not have a lot of background in modeling of machines
while power/electric-machine engineers do not usually have a background
in basic state-space concepts of control theory. Consequently, it is hoped
that these two chapters can bring the reader up to speed in these areas.
Chapter 3 goes into the modeling of magnetic materials in terms of their

use in electric machines. The fundamental result of this chapter is Ampere’s
Law

H
~H·d~̀= ifree which requires a significant background in the modeling

of magnetic materials. The approximation that ~H is zero in magnetic ma-
terials is discussed and shown how this approximation and Ampere’s Law
can be used to find the ~B in the air gap of AC machines. Also presented
is Gauss’s Law for ~B which leads to the notion of conservation of flux, as
well as the fact that the normal component of ~B must be continuous across
the boundary between air and magnetic material. This chapter should be
read, but the reader should not get “bogged down” in the chapter. Rather,
the main results should be remembered.
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1

The Physics of the DC Motor
The principles of operation of a Direct Current (DC) motor are presented
based on fundamental concepts from electricity and magnetism contained
in any basic physics course. The DC motor is used as a concrete example for
reviewing the concepts of magnetic fields, magnetic force, Faraday’s Law
and induced emf’s that will be used throughout the remainder chapters for
the modeling AC motors. Consequently, this chapter is far from being an
exposition in the design and modeling of DC motors. All of the Physics
concepts referred to in this chapter are contained in the book Physics by
Halliday and Resnick [12].

1.1 Magnetic Force

Motors work on the basic principle that magnetic fields produce forces on
wires carrying a current. In fact, this experimental phenomenon is what
is used to define the magnetic field. If one places a current carrying wire
between the poles of a magnet as in the figure below, a force is exerted
on the wire. Experimentally, the magnitude of this force is found to be
proportional to both the amount of current in the wire and to the length
of the wire that is between the poles of the magnet. That is, Fmagnetic ∝ `i.
The direction of the magnetic field ~B at any point is defined to be the
direction that a small compass needle would point at that location. This
direction is indicated by arrows in Figure 1.1 below.
Further experiments show that if the wire is parallel to the ~B field (rather

than perpendicular as in the figure), then no force is exerted on the wire. If
the wire is at some angle θ with respect to ~B, then the force is proportional
to the component of the wire that is perpendicular to ~B. That is, with θ
the angle between ` and ~B, so that `⊥ = ` sin(θ) is the component of
~̀ perpendicular to ~B, it is found experimentally that Fmagnetic ∝ `⊥i.
In words, the magnetic force is proportional to the amount of current in
the wire and to the length of wire perpendicular to ~B. Based on these
experimental results, the strength or magnitude of the magnetic induction
field ~B is then defined to be the constant of proportionality, that is,

B =| ~B | , Fmagnetic
`i

where Fmagnetic is the magnetic force, i is the current, and ` is the length
of wire perpendicular to the magnetic field carrying the current. That is,
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FIGURE 1.1. Magnetic Force Law (PSSC)

B is the proportionality constant so that Fmagnetic = i`B.
When the ~B field is perpendicular to the current carrying wire, the direc-

tion of the force can be determined using the right-hand rule: Using your
right hand, point your fingers in the direction of the magnetic field and
your thumb in the direction of the current. Then the direction of the force
is out of your palm.
A more general way to relate the magnetic field ~B to the force it produces

is as follows: Let ~̀ denote a vector whose magnitude is the length ` of the
wire in the magnetic field and whose direction is defined as the positive
direction of current in the bar, then the magnetic force on the bar of length
` carrying the current i is given by

~Fmagnetic = i~̀× ~B¯̄̄
~Fmagnetic

¯̄̄
= i`B sin(θ)

= i`⊥B (`⊥ = ` sin(θ))
= i`B⊥ (B⊥ = B sin(θ)

where B⊥ = B sin(θ) is just the component of ~B perpendicular to the wire1.
Example A Linear DC Machine
Consider the simple linear DC machine as in [5] where a sliding bar rests

on a simple circuit consisting of two rails. An external magnetic field is
going through the loop of the circuit up out of the page indicated by the
⊗ in the plane of the loop. Closing the switch results in a current flowing
around the circuit and the external magnetic field produces a force on the
bar which is free to move. The force on the bar is now computed.
The magnetic field is constant and points into the page (indicated by ⊗)

Written in vector notation, ~B = −Bẑ where B > 0. By the right hand rule,

1Motors are designed so that the current carrying wire is perpendicular to the external
magnetic field.
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FIGURE 1.2. Linear DC motor

the magnetic force on the sliding bar points to the right. Explicitly, with
~̀= −`ŷ the force is given by

~Fmagnetic = i~̀× ~B = i(−`ŷ)× (−Bẑ)
= i`Bx̂.

To find the equations of motion for the bar, let f be the coefficient
of viscous-friction of the bar so that the friction force is given by Ff =
−fdx/dt. Then, with m` denoting the mass of the bar, Newton’s law gives,

i`B − fdx/dt = m`d
2x/dt2

In order to solve for x(t) the current i(t) must be known. Assuming the
switch has been closed for t < 0, i(0) = Vbat/R . However, it turns out
that the current does not stay at this constant value, but decreases due to
electromagnetic induction. This will be explained later.

1.2 Single-Loop Motor

As a first step to modeling a DC motor, a simplistic single-loop motor
is considered. It is first shown how torque is produced and then how the
current in the single-loop can be reversed (commutated) every half turn to
keep the torque constant.

1.2.1 Torque Production

Consider the magnetic system in Figure 1.3 below [5], where a cylindrical
core is cut out of a block of a permanent magnetic and replaced with a
soft iron core. The term “soft” iron refers to the fact that material is easily
magnetized (a permanent magnet is referred to as “hard” iron).
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FIGURE 1.3. Soft iron cylindrical core placed inside a hollowed out Permanent
Magnet to produce a radial magnetic field in the airgap

An important property of magnetic materials is that the magnetic field
at the surface of such materials tends to be normal (perpendicular) to
the surface. Consequently, the cylindrical shape of the soft iron core and
stator field magnet has the effect of making the field in the air gap radially
directed and furthermore it is reasonably constant (uniform) in magnitude.
A mathematical description of the magnetic field in the air gap due to the
permanent magnet is simply

~B = +Br̂ for 0 < θ < π

= −Br̂ for π < θ < 2π

where B > 0 is the magnitude or strength of the magnetic field and θ is an
arbitrary location in the air gap2.
Figure 1.4 shows a rotor loop added to the magnetic system of Figure 1.3.

The torque on this rotor loop is now calculated by considering the magnetic
forces on sides a and a0 of the loop [7] (On the other two sides of the loop,
i.e., the front & back sides, the magnetic field has negligible strength so that
no significant force is produced on these sides). As illustrated in Figure 1.4,
the rotor angular position is taken to be the angle θR from the vertical to
side a of the rotor loop. Figure 1.5 shows the cylindrical coordinate system
used in Figure 1.4. Here r̂, θ̂, ẑ denote unit cylindrical coordinate vectors.
The unit vector ẑ points along the rotor axis (into the paper in Figure 1.4),
θ̂ is in the direction of increasing θ and r̂ is in the direction of increasing
r. Referring back to Figure 1.4, for i > 0, the current in side a of the
loop is going into the page (denoted by ⊗) and then comes out of the page
(denoted by ¯) on side a0. Thus, on side a, ~̀ = `1ẑ (as ~̀ points in the
direction of positive current flow) and the magnetic force ~Fside a on side a

2Actually it will be shown in a later chapter that the magnetic field must be of the
form ~B = B r0

r
r̂ in the airgap, that is, it varies as 1/r in the airgap. However, as the

airgap is small, the ~B field is essentially constant across the airgap.
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FIGURE 1.4. Single-Loop Motor

FIGURE 1.5. Cylindrical coordinate system used in Figure 1.4.

is then

~Fside a = i~̀× ~B
= i(`1ẑ)× (Br̂)
= i`1Bθ̂

which is tangential to the motion as shown. The resulting torque is

~τ side a = (`2/2)r̂× ~Fside a
= (`2/2)i`1Br̂× θ̂

= (`2/2)i`1Bẑ

which is constant. Similarly, the magnetic force on side a0 of the rotor loop
is

~Fside a0 = i~̀× ~B
= i(−`1ẑ)× (−Br̂)
= i`1Bθ̂
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so that the corresponding torque is then

~τ side a0 = (`2/2)r̂×~Fside a0
= (`2/2)i`1Br̂× θ̂

= (`2/2)i`1Bẑ

The total torque on the rotor loop is then

~τm = ~τ side a + ~τ side a0

= 2(`2/2)i`1Bẑ

= `1`2Biẑ

As the vector ẑ is along the axis of rotation so is the torque. In scalar form,

τm = KT i where KT = `1`2B

The force is proportional to the strength of magnetic field ~B in the air
gap due to the permanent magnet. In order to increase the strength of
the magnetic field in the air gap, the permanent magnet can be replaced
with a soft iron material and then wire wound around the periphery of the
magnetic material as shown in Figure 1.6. This winding is referred to as the
field winding and the current it carries is called the field current. Typically,
the strength of the magnetic field in the air gap is then proportional to
the field current if at lower current levels (B = Kf if ) and then saturates
as the current increases. This may be written as B = f(if ) where f(·) is
a saturation curve satisfying f(0) = 0, f 0(0) = Kf as shown in the figure
below.

FIGURE 1.6. DC Motor with a Field Winding
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FIGURE 1.7. Radial magnetic field strength in the air gap as a function of field
current.

1.2.2 Commutation of the Single-Loop Motor

The above derivation for the torque as τm = KT i assumes that the current
in the side of the rotor loop under the south pole face is into the page and
the current in the side of the loop under the north pole face is out of the
page. In order to make this assumption valid, the direction of the current
in the loop must be changed as the rotor angle θR goes from −π to 0 to π
(see Figures 1.8a-d), . The process of changing the direction of the current
is referred to as commutation and is done at θR = 0 and θR = π through
the use of the slip rings s1, s2 and brushes b1, b2. The slip rings are rigidly
attached to the loop and thus rotate with it. The brushes are fixed in space
with the slip rings making a sliding contact with the brushes as the loop
rotates. To see how the commutation of the current is accomplished using
the brushes and slip rings, consider the sequence of figures below.
As shown in Figure 1.8a, the current goes through brush b1 into the slip

ring s1. From there, it travels down (into the page ⊗) side a of the loop,
comes back up side a0 (out of the page ¯) into the slip ring s2 and finally,
out the brush b2. Note that side a of the loop is under the south pole face
while side a0 is under the north pole face.

FIGURE 1.8. 0 < θR < π
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Figure 1.8b shows the rotor loop just before commutation where the same
comments as in Figure 1.8 apply.
Figure 1.8c shows that when θR = π, the slip rings at the ends of the

loop are shorted together by the brushes forcing the current in the loop to
drop to zero.

Figure 1.8b Rotor loop just prior to commutation where 0 < θR < π.

Figure 1.8c The ends of the rotor loop are shorted when θR = π

Figure 1.8d Rotor loop just after commutation where π < θR < 2π



1. The Physics of the DC Motor 13

As shown in Figure 1.8d with π < θR < 2π, the current is now going
through brush b1 into slip ring s2. From there, the current travels down
(into the page ⊗) side a0 of the loop and comes back up (out of the page
¯) side a. In other words, the current has reversed its direction in the loop
from that in Figures 1.8a,1.8b. This is precisely what is desired, since side
a is now under the north pole face and side a0 is under the south pole face.
As a result of the brushes and slip rings, the current direction in the loop
is reversed every half-turn.
Remark Voltage and Current Limits
The amount of voltage va that may be applied to the input terminals

T1, T2 of the motor is limited by capabilities of the amplifier supplying the
voltage, that is, |va| ≤ Vmax. Let u(t) be the voltage commanded to the
amplifier, then using the notation sat(·) to denote the saturation function
(see Figure 1.9), va = sat (Kau(t)) indicates the dependence of va on u(t).
In addition, there is a limit to the amount of current the rotating loop

can handle before overheating or causing problems with commutation as
previously mentioned. There are usually two current limits given. The first
one is called the continuous current rating/limit and is the amount of
current the motor can handle if left in use indefinitely. That is, the amount
of heat dissipated in the rotor windings due to Ohmic losses is being taken
away by thermal conduction through the brushes and thermal convection
with the air so as to be in a thermal equilibrium. The second rating is the
peak current rating/limit and is the amount of current the motor can handle
for short (typically a few seconds or less) periods of time. Of course, the
amount of current the amplifier can actually put out determines whether
or not the peak current can be attained. The peak current is usually much
higher than the continuous current rating.

FIGURE 1.9. Saturation model of amplifier
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1.3 Faraday’s Law and Induced Electromotive
Force (emf)

A changing flux within a loop produces an induced electromotive force
(emf) ξ in the loop according to Faraday’s law3. That is,

ξ = −dφ/dt

where

φ =

Z
S

~B · d~S

is the flux in the loop and S is any surface with the loop as its boundary.
The surface element d~S is a vector whose magnitude is the differential
(small) element of area dS and whose direction is normal (perpendicular)
to the surface element. As there are two possibilities for the normal to the
surface, one must be chosen in a consistent manner as explained below.
Depending on the particular normal chosen, a convention is then used to
characterize positive and negative directions of travel around the boundary.
Sign Convention For Travel Around Surface Boundaries
In figure 1.10 below, the normal direction is taken to be up in the positive

z direction so that n̂ = ẑ, dS = dxdy resulting in d~S = dxdyẑ

FIGURE 1.10. Positive direction of travel around a surface element with the
normal up

In figure 1.11, the normal direction is taken to be down in the negative
z direction so that n̂ = −ẑ, dS = dxdy resulting in d~S = −dxdyẑ

3 ξ is the Greek letter Xi and is pronounced “Ki”.
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FIGURE 1.11. Positive direction of travel around a surface element with the
normal down

As illustrated, the vector differential element of surface area d~S is de-
fined to be a vector whose magnitude is the area of the differential area
element and whose direction is normal to the surface. One may choose ei-
ther normal (as long as it is a continuous vector field on the surface) and
the corresponding direction of positive travel is then determined.
Connecting Two Surfaces Together
Two surface elements may be connected together and travel around the

total surface defined as shown below.

FIGURE 1.12. Positive direction of travel around two joined surface elements

The interpretation of positive and negative values of the induced elec-
tromotive force ξ is now explained. Faraday’s law says,

ξ = −dφ/dt

where

φ =

Z
S

~B · d~S

If ξ is positive, the induced emf will force current in the positive direction
of travel around the surface while if ξ is negative, the induced emf will force
current in the opposite direction. As illustrated in the next two exercises,
this sign convention for Faraday’s Law is just a precise mathematical way of
describing Lenz’s Law: In all cases of electromagnetic induction, an induced
voltage will cause a current to flow in a closed circuit in such a direction
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that the magnetic field which is caused by that current will oppose the change
that produced the current (see pages 873-877 of [12] for this version of Lenz’s
law).

1.3.1 Back EMF in a Linear DC Machine

The back emf in the linear DC machine [5] is now computed.

FIGURE 1.13.

The magnetic field is constant and points into the page, i.e., ~B = −Bẑ,
where B > 0. The magnetic force on the bar is ~Fmagnetic = i`Bx̂. To
compute the induced voltage, let n̂ = ẑ be the normal to the surface so
that d~S = dxdyẑ where dS = dxdy. Then

φ =

Z
S

~B · d~S

=

Z `

0

Z x

0

(−Bẑ) · (dxdyẑ)

=

Z `

0

Z x

0

−Bdxdy
= −B`x

The induced (“back”) emf is therefore given by

ξ = −dφ/dt = −d(−B`x)/dt = B`v
In the flux computation, the normal for the surface was taken to be in
+ẑ direction which means that the positive direction of travel around the
surface is counter-clockwise around the loop. That is, the sign conventions
for battery voltage Vbat and the back-emf ξ are opposite which shows that
the back-emf ξ = B`v is opposing the applied battery voltage Vbat.
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Remark φ = −B`x is the flux in the circuit due to the external magnetic
field ~B = −Bẑ. There is also a flux φL = Li due to the current in the circuit.
For this example, the self-inductance is small, and so one sets L = 0. (See
the next example below.)

Electromechanical Energy Conversion

As the (back) emf Blv opposes the current i, electrical power is being
absorbed by this back emf. Specifically, the electrical power absorbed by the
back emf is iξ = iB`v while the mechanical power produced is Fmagneticv =
i`Bv. That is, the electrical power absorbed by the back emf reappears as
mechanical power, as it must for energy conservation. Another way to view
this is to note that Vbati is the electrical power delivered by the battery,
and as Vbat −B`v = Ri, one may write

Vbati = Ri2 + i(B`v)

= Ri2 + Fmagneticv

That is, the power from the source Vbati is dissipated as heat in the
resistance R and the rest converted into mechanical power.

Equations of Motion for the Linear DC Machine

The equations of motion for the bar in the linear DC machine are now
derived. With the self-inductance L taken to be zero, m` the mass of the
bar, f the coefficient of viscous-friction,

Vbat −B`v = Ri

m`
dv

dt
= i`B − fv

Eliminating the current i,

m`
d2x

dt2
= `B(Vbat −B`v)/R− fv = −

µ
B2`2

R
+ f

¶
dx

dt
+
`B

R
Vbat

or

m`
d2x

dt2
+

µ
B2`2

R
+ f

¶
dx

dt
=
`B

R
Vbat

This is the equation of motion for the bar with Vbat as the control input.

1.3.2 Back EMF in the Single-Loop Motor

The back-emf induced in the single-loop motor by the external magnetic
field of the permanent magnet is now computed. To do so, consider the
flux surface shown in Figure 1.14. That is, the surface is a half-cylinder
of radius `2/2 and length `1 with the current loop as its boundary. The
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cylindrical surface is in the air gap, where the magnetic field is known to
be radially directed and constant in magnitude, i.e.,

~B = +Br̂ for 0 < θ < π

= −Br̂ for π < θ < 2π

On the cylindrical part of the surface, the surface element is chosen as

d~S = (`2/2)dθdzr̂

which is directed outward from the axis of the cylinder. The corresponding
direction of positive travel is shown in Figure 1.14. On the two ends (half-
disks) of the cylindrical surface, the ~B field is quite weak making the flux
through these two half-disks negligible.

FIGURE 1.14. Flux surface for the single-loop motor. The positive direction of
travel around this surface is indicated by the curved arrow.

Thus, neglecting the negligible flux through the two ends of the surface,

φ (θR) =

Z
S

~B · d~S

=

Z `1

0

Z θ=π

θ=θR

(Br̂) · (`2
2
dθdzr̂) +

Z `1

0

Z θ=π+θR

θ=π

(−Br̂) · (`2
2
dθdzr̂)

=

Z `1

0

Z θ=π

θ=θR

B
`2
2
dθdz +

Z `1

0

Z θ=π+θR

θ=π

−B`2
2
dθdz

=
`1`2B

2
(π − θR)− `1`2B

2
θR, 0 < θR < π

= −`1`2B
³
θR − π

2

´
, 0 < θR < π (1.1)

As seen from Figure 1.14, this derivation is based on the fact that the ~B
field is directed radially outward over the length (`2/2)(π−θR) and radially
inward over the length (`2/2)θR.
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Similarly, it follows that φ (θR) = −`1`2B
¡
θR − π − π

2

¢
for π < θR < 2π.

In general,

φ (θR) = −`1`2B
³
θRmodπ − π

2

´
is the correct expression for any angle θR.
Then by (1.1), the induced emf in the rotor loop is

ξ = −dφ
dt

= (`1`2B)
dθR
dt

= KbωR

where Kb , `1`2B is called the back-emf constant.
The total emf in the rotor loop due to the voltage source va and external

magentic field is va − KbωR. How does one know to subtract ξ from the
applied voltage va? As seen in Figure 1.14, the positive direction of travel
around the loop is in opposition to va, so that if ξ > 0, it is opposing
the applied voltage va. The standard terminology is to call ξ , KbωR the
“back-emf” of the motor.

1.3.3 Self Induced Emf in the Single Loop Motor

The computation of the flux in the rotor loop produced by its own (ar-
mature) current is now done. To do so, consider the flux surface shown in
Figure 1.15 below.

FIGURE 1.15. Computation of the self inductance of the rotor loop. The surface
element vector is d~S = −rRdθdzr̂ with a resulting positive direction of travel as
indicated by the curved arrow. This direction coincides with positive armature
current flow, i.e., i > 0.

With reference to Figure 1.15, note that the magnetic field on the flux
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surface due to the armature current has the form

~B(rR, θ, i) = K(rR, θ)i (−r̂)

where

K(rR, θ) > 0 for θR ≤ θ ≤ θR + π

K(rR, θ) < 0 for θR + 2π ≤ θ ≤ θR + π

The exact expression for K(rR, θ) is not important for the analysis here.
Rather, the point is that with i > 0, the magnetic field ~B(rR, θ, i) due to
the current in the rotor loop is radially in on the flux surface shown in
Figure 1.15, i.e., for θR ≤ θ ≤ θR+π. For convenience, the surface element
is chosen to be d~S = rRdθdz(−r̂) so that positive direction of travel around
the surface coincides with the positive direction of the armature current i
in the loop. The flux4 ψ in the rotor loop is then computed as

ψ(i) =

Z
S

~B · d~S =
Z θR+π

θR

Z `1

0

K(rR, θ)i (−r̂) · (−rRdθdzr̂)

= i

Z θR

θR−π

Z `1

0

K(rR, θ)rRdθdz

= Li where L =
Z θR+π

θR

Z `1

0

K(rR, θ)rRdθdz > 0.

This last equation just says the flux in the loop (due to the current
in the loop) is proportional to the current i in the loop where the pro-
portionality constant L is the called the self-inductance of the loop. If
−dψ/dt = −Ldi/dt > 0, then the induced emf will force current into the
page ⊗ on side a and out of the page ¯ of side a0 in Figure 1.15, That is,
this induced emf has the same sign convention as the armature current i
and armature voltage v.
If the resistance of the current loop is denoted by R and v is the voltage

applied to the loop, then Kirchoff’s voltage law leads to

v −Ri− Ldi/dt = 0

or
v = Ri+ Ldi/dt

The loop and its equivalent circuit are shown below.

4The notation ψ is used to distinguish this flux from the flux φ in the loop due to
the external permanent magnet. However, the total flux using an inward normal would
be ψ − φ as the outward normal was used to compute φ in section 1.3.2.
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FIGURE 1.16.

The reader should convince him/her self that Lenz’s law holds as it must.
For example, suppose a voltage v > 0 is applied to the loop resulting in
both i > 0 and di/dt > 0, that is, the flux φ = Li is positive and increasing.
The induced voltage is −d(Li)/dt < 0 and opposes the current i producing
the increasing flux φ = Li. In this circumstance, the voltage source v is
forcing the current i against this induced voltage −d(Li)/dt and the power
absorbed by the induced voltage is−id(Li)/dt = −d ¡12Li2¢ /dt. This power
is stored in the energy 1

2Li
2 of the magnetic field surrounding the loop.

Arcing between the commutator and brushes in a DC machine

Suppose the single-loop motor is rotating at constant speed ω0 with a
constant current i0 in the rotating loop. Let L be the self-inductance of
the loop. Now, every half-turn, the current in the loop reverses direction as
shown in Figures 1.8b,c,d. During this commutation, the current goes from
i0 to 0 to −i0 with change in flux in the loop given by∆ψ = Li0−L(−i0) =
2Li0. By Faraday’s Law, the (self) induced emf is then −∆ψ/∆t where ∆t
is the time for the current to change direction. Note that this time ∆t
decreases as the motor speed increases, so that, even if L is small, the
induced emf in the loop (due to the reversal of current in the loop) can
be quite large at high motor speeds. These large voltages may cause arcing
from the slip rings to the brushes and, if not damage, at least give unwanted
transient currents in the armature circuit.

1.4 Dynamic Equations of the DC Motor

Based on the simple single-loop DC motor analyzed above, the complete
set of equations for a DC motor can be found. The total emf (voltage) in
the loop due to the voltage source va, the external permanent magnet and
the changing current i in the rotor loop is

va −KbωR − Ldi/dt.
This voltage goes into building up the current in the loop against the loop’s
resistance, that is,

va −KbωR − Ldi/dt = Ri



22 1. The Physics of the DC Motor

or

L
di

dt
= −Ri−KbωR + va.

This relationship is often illustrated by the equivalent circuit given in Fig-
ure 1.17 below.

FIGURE 1.17. Equivalent Circuit for the DC Motor

Recall that the torque τm on the loop due to the external magnetic field
acting on the current in the loop is

τm = KT i

where KT , `1`2B is called the torque constant. By connecting a shaft and
gears to one end of the loop this motor torque can be used to do work (lift
weight etc.). It was also shown thatKT = Kb = `1`2B and is a consequence
of energy conservation. Let f be the coefficient of viscous-friction (i.e., due
to the brushes, bearings, etc.) and let τL be the load torque (e.g., to lift a
weight). Then, by Newton’s Law,

τm − τL − fωR = JdωR/dt
where J is the moment of inertia of rotor assembly (armature, etc.). The
system of equations characterizing the DC motor is then

Ldi/dt = −Ri−KbωR + va
JdωR/dt = KT i− fωR − τL

dθR/dt = ωR

A picture of a DC motor servo system and its associated schematic is shown
in Figure 1.18. In the schematic, R,L represent the resistance and induc-
tance, respectively, of the armature loop, Vb = KbωR denotes the back emf,
τm = KT i denotes the motor torque, and J, f are rotor moment of iner-
tia and viscous friction coefficient, respectively. The positive directions for
τm, θR and τL are indicated by the curved arrows. The fact that the curved
arrow for τL is opposite to that of τm just means that if the load torque is
positive then it opposes a positive motor torque τm. The circuit denoted
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with if = constant represents the field winding and simply means the above
equations are valid for a DC motor with an electromagnet assuming the
field current of the electromagnet is kept constant (so that radial B field
in the airgap is constant). If a permanent magnet is used, then of course
the B field in the airgap is constant.

FIGURE 1.18. DC motor picture and schematic

Electromechanical Energy Conversion

The mechanical power produced by this DC motor is τωR = i`1`2BωR
while the electrical power absorbed by the back-emf is iξ = i`1`2BωR. That
is, the electrical power absorbed by the back-emf equals (is converted to) the
mechanical power produced. Another way to view this energy conversion
is to write the rotor electrical equation as

va = Ri+ Ldi/dt+KbωR

The power out of the voltage source va(t) is va(t)i(t) and

va(t)i(t) = Ri2(t) + Lidi/dt+ iKbωR

= Ri2 +
d

dt

1

2
Li2 + iξ

= Ri2 +
d

dt

1

2
Li2 + τωR

Thus the power va(t)i(t) delivered by the source goes into heat loss in
the resistance R, into stored magnetic energy in the inductance L of the
loop and the amount iξ goes into the mechanical energy τωR.

1.5 Flux linkage

Here Faraday’s Law is described in the context of flux linkage. To introduce
the notion of flux linkage, consider a multi-loop coil as shown in the figure
below. This is an air core solenoid made by tightly wrapping wire around
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an air core. When current is applied to the wire, each loop of the wire
has approximately the same flux ψ =

R
S
~B · d~S as the ~B is approximately

constant inside the solenoid if the number of turns N is large. That is,
~B ≈ B0iẑ inside the solenoid. As a result, each loop of the wire has the
same induced voltage in it given by −dψ/dt. Choose the surface element
vectors as d~S = dxdyẑ for each loop so that the sign convention for the
induced voltages is the same for all loops and the flux is given by ψ =
(B0S) i = L1i where S is the cross sectional area of the solenoid and L1is
the (self) inductance of each loop. Also, note that choosing d~S = dxdyẑ,
the sign convention for the induced voltage −dψ/dt in each loop coincides
with that of the current i and applied voltage vs. The total induced voltage
in the length of the wire is just the sum of the voltages induced in each
loop, that is, vsolenoid = −Ndψ/dt = −d (Nψ) dt. Define the flux linkage
as λ , Nψ which is simply the sum of the fluxes in all the loops making
up the coil. Then vsolenoid = −dλ/dt. It is almost always more convenient
to compute the flux linkage when computing the total induced voltage in a
wire which has many turns (loops). Using Kirchoff’s law, the equation for
the loop is then

− d
dt
λ+ vs −Ri = 0

Or, with L = nL1 the total inductance of the loop andR the total resistance
of the loop, this becomes

L
di

dt
= −Ri+ vs

Example Distributed windings
To show how flux linkage is used in AC machines, consider Figure 1.19

which shows four loops wound in the inside surface of cylinder of soft iron
material. That is, a single piece of wire is wound around the inside surface
where one loop is placed in a slot at θ = π/3 (the other side of the loop is
in the slot at θ = π/3−π) then two loops are wound at θ = π/2 and finally
one loop is wound at θ = 2π/3. One end of the wire is labeled a and the



1. The Physics of the DC Motor 25

other a0 and the objective here is to calculate the total emf ξa−a0 induced
in the wire by the permanent magnet rotor.

FIGURE 1.19. Phase a winding.

As before, if the current in the stator winding is positive, the symbol ¯
means it is coming out of the page and the symbol ⊗ means it is going
into the page. Here it is assumed that the permanent magnet produces a
magnetic field in the airgap given by

~BR(θ − θR) = Bmax
rR
r
cos(θ − θR)r̂.

where rR is the radius of the rotor, (r, θ) are the polar coordinates of an
arbitrary location in the airgap and θR is the rotor angle defined by the
centerline of the rotor’s north pole. This rotor magnet produces a flux in
each loop and for any given rotor position θR, this flux is different in the
loop at θ = π/3, the loops at π/2 and the loop at 2π/3. Further, if the
rotor is moving, then it is producing a changing flux in each of the four
loops and therefore, by Faraday’s law, this changing flux will produce an
emf in each of the four loops. Of course, the emfs will be different in the
loop at θ = π/3, the loops at π/2 and the loop at 2π/3.
To compute these emfs, let

d~S = rSdθd`r̂

where rS is the radius of the inside surface of the stator iron. Note that with
this choice of d~S, the positive direction of travel around the loop coincides
with the positive direction of current in that loop (see Figure 1.19). On
the inside surface of the rotor, r = rS so that the flux in the loop whose
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sides are in the slots at θ = π/3 and θ = π/3− π is

φπ/3 =

Z
Loop from

π/3−π to π/3

~BR · d~S

=

Z `1

0

Z θ=π/3

θ=π/3−π
Bmax

rR
rS
cos(θ − θR)r̂· (rSdθd`r̂)

= `1rR

Z θ=π/3

θ=π/3−π
Bmax cos(θ − θR)dθ

= `1rRBmax sin(θ − θR)dθ|θ=π/3θ=π/3−π
= 2`1rRBmax sin(π/3− θR)

Then the emf induced in this loop by the magnetic field of the permanent
magnet is

ξπ/3 = −
dφπ/3
dt

= 2`1rRBmaxωR cos(θR − π/3)

where ωR , dθR/dt. If ξπ/3 > 0, this emf will force current to go in the
positive direction of travel around the loop which coincides with the positive
direction of current in that loop.
Using the same d~S as before, the flux in each of the two loops between

−π/2 to π/2 is

φπ/2 =

Z
Loop from
−π/2 to π/2

~BR · d~S = 2`1rRBmax sin(π/2− θR)

and the induced emf in each of the loops is

ξπ/2 = −
dφπ/2
dt

= 2`1rRBmaxωR cos(θR − π/2).

If ξπ/2 > 0, it will force current to go in the positive direction of travel
around the loop which also coincides with the positive direction of current
in that loop.
Finally,

φ2π/3 =

Z
Loop from

2π/3−π to 2π/3

~BR · d~S = 2`1rRBmax sin(2π/3− θR)

and

ξ2π/3 = −
dφ2π/3
dt

= 2`1rRBmaxωR cos(θR − 2π/3).
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Again, if ξ2π/3 > 0, it will force current to go in the positive direction of
travel around the loop coinciding with the positive direction of current in
that loop.
All four loops were chosen to have the same sign convention for positive

travel around the loop and each coincides with the positive direction of
current in that loop. The induced emfs in the loops are all in series in the
winding and, as they all have the same sign convention, they can be added
up to get the total emf in the phase winding. That is,

ξa−a0 = ξπ/3 + 2ξπ/2 + ξ2π/3

= −
µ
dφπ/3
dt

+ 2
dφπ/2
dt

+
dφ2π/3
dt

¶
= − d

dt

³
φπ/3 + 2φπ/2 + φ2π/3

´
= − d

dt
λa−a0

where
λa−a0 , φπ/3 + 2φπ/2 + φ2π/3

is the total flux linkage in phase a−a0. The point here is that one can first
sum the fluxes in all the loops of a phase winding (i.e., compute the flux
linkage) and then apply Faraday’s law to the resulting flux linkage to get
the total emf in the phase. However, as done above, care must be taken
to ensure that the flux in each loop is computed in a consistent fashion so
that the resulting emfs all have the same sign convention and therefore add
up to give the total emf in the phase winding.
In the case where the rotor is moving at constant angular speed with

θR = ωRt and Vmax , 2`1rRBmaxωR, the total induced emf ξa−a0 in the
phase a− a0 is then

ξa−a0 = VmaxRe
n
ej(ωRt−π/3) + 2ej(ωRt−π/2) + ej(ωRt−2π/3)

o
= VmaxRe

n
ejωRt

³
e−jπ/3 + 2e−jπ/2 + e−j2π/3

´o
= Vmax(2 +

√
3) cos(ωRt− π/2)

as e−jπ/3 + 2e−jπ/2 + e−j2π/3 = (2 + 2 cos(π/6)e−jπ/2 = (2 +
√
3)e−jπ/2
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1.6 Microscopic Viewpoint of the Back Emf and
Torque in DC Machines

Additional insight into the (back) emf ξ is found by calculating it from a
microscopic point of view, using the ideas given in [12] (see P. 887). Recall
that the magnetic force on a charged particle q is ~Fmagnetic = q~v× ~B, where
~v is the velocity of the charge (see [12] P. 816). To illustrate this approach,
the back emf in the linear DC machine is recomputed from the microscopic
point of view.
Example A Linear DC Machine

FIGURE 1.20. Linear DC machine

Suppose the motor (bar) is moving to the right with a constant speed
vm. Each charge q in the sliding bar has total velocity ~v = vmx̂ − vdŷ,
where vd is the drift speed of the charges down the wire. The magnetic
force on the charge q is

~Fmagnetic = q~v×~B
= q(vmx̂− vdŷ)× (−Bẑ)
= qvmBŷ+ qvdBx̂

Now, the component of force qvdBx̂ perpendicular to the bar causes the
bar to move to the right and the component qvmBŷ along the bar opposes
the current flow. The battery sets up an electric field ~Ebattery in the bar to
overcome the magnetic force qvmBŷ so as to make the current flow (setup
the drift velocity vd against the resistance of the bar). In more detail, with
T1 and T2 the upper and lower terminals of the battery respectively, and S1
and S2 the upper and lower sliding contact points, respectively, the battery
voltage is given as

Vbattery =

Z
T1−S1−S2−T2

~Ebattery · d~̀
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q~Ebattery is the force on each charge carrier and qVbattery =
R

T1−S1−S2−T2
q~Ebattery ·

d~̀ is the energy given to the charge carrier by the battery source as the
charge goes around the loop. There is also a magnetic force on the charge
carrier that opposes the electric field ~Ebattery . The energy per unit charge
ξ that the magnetic force takes from the charge carrier as it goes down the
bar from S1 to S2 is given by

ξ =
1

q

S2Z
S1

~Fmagnetic · d~̀

=
1

q

S2Z
S1

q(~v×~B) · d~̀

=

Z `

0

(vdBx̂+vmBŷ) · (−d`ŷ)
= −vmB`

The fact that ξ is negative just indicates that the magnetic force is taking
energy out of the charge carrier as it goes down the bar from S1 to S2.
This energy/unit-charge ξ given to (taken from) each charge carrier by
the magnetic-force as it goes around the loop is called the induced emf.
The voltage Vbattery was computed by integrating ~Ebattery in the clockwise
direction T1−S1−S2−T2 around the loop and ξ by integrating ~v×~B also
in the clockwise direction S1 − S2 down the bar, that is, they both have
the same sign convention. This is in contrast to the macroscopic case where
Vbattery and ξ had opposite sign conventions resulting in ξ (= vmB`) being
positive. However, the same (physical) result occurs as in the macroscopic
case.
The total emf is the sum of the battery voltage and induced emf and this

total emf goes into producing the current, i.e.,

Vbattery + ξ = Vbattery − vm`B = Ri

where an identical equation was found in the macroscopic case using Fara-
day’s Law. Let ~F` denote the total magnetic-force on the bar in the x̂
direction. Then,

~F` , q(NS`)vdBx̂

where N is the number of charge carriers/volume and S is the cross-
sectional area of the sliding bar. That is, NS` is the total number of charge
carriers in the sliding bar each experiencing the force qvdBx̂. As illustrated
in Figure 1.21, in a time ∆t, the charges in the volume NS(vd∆t) have
moved down the bar past the point A in Figure 1.21.
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FIGURE 1.21. In the time ∆t, the amount of charge ∆Q = qNS(vd∆t) has
moved past the point A resulting in the current i = ∆Q/∆t = qNSvd in the bar.

That is, the amount of charge ∆Q = qNS(vd∆t) has moved past the
point A in the time ∆t resulting in the current i = ∆Q/∆t = qNSvd in
the bar. Consequently, the total magnetic force on bar may be rewritten as

~F` , q(NS`)vdBx̂

= (qNSvd)`Bx̂

= i`Bx̂

which is identical to the expression derived from the macroscopic point of
view.

1.6.1 Application to the Single-Loop DC Motor

FIGURE 1.22. Single-loop DC motor

When the loop is rotating at angular speed ωR, the velocity of the charge
carriers that make up the current is given by

~v = vtθ̂ + vdẑ for side a

= vtθ̂ − vdẑ for side a0
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where vd is the drift speed of the charge carriers along the wire and vt =
(`2/2)ωR is the tangential velocity due to the rotating loop. Recall that the
drift speed has the same sign as the current, that is, vd > 0 for i > 0. Also
recall that the angular velocity is written as ~ωR = ωRẑ since ẑ is the axis
the motor is turning about. The magnetic-force/unit-charge ~Fmagnetic/q on
the charge carriers on the axial sides of the loop is

~Fmagnetic/q = ~v×~B
where

~v×~B = (vtθ̂+vdẑ)× (+B)r̂ = −vtBẑ+vdBθ̂ = vdBθ̂ − ωR(`2/2)Bẑ on side a

= (vtθ̂−vdẑ)× (−B)r̂ = +vtBẑ+vdBθ̂ = vdBθ̂ + ωR(`2/2)Bẑ on side a0

Now, the vdBθ̂ term is what produces the torque. In more detail, with
N the number of charge carriers/unit-volume, S the cross-sectional area of
the wire loop and `1 the axial length of the loop, then NS`1 is the total
number of charge carriers of each side of the loop and the current is then
given by i = qNSvd (see Figure 1.21). The total tangential forces on the
axial sides of the rotor loop are given by

~Fside a = (qNS`1)vdBθ̂ = i(t)`1Bθ̂

~Fside a0 = (qNS`1)vdBθ̂ = i(t)`1Bθ̂

The torque is then

~τ =
`2
2
r̂×~Fside a + `2

2
r̂×~Fside a0

= 2(
`2
2
r̂)× (i`1Bθ̂)

= i`1`2Bẑ

which is the same result as in the macroscopic case.
It is now shown that the ẑ−component of the magnetic force produces

the back emf. The ẑ−component of ~Fmagnetic (i.e., along the axial sides of
the loop) is given by

(~Fmagnetic/q)z ẑ = −ωR(`2/2)Bẑ for side a
= +ωR(`2/2)Bẑ for side a0

As seen in Figure 1.22, this component of the magnetic-force per unit-
charge (~Fmagnetic/q)z opposes the electric field ~Ea set up in the loop by the
applied armature voltage va. In more detail,

va =

Z T2

T1

~Ea · d~̀
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where

d~̀ = +d` ẑ for side a

= −d` ẑ for side a0

while the back-emf is given by

ξ ,
Z T2

T1

(~Fmagnetic/q) · d~̀

=

Z
side a

(−ωR(`2/2)Bẑ) · (d`ẑ) +
Z

side a0

(ωR(`2/2)Bẑ) · (−d`ẑ)

=

Z `=`1

`=0

−ωR(`2/2)Bd`+
Z `=`1

`=0

−ωR(`2/2)Bd`
= −ωR(`2/2)B`1 − ωR(`2/2)B`1

= −`1`2BωR
The minus sign just indicates that ξ opposes the applied armature voltage
va. The total emf in the loop is

va + ξ = va − `1`2BωR.
Finally then, the equation governing the current in the rotor loop is

L
di

dt
+Ri = va − `1`2BωR.

This is the same physical result as shown in the macroscopic case using
Faraday’s Law. However, here the induced emf ξ = −`1`2BωR is negative
because it was chosen to have the same sign convention as va (i.e., both
va and ξ are positive going from T1 to T2). This is in contrast to the
macroscopic case in which they had opposite sign conventions so that ξ =
`1`2BωR was positive, but still opposed va.
Remark Voltage and Emf
The electromotive force or emf between two points in a circuit is the

integral of the total force per unit-charge along the circuit between those
two points5. This force per unit-charge can be due to an electric field, a
magnetic field or both. As seen above, the emf in motors is typically due
to both. The term voltage (drop) is usually reserved for the integral of the
electric field between the two points. However, this distinction is usually
not made and the two terms (voltage and emf) are used interchangeably.

1.6.2 Drift Speed

Above, it was shown that the drift speed of the charge carriers making up
the current is given by vd(t) = i(t)/(qNS). As explained in [12] (see p.781),

5Note that the electromotive force is not a force, but rather an energy per unit charge.
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this motion (drift speed) of the charges in the conductor is caused by the
electric field setup in the conductor by the voltage source and/or induced
emfs in the conducting circuit. This electric field is pushing the charges
along the conductor against the internal resistance of the conductor. In
metals, the outer valence electrons are free to move about the lattice of the
metal and are called conduction electrons. For example, in copper there is
one valence electron per atom and the other 28 electrons remain bound
to the copper nucleus. Consequently, as there are 8.4 × 1022 atoms/cm3
in copper, there are N = 8.4 × 1022 electrons/cm3 that can move freely
within the copper lattice to make up the current in the wire. To consider
a simple numerical example, let i = 10 Amp, S = 0.1 cm2 so that with
q = 1.6× 10−19 coulomb/electron, the corresponding drift speed is

vd =
10 Amp

(1.6× 10−19 coulomb/electron)(8.4× 1022 electrons/cm3)(.1cm2)
= .74

cm
sec

That is, it takes 1/(.74 cmsec ) = 1.35 seconds for the charge carrier to travel
one centimeter. However, it should be noted that that when a voltage
and/or emf is applied to a circuit, the corresponding electric field is setup
around the circuit at a speed close to the speed of light. This is analogous
to applying pressure to a long tube of water. The pressure wave is trans-
mitted down the tube rapidly (at the speed of sound in water) while the
water itself moves much slower [12].

1.7 Speed Sensor-Tachometer for a DC Machine

A tachometer is a device for measuring the speed of a DC motor by putting
out a voltage proportional to the motor’s speed. Consider now a tachometer
for the simple linear DC machine.
Example A Tachometer for a Linear DC Machine
Consider the figure below, where a device for measuring speed (tachome-

ter) has been added to the linear DC machine.
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FIGURE 1.23. DC tachometer (generator)

The two bars are rigidly connected together by the insulating material.
The motor force (the magnetic force on the upper bar) is Fmotor = i`1B1,
and the induced emf in the motor is ξ = Vb = B1`1v, where v is the speed
of the motor (bar).
The induced (back) emf in the tachometer is given by ξ = vtach = B2`2v

so that by measuring the voltage between the terminals T1 & T2, the speed
v of the motor can be computed. Note that the tachometer and motor have
the same physical structure. In fact, the tachometer is nothing more than
a generator putting out a voltage proportional to the speed.
Normally, the output of the tachometer is put through an amplifier,

whose output is then fed back to the motor as shown in Figure 1.24.

FIGURE 1.24. Tachometer used for speed feedback

With Rin the input impedance of the amplifier, the equivalent circuit
schematic for the tachometer is as shown.
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FIGURE 1.25. Circuit schematic for a tachometer

Let vt be the voltage fed back to the motor as shown above. Then

vt = KpRin/(Rt +Rin)Vtach

, KtVtach

The current is itach(t) = vtach/(Rt+Rin) which is small if Rin+Rt is large.
Why must the current be small? Well, the
magnetic force on the tachometer bar is Ftach = itach(t)`2B2 which op-

poses the motion of the bar. Thus the total force F on the two rigidly
connected bars is F = imotor(t)`1B1 − itach(t)`2B2 − (fm + ft)v where fm
and ft are the viscous coefficients of friction of the motor and tachometer,
respectively. Clearly, by keeping the tachometer current itach(t) small, the
opposing force Ftach is small. Also, note that

Vtach(t)itach = `2B2v(t)itach(t)

= Ftach(t)v(t)

That is, the mechanical power Ftach(t)v(t) absorbed by the tachometer bar
reappears as the electrical power Vtach(t)itach .

1.7.1 Tachometer for the Single Loop DC Motor

A tachometer for the single-loop DC motor is constructed by attaching
another loop to the shaft and rotating it an external magnetic field to act as
a DC generator. That is, the changing flux in the loop produces (generates)
an induced emf according to Faraday’s law and this emf is proportional to
the shaft’s speed. To see this, consider Figure 1.26, where a motor loop is
driven by a voltage va and, attached to the same shaft, is a second loop
called a tachometer. Both loops rotate in an external radial magnetic field
which is not shown in Figure 1.26, but is shown for the tachometer loop in
Figure 1.27. It is important to point out that no voltage is applied to the
terminals T1, T2 of the tachometer as was the case for the motor. Instead,
the terminals T1, T2 of the tachometer are connected to an amplifier with
gainKa. The voltage Vtach put out by the tachometer is proportional to the
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motor speed ω. To show this, denote the tachometer loop’s self-inductance
as Lt and its resistance as Rt.

FIGURE 1.26. Single-loop motor and tachometer

In the same way the back emf was computed for the DC motor, one
can calculate the flux in the loop of the tachometer due to the external
magnetic field. Specifically, (see Figure 1.27):

φ =

Z
S

~B · d~S

=

Z `1

0

Z π

θR

(Br̂)·(`2
2
dθdzr̂) +

Z `1

0

Z π+θR

π

(−Br̂)·(`2
2
dθdzr̂)

=

Z `1

0

Z π

θR

B
`2
2
dθdz +

Z `1

0

Z π+θR

π

−B`2
2
dθdz

= (`1`2B/2)(π − θR)− (`1`2B/2)θR
= −`1`2BθR + (`1`2B/2)π

The induced emf is then

vtach = −dφ/dt
= (`1`2B)dθR/dt

= Kb_tachωR

where Kb_tach = `1`2B is a constant depending on the dimensions of the
tachometer rotor and the strength of the external magnetic field of the
tachometer. This shows that the voltage between the terminals T1, T2 is
proportional to the angular speed.
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FIGURE 1.27. Cutaway view of the DC tachometer

By the sign convention for Faraday’s law, the current in the tachometer
is out of the page ¯ at the point a in Figure 1.27 and into the page ⊗ at a0.
This current is opposite in direction to that of the current in the motor. The
torque on the loop is τ tach = −2(`2/2)itach(t)`1B = −`1`2Bitach(t) which
opposes the rotation of the shaft. If the terminals T1, T2 are connected to
an amplifier with input impedance Rin, then an equivalent circuit is given
in Figure 1.28.

FIGURE 1.28. Equivalent Circuit

The mechanical power absorbed by the tachometer is equal to the elec-
trical energy it produces as

τ tach(t)ωR(t) = −`1`2Bitach(t)ωR(t) = −Vtach(t)itach(t)

That is, the mechanical power done to oppose the torque τ tach is converted
to electrical power Vtach(t)itach(t)! Again, the tachometer has the same
physical structure as the motor and is just acting as a generator putting out
a voltage proportional to the angular speed. The only difference between
a motor and a generator is how the device is used. In a motor, a voltage
is applied to the terminals of the brushes to cause the armature (i.e., the
current loops on the rotor) to turn. On the other hand, in a generator, the
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armature is (externally) turned to produce a voltage between the terminals
of the brushes.

1.8 The Multi-Loop Motor*

The above single-loop motor was used to illustrate the basic Physics of the
DC motor. However, it is not practical and first thing that must be done is
to add more loops to extract more torque from the machine. Further, in the
single-loop motor, the magnetic field due to the current in the rotor is an
external magnetic field acting on the field windings. As the loop rotates,
this magnetic field produces a changing flux in the field windings which
in turn induces an emf in the field windings. This emf is referred to as
the armature reaction. (The term armature refers to the rotating current
loop, and reaction refers to the induced emf in the field windings due to
the current in the rotor loop.) The armature reaction makes it difficult to
maintain a constant field current. These problems can also be alleviated by
adding more loops to the motor.

FIGURE 1.29. Single-loop motor with a field winding

1.8.1 Increased Torque Production

Figure 1.30 below shows the addition of several loops to the motor [15].
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FIGURE 1.30. Redraw for 4 loops. Multi-Loop Armature

The torque on the rotor is now τm = n`1`2Bi(t), where n is the number
of rotor loops and B is the external magnetic field. Of course, some method
will need to be given to make sure the current in each loop is reversed every
half-turn. That is, all the loop sides under the south pole face must have
their current into the page ⊗ and the loop sides under the north pole face
must have their current out of the page ¯.

1.8.2 Commutation of the Armature Current

Each loop in the rotor must have the current in it switched every half-turn.
This is done using a commutator which is illustrated in Figure 1.31 This is
a commutator for the rotor shown in Figure 1.32 [5]. This rotor consists of
4 sets of rotor loops whose sides are 45◦ apart. As shown, the commutator
for this rotor consists of 8 copper segments (labeled a−h in 1.32a) which are
separated by insulating material. Each commutator segment is connected
to one of the ends of two rotor loops as shown in Figure 1.32a [5]. The
commutator and rotor loops all rotate together rigidly while the two brushes
(labeled b1 and b2) remain stationary. The two brushes are typically made
of a carbon material and are mechanically pressed against the commutator
surface making electrical contact6.

6The figure shows a gap between the brushes and the commuator, but this was done
for illustration and there is no gap in reality. Also, for illustrative purposes, the brushes
are shown insider the commutator when in fact they are normally pressed against the
commutator from the outside.
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FIGURE 1.31. Commutator for the rotor in Figure 1.32

To get positive torque, it must be that whenever a side of the loop is
under a south pole face, the current must be into the page (⊗) and the
other side of the loop (which is under the north pole face) must have its
current out of the page (¯). When the loop side passes through from being
under one pole face to the other pole face, the current in that loop must
be reversed or commutated. To understand how all this is done, consider
the armature7 in the position shown in Figure 1.32a. The current enters
brush b1 and into commutator segment c. By symmetry, half the current
i/2 goes through loop 3−30 into commutator segment d then through loop
4−40 into commutator segment e, then through loop 5−50 into commutator
segment f , then through loop 6−60 into commutator segment g and finally
out through brush b2. This path (circuit) of the current is denoted in bold.
Similarly, there is a parallel path for the other half of the current armature
current. Specifically, i/2 goes through loop 20−2 into commutator segment
b then through loop 10 − 1 into commutator segment a then through loop
80 − 8 into commutator segment h then into loop 70 − 7 into commutator
segment g and finally out through brush b2. This path (circuit) is denoted in
unbold. Consequently, this shows that for the rotor in the position shown
in Figure 1.32a, there are two parallel paths each carry half the armature
current through the loops. All loops that have a side under the south pole
face have their current into the page and the other side of the loops (under
the north pole face) have their current out of page so that positive torque
is produced.

7The armature is the complete rotor assembly consisting of the commutator, rotor
loops and rotor’s magnetic core.
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FIGURE 1.32. a Rotor loops and commutator for 4 sets of rotor loops. Brushes
remained fixed in space (i.e., they do not rotate).

The sides of the loops in Figure 1.32a are 45◦ apart. Figure 1.32b below
shows the rotor turned 45◦/2 with respect to Figure 1.32a. In this case,
brush b1 shorts the two commutator segment b and c together while the
brush b2 shorts together the two commutator segments f and g. The ends
of loop 2−20 are connected to commutator segments b and c (which are now
shorted together) so that the current in this loop is now zero. Similarly, the
ends of loop 6− 60 are connected to commutator segments f and g and the
current in this loop is also zero. For the remaining loops, i/2 goes through
loop 3 − 30 into commutator segment d, then through loop 4 − 40 into
commutator segment e, then into loop 5− 50 into commutator segment f ,
and finally out brush b2. These are denoted in bold in the figure. Similarly,
i/2 goes through loop 10−1 into commutator segment a, then through loop
80 − 8 into commutator segment h, then into loop 70 − 7 into commutator
segment g, and finally out brush b2.

Figure 1.32b Rotor turned 45◦/2 with respect to Figure 1.32a.

The motor continues to rotate and consider it now after it has moved
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additional 45◦/2 so that it has the position shown in Figure 1.32c below. In
this case, the current enters brush b1 and into commutator segment b. By
symmetry, half the current i/2 goes through loop 2 − 20 into commutator
segment c, then through loop 3 − 30 into commutator segment d, then
through loop 4− 40 into commutator segment e, then through loop 5− 50
into commutator segment f , and finally out through brush b2. This path
(circuit) of the current is denoted in bold. Similarly, the other half of
the current goes through loop 10 − 1 into commutator segment a then
through loop 80 − 8 into commutator segment h then through loop 70 − 7
into commutator segment g then into loop 60−6 into commutator segment
f and finally out through brush b2. This path (circuit) is denoted in unbold.

Figure 1.32c. Rotor turned 45◦ with respect to Figure 1.32a.

As this sequence of figures shows, the current in loops 2− 20 and 6− 60
were reversed as these two loops went through the vertical position. In
general, there are two parallel paths each consisting of four loops and when
any loop goes to the vertical position, the current in that loop is reversed.
In this way, all sides of the loop under the south pole have keep their current
into the page and all sides under the north pole have their current coming
out of the page for positive torque production.
Remark The scheme for current commutation presented here is from

[5]. However, there are many other schemes and the reader is referred to
[5][7][8][10] for an introduction to the various schemes that are used. See
especially [8] for a discussion of how commutation is often carried out in
permanent magnet DC motors.

1.8.3 Armature Reaction

The left side of Figure 1.33 shows the magnetic field distribution in the
iron and airgap due to the just the field current, while the right side of
1.33 shows the magnetic field distribution in the iron and airgap due to
just the armature currents. As the right figure shows, the magnetic field
distribution in the iron due to the armature current is perpendicular to
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the magnetic field distribution due to the field windings. As a result of
this configuration, any changing magnetic field due to the armature current
cannot induce any voltages in the field windings. Finally, Figure 1.34 shows
the sum of the two magnetic fields. In summary, the symmetric placement
of rotor loops around the periphery of the rotor essentially eliminates the
armature reaction.

FIGURE 1.33. Redraw for 4 loops. Magnetic Field due to Field Current [16]

FIGURE 1.34. Redraw for 4 loops. Magnetic Field due to Field and Armature
Currents [16]

1.8.4 Field Flux

The flux linkage in the field windings is

ϕf (if ) = Nfφf = NfSBf (if )

where Nf is the total number of field windings, S is the cross sectional
area of the iron core of the field winding and Bf (if ) is the magnetic field
produced inside the magnetic-material of the field circuit due to the field
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current if . The lines of the B field are shown in Figure 1.3, and, in this
case, conservation of flux8 implies the flux in each of the windings of the
field is the same as the flux in the airgap under a north or south pole face.
That is,

φf = SBf (if ) = π(`1/2)`2B(if )

were `1/2 is the radius of the rotor, `2 is the axial length of the rotor and
B(if ) is the radial magnetic field in the airgap due to the field current if .
Consequently,

B(if ) =
SBf (if )

π`1`2/2
=

ϕf (if )

Nfπ`1`2/2

is an expression for the radial magnetic field in the airgap in terms of the
flux linkage ϕf (if ) = NfSBf (if ) in the field windings.

Seperately Excited DC Motor

1.8.5 Armature Flux

In what follows, the multiloop motor of Figure 1.32 is considered in which
the armature circuit consists of two parallel circuits each having n loops.
Recall that for the single-loop motor, the flux φsl(if , θR) in the loop of the
rotor due to the external magnetic field B(if ) is

φsl(if , θR) = −`1`2B(if )(θRmodπ − π/2).

In the multi-loop motor, θR is hereby referenced relative to loop 1− 10 so
that θR = 0 corresponds to loop 1− 10 being vertical. Then, the kth rotor
loop is at (see Figure 1.32)

θk = θR + (k − 1)π/n for k = 1, ..., n

8This will be explained in Chapter 3.
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where n is the number of loops in each parallel circuit9. The flux in the kth

rotor loop is

φk(if , θR) = −`1`2B(if )
³
θkmodπ − π

2

´
= −`1`2B(if )

³n
θR + (k − 1)π

n

o
modπ − π

2

´
.

The total flux linkage φ(if , θR) in the n rotor loops10 is then

φ(if , θR) =
nX
k=1

φk(if , θR)

= −
nX
k=1

`1`2B(if )
³n

θR + (k − 1)π
n

o
modπ − π

2

´
. (1.2)

Recall that the sign convention for the fluxes φk(if , θR) is such that if
−dφk(if , θR)/dt > 0, then it is acting in the direction opposite to positive
current flow, i.e., its sign convention is opposite to that of applied voltage
v. In other words, the sum v− (−dφ(if , θR)/dt) = v + dφ(if , θR)/dt is the
total emf in the loop due to the applied voltage and the external magnetic
field.
For n = 4, the normalized flux linkage φ(if , θR)/(`1`2B(if )) is plotted as

a function of the rotor position θR in Figure 1.35. Note that ∂φ(if , θR)/∂θR =
−n`1`2B(if ) which is proportional to the number of rotor loops n and to
the strength of the external magnetic field strength B(if ) in the airgap.

9Note that n = 4 in Figure 1.32.
10 In Figure 1.32(a)(b)(c), each of the two parallel sets of n rotor loops has the flux

linkage φ(if , θr) in it.
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FIGURE 1.35. Normalized Flux Linkage φ(if , θR)/(`1`2B(if )) versus θR in
radians with n = 4 sets of rotor loops and 0 ≤ θR ≤ 2π. The slope is
∂φ(if , θR)/∂θR = −n`1`2B(if ).

1.8.6 Dynamic Equations of the Separately Excited DC motor

In the multi-loop motor considered here, the armature circuit consists of
two parallel circuits each having n loops. That is, there are a total of 2n
loops on the rotor as each of the parallel circuits has a loop at the same
location on the rotor. Let L denote self inductance of the n rotor loops
making up either of the two parallel circuits. Note that if a current i/2 is
in each parallel circuit, then each circuit will have a flux linkage of Li/2
due to its current and an additional flux linkage of Li/2 due to the current
in the other circuit. This is simply because the two sets of parallel loops
(windings) are wound together so that they are perfectly (magnetically)
coupled.
The total flux linkage in the n loops making up either of the parallel

circuits is now computed. To proceed, let i be the current into the armature
so that i/2 is the current in the n loops of each parallel circuit. The quantity
Li/2 is the flux linkage due to the current i/2 in the loops and an additional
flux linkage of Li/2 is produced in these same loops by the current i/2 in
the other parallel circuit for a total flux of Li. Also φ(if , θR) is the flux
linkage in the n loops due to the external magnetic field, but recall that
its sign convention for the induced emf is opposite to that of Li. Recall in
section 1.3.3 that normal to the flux surface was taken to be radially in to
compute the flux Li while in section 1.3.2 the surface normal was taken to
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be radially out to compute the flux φ(if , θR). Simply writing −φ(if , θR)
then gives the flux due to the external magnetic field with the surface
normal radially in. Now the induced voltages by both of these changing
fluxes will have the same sign convention as the applied armature voltage.
The total flux linkage is either parallel circuit is then written as

Li− φ(if , θR).

Let R1 denote the resistance of the n loops connected in series making
up each parallel circuit. The equation describing the electrical dynamics of
the armature current in each of the parallel circuits is found by applying
Kirchoff’s voltage law to get

− d
dt

³
Li− φ(if , θR)

´
−R1i/2 + va = 0

where va is the applied voltage to the armature. Finally, defining R , R1/2,
the equation describing the electrical dynamics of the armature circuit is

L
di

dt
= −Ri+ dφ(if , θR)

dt
+ va. (1.3)

The quantity dφ(if , θR)/dt can be expanded to obtain

dφ(if , θR)

dt
=

∂φ

∂if

dif
dt
+

∂φ

∂θR
ωR =

∂φ

∂if

dif
dt
− n`1`2B(if )ωR. (1.4)

Here B(if ) is the strength of the radial magnetic field in the airgap pro-
duced by the current in the field windings. The flux linkage in the field wind-
ings is ϕf (if ) = NfSBf (if ) where Bf (if ) is the magnetic field strength in
the iron core of the field and S is the cross sectional area of this iron core.
The flux SBf (if ) goes through the airgap and by conservation of flux (see
section 1.8.4), SBf (if ) = (π`1`2/2)B(if ) so that B(if ) =

Nf

Nf

SBf (if )
π`1`2/2

=
ϕf (if )

Nfπ`1`2/2
. Consequently,

n`1`2B(if ) = n`1`2
ϕf (if )

Nfπ`1`2/2
= Kmϕf (if ), Km ,

2

π

n

Nf
.

As a result, equation (1.4) may be rewritten as

dφ(if , θR)

dt
=

∂φ

∂if

dif
dt
−Kmϕf (if )ωR.

Each loop carries the current i/2 so that the torque produced by the two
sides of each loop is 2 (`2/2) (i/2)`1B(if ). As there are 2n loops, the total
torque is

τm = 2n`1`2B(if )(i/2) = n`1`2B(if )i = Kmϕf (if )i (1.5)
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using the above expressions forKm and ϕf (if ). Consequently, using (1.3)(1.5),
the complete set of equations for the separately excited DC motor is then

L
di

dt
= −Ri+ ∂φ

∂if

dif
dt
−Kmϕf (if )ωR + va (1.6)

J
dωr
dt

= Kmϕf (if )i− τL (1.7)

dϕf (if )

dt
= −Rf if + vf (1.8)

where vf is the applied voltage to the field, Rf is the resistance of the field
winding, τL is the load torque on the motor and J is the rotor’s moment
of inertia.
If the iron in the field is not in saturation, then one may write

ϕf (if ) = Lf if

and the dynamic model simplifies to

L
di

dt
= −Ri+ ∂φ

∂if

dif
dt
−KmLf ifωR + va (1.9)

J
dωr
dt

= KmLf if i− τL (1.10)

Lf
dif
dt

= −Rf if + vf (1.11)

Under normal operating conditions, the term ∂φ
∂if

dif
dt is typically negligi-

ble and so the model reduces to11

L
di

dt
= −Ri−KmLf ifωR + va (1.12)

J
dωr
dt

= KmLf if i− τL (1.13)

Lf
dif
dt

= −Rf if + vf (1.14)

A typical mode of operation is to use the field voltage vf to hold the
field current if constant at some value. Then the field flux is of course con-
stant and Lfdif/dt = 0. However, in the first equation (1.6) (or 1.12), it
is seen that the back-emf (voltage) is −KmϕfωR (or −KmLf ifωR) which
increases in proportion to the speed. The input voltage va must be at least
large enough to overcome the back-emf in order to maintain the armature
current. To have the motor achieve higher speeds within the voltage limit

11 It will be seen later that field oriented control of an induction motor results in a
mathematical model of the induction motor that looks similar to these equations!
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|va| ≤ Vmax, field weakening is employed. This is accomplished by decreas-
ing the field flux ϕf = Lf if at higher speeds usually according to the
following flux reference

ϕref = ϕf0 for |ωR| ≤ ωbase

= ϕf0
ωbase
ωR

for |ωR| ≥ ωbase. (1.15)

Field weakening results in the back-emf −Kmϕfω = Kmϕf0
ωbase
ωR

ωR =
−Kmϕf0ωbase being constant for speeds greater than ωbase. The trade-
off is that the torque Kmϕf ia is less for the same ia due to the decrease
in field flux linkage ϕf . If the armature resistance is negligible and if is
constant, then the base speed ωbase is defined to be the speed satisfying
Kmϕfωbase = Vmax. Otherwise, the base speed is chosen to be somewhat

smaller to account for the Ri and ∂φ
∂if

dif
dt drop (see equation (1.6)).

Permanent Magnet DC Motor

The equations describing a multi-loop permanent magnet DC motor are
easily derived from the above derivation of the equations for the separately
excited DC motor. In this case, the electromagnet (iron plus field winding)
is replaced by a permanent magnet so that B(if ) is simply replaced by the
constant value B of the permanent magnet’s field strength in the airgap.
Thus (1.2) becomes

φ(θR) = −
nX
k=1

`1`2B
³n

θR + (k − 1)π
n

o
modπ − π

2

´
.

Kirchoff’s voltage law applied to the armature circuit gives12

−Ldi/dt− (−dφ(θR)/dt)−Ri+ va = 0.
The equations for a multi-loop PM DC motor are then

d

dt
Li− d

dt
φ(θR) = −Ri+ va

J
dωR
dt

= n`1`2Bi− τL

or, as ∂φ(θR)/∂θR = −n`1`2B, this becomes

L
di

dt
= −Ri−KbωR + va (1.16)

J
dω

dt
= KT i− τL (1.17)

12Recall that the sign convention for −dφ(θR)/dt is opposite to that of −Ldi/dt and
hence the sum of these two emfs is −Ldi/dt− (−dφ(θR)/dt).
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where Kb = |∂φ(θR)/∂θR| = n`1`2B = KT . This system of equations is of
the same form as derived previously for the single-loop motor.
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1.9 Problems

Faraday’s Law and Induced Electromotive Force (emf)

Problem 1 Faraday’s Law
Consider the figure below where the magnet is moving up into the square

planar loop of copper wire.

Using the normal ~n1, is the flux in the loop produced by the magnet
increasing or decreasing?
Using the normal ~n1, what is the direction of positive travel around the

surface whose boundary is the loop? (clockwise or counterclockwise)
What is the direction of the induced current on the figure.(clockwise or

counterclockwise). Does the induced current produce a flux in the loop that
opposes the flux produced by the magnet?
Using the normal ~n2, is the flux increasing or decreasing?
Using the normal ~n2, what is the direction of positive travel around the

surface whose boundary is the loop? (clockwise or counterclockwise)
What is the direction of the induced current on the figure.(clockwise or

counterclockwise). Does the induced current produce a flux in the loop that
opposes the flux produced by the magnet?

Problem 2 Faraday’s Law
Consider the figure below where the magnet is moving down away from

the loop of copper wire.
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Using the normal ~n1, is the flux in the loop produced by the magnet
increasing or decreasing?
Using the normal ~n1, what is the direction of positive travel around the

surface whose boundary is the loop? (clockwise or counterclockwise)
What is the direction of the induced current on the figure.(clockwise or

counterclockwise). Does the induced current produce a flux in the loop that
opposes the flux produced by the magnet?
Using the normal ~n2, is the flux increasing or decreasing?
Using the normal ~n2, what is the direction of positive travel around the

surface whose boundary is the loop? (clockwise or counterclockwise)
What is the direction of the induced current on the figure.(clockwise or

counterclockwise). Does the induced current produce a flux in the loop that
opposes the flux produced by the magnet?

Problem 3 The Linear DC Motor
Consider the simple linear DC motor analyzed in the text.
With the normal to the surface enclosed by the loop taken to be ~n = −ẑ,

what is the flux through the surface?
What it the direction of positive travel around this flux surface?
What is the induced emf ξ in the loop in terms of B, ` and the speed v

of the bar?
Do Vbat (the external voltage applied to the loop) and ξ have the same

sign convention? Explain why ξ is now negative.

Problem 4 The Linear DC Motor

Consider the simple linear motor in the figure where the magnetic field
~B = Bẑ (B > 0) is up out of the page.
Closing the switch causes a current to flow in the wire loop. What is the

magnetic force ~Fmagnetic on the sliding bar in terms of B, i, and ` (the
length of the bar)? Give both the magnitude and direction of ~Fmagnetic.
With the normal to the surface enclosed by the loop taken to be ~n = ẑ,

what is the flux through the surface?
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What is the induced emf ξ in the loop in terms of B, ` and the speed v
of the bar?
What is the sign convention for the induced emf ξ drop around the loop?

(That is, if ξ > 0, would it act to push current in the clockwise or counter-
clockwise direction?).
Do Vbat (the external voltage applied to the loop) and ξ have the same

sign convention?

Problem 5 Back-Emf in the Single-Loop Motor
Consider the single-loop motor with the flux surface as indicated. A volt-

age source connected to the brushes is forcing current down side a (indicated
with a ⊗) and up side a0 (indicated with a ¯).

With the motor at the angular position θR shown and using the inward
normal (i.e., ~n = −r̂), compute the flux through the surface in terms of the
magnitude B of the radial magnetic field in the air gap, the axial length `1
of the motor, the diameter `2 of the motor and the angle θR of the rotor.
What is the positive direction of travel around the flux surface S? (direc-

tion 1 or direction 2)
What is the emf ξ induced in the rotor loop? What is the sign convention

for the induced emf ξ drop around the loop? (That is, if ξ > 0, would it
act to push current in CW direction or the CCW direction?). Do va (the
external voltage applied to the loop) and ξ have the same sign convention?
Explain why ξ is now negative.

Problem 6 The figure below shows the rotor loop where π < θR < 2π.
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DRAW FLUX SURFACE Rotor loop where π < θR < 2π

Using the flux surface show in the figure, show that φ (θR) = −`1`2B
¡
θR − π − π

2

¢
for π < θR < 2π.
Combine this with the result in the text to show that φ (θR) = −`1`2B

¡
θRmodπ − π

2

¢
for all θR.
Plot φ (θR) /(`1`2B) for 0 ≤ θR ≤ 2π.

Multi-loop Motor

Problem 7 Neutral Plane and Brush Shifting
In the commutation scheme for the multi-loop motor, it was shown that

when a rotor loop was perpendicular to the brushes, the current in the loop
was shorted out (brought to zero). Consequently, it is highly desirable that
the total induced voltage in that loop be as close to zero as possible to prevent
arcing. Figure 1.34 shows the total B field distribution in the DC machine.
If the armature current were zero, then the field would be horizontal as
in Figure 1.33a. At very high armature currents (e.g., in large machines
used in heavy industry), the field is skewed as shown in Figure 1.34. The
neutral plane is the plane cutting through the axis of the rotor for which
the total B field is perpendicular to the plane. The kth rotor loop13 has
the flux L1i− φk(if , θR) in it (L1 is the inductance of an individual loop)
so that the induced voltage in this loop is −d(L1i − φk(if , θR))/dt. In the
following, assume that the field current if is kept constant.
Explain why L1i−φk(if , θR) is a maximum (or minimum) as a function

of the rotor position θR when the kth loop coincides with the neutral plane.
Explain why −∂(L1i− φk(if , θR))/∂θR = 0 when the k

th loop coincides
with the neutral plane.
Shift (rotate) the brushes so that the neutral plane is perpendicular to the

brushes, that is, in the figure below, the brushes are rotated counterclockwise
so that the plane of the loop undergoing commutation is normal to the total
B field. Show then that the induced voltage in the kth loop when it undergoes

13The flux φk(if , θR) has been multiplied by −1 because then −φk(if , θR) and L1i
have the same reference directions for the induced voltages they produce.
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commutation is

−d(L1i− φk(if , θR))

dt
= −L1 di

dt

Explain why the shifting of the brushes is a good idea to alleviate arcing.
Eoes the amount that the brushes are to be rotated depend on the amount

of armature current?

Redraw with only 8 loops. Magnetic Field due to Field and Armature
Currents

Problem 8 Conservation of Energy in the Separately Excited DC Motor
Using the equations (1.6)(1.7)(1.8) of the separately excited DC motor

show that energy conservations holds. Give a physical interpretation to the
various expressions.

Problem 9 Series DC motor [1]
In a separately excited DC motor, connect the terminal T1 of the arma-

ture to the terminal T 02 of the field circuit and apply a single voltage source
between the remaining terminals T 01, T2. This configuration is referred to as
a series DC motor and has traditionally been used in traction drives. An
equivalent circuit is also shown.
Let ϕ(if ) = Lf if and derive the equations that characterize this system.
Show that the torque cannot change sign (i.e., it is always positive or

always negative).
What must be done to change the sign of the torque?
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Seperately Excited DC Motor

Schematic for a Series DC motor

Problem 10 Shunt DC motor [2]
In a separately excited DC motor, connect the terminal T1 of the arma-

ture to the terminal T 01 of the field circuit and similarly connect the other
two terminals T2, T 02 together. This configuration is referred to as a shunt
DC motor for which an equivalent circuit is shown below. The resistance
Radj is an adjustable resistance added in series with the field winding and
is used to make the control of the motor easier.
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Seperately Excited DC Motor

Schematic for a Shunt DC Motor

Let ϕ(if ) = Lf if and derive the equations that characterize this system.

Problem 11 A 3-phase generator [17]
Consider a simplified model of a 3-phase generator shown in the figure

below. The current if around the rotor iron is held constant. With θ, θR
defined as in the figure, it turns out that the magnetic field in the air gap
due to if is given by

~B(θ) = BRmax cos(θ − θR)r̂

where BRmax > 0 is constant when if is constant.
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A simple 3-phase generator.

Using the flux surface shown below, compute the flux in the stator loop
a− a0 and the voltage induced in this loop.

Also compute the fluxes and voltages in phases b − b0 and c − c0. With
the ends a0, b0, c0 tied together, show that if the rotor is going at constant
speed, this results in a three phase generator in which the three voltages are
identical except 120◦ out of phase with each other.

Problem 12 Three phase generator with distributed windings
Consider the three phase generator with distributed windings as illus-

trated in the Figure below.
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Need a PM rotor

With the rotor going at constant angular speed ωR, find the three steady-
state voltages ξ1−10 , ξ2−20 , ξ3−30 which are generated by this machine.
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